首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The observed currents in summer in the Bohai Sea   总被引:3,自引:0,他引:3  
A harmonic method was used to analyze the tidal currents observed in summer at 11 stations made from 1996 to 2001 in the Bohai Sea, China. Data was compared among different instruments and intervals. Elliptic elements were calculated based on harmonic constants, of which vertical distributions of the maximum speed and rotation direction were discussed for understanding the characteristics of diurnal and semi-diurnal tidal current components. The results indicate that the maximum speed of M2 tidal current component is much larger than that of K1; the rotation direction of M2 tidal current constituent is clockwise in the central part of the Bohai Sea and in the Laizhou Bay, but anticlockwise in the Liaodong Bay and Bohai Bay. For K1 tidal current constituent, it is clockwise in the central Bohai Sea but anti-clockwise in the Laizhou Bay and Liaodong Bay. The tidal currents in most stations in the Bohai Sea were regular semidiurnal except for those in the central Bohai Sea, being irregular semidiurnal.  相似文献   

2.
In-situ measurements in Xiangshan Bay, the East China Sea, show that the duration of the rising tide is shorter than that of the falling tide around the bay mouth, while it becomes much longer in the inner bay. A finite volume coastal ocean model(FVCOM) with an unstructured mesh was applied to simulate the asymmetric tidal field of Xiangshan Bay. The model reproduced the observed tidal elevations and currents successfully. Several numerical experiments were conducted to clarify the roles of primary mechanisms underlying the asymmetric tidal field. According to the model results, the time-varying channel depth and nonlinear advection prefer shorter duration of the rising tide in Xiangshan Bay, while the time-varying bay width favors longer duration of the rising tide. The overtides generated by these two opposite types of nonlinear mechanisms are out of phase, resulting in smaller M4 amplitude than the sumfold of each individual contribution. Although the bottom friction as a nonlinear mechanism contributes little to the generation of overtide M4, it is regarded as a mechanism that could cause a shorter duration of the rising tide, for it can slow down the M2 phase speed much more than it slows down the M4 phase speed. The time-varying depth, nonlinear advection and bottom friction are dominating factors around the bay mouth, while the time-varying width dominates in the inner bay, causing the tidal elevation asymmetry to be inverted along the bay.  相似文献   

3.
The 3-D ECOMSED ocean model was applied to establish a time-dependent boundary model for Jiaozhou Bay (JZB), in which the operator-splitting technique was used and the ‘dry and wet’ method was introduced. The influence caused by JZB reclamation on the surface level, residual currents, tidal system and tidal energy of M2 tidal system were predicted and analyzed. The results show that JZB reclamation has slight impact on the M2 tidal system, in which the variation of amplitude and phase is less than 1%.The ch...  相似文献   

4.
An advanced ocean observatory has been established in Lunenburg Bay of Nova Scotia, Canada as part of an interdisciplinary research project of marine environmental prediction. The development of a high-resolution coastal circulation model is one of important components of the observatory. The model horizontal resolution is 60m and the vertical resolution is about 1 m. The coastal circulation model is used to simulate the semi-diurnal tidal circulation and associated nonlinear dynamics with the M2 forcing specified at the model open boundaries. The model is also used to simulate the storm-induced circulation in the bay during Hurricane Juan in September 2003, with the model forcing to be the combination of tides and remotely generated waves specified at the model open boundaries and wind stress applied at the sea surface. The model results demonstrate strong interactions between the local wind stress, tidal forcing, and remotely generated waves during this period. Comparison of model results with the surface elevation and current observations demonstrates that the coastal circulation model has reasonable skills in simulating the tidal and storm-induced circulation in the bay.  相似文献   

5.
A TWO-DIMENSIONAL NUMERICAL MODEL OF THE TIDAL MOTIONS IN THE BOHAI SEA   总被引:1,自引:0,他引:1  
The motions of diurnal, semidiurnal, and shallow-water tides and tidal currents in the Bohai Sea are computed using a finite-difference method based on two-dimensional tidal wave equations. Good agreement of the computed results with the observed data is achieved for diurnal and semidiurnal tides. The general pattern of the computed quarterdiurnal tide conforms to the observed pattern, but the computed amplitudes are on the high side. This is attributed to the ineligibility of the friction terms in the two-dimensional governing equations to dissipate the energy of high frequency tidal waves. It is found that the existing semidiurnal cotidal charts have considerable differences in Laizhou Bay. The difference is likely caused by the movement of the coastline of the Yellow River Delta. The present result coincides with the recent empirical cotidal chart. The computation shows a new current-amphidromic point for both semidiurnal and diurnal tidal currents. The diurnal current has two current-amphidromic poi  相似文献   

6.
Dai  Yanchen  Qiao  Lulu  Xu  Jishang  Zhou  Chunyan  Ding  Dong  Bi  Wei 《中国海洋大学学报(英文版)》2015,14(3):425-432
Laizhou Bay and its adjacent waters are of great importance to China's marine oil and gas development. It is therefore crucial to estimate return-period values of marine environmental variables in this region to ensure the safety and success of maritime engineering and maritime exploration. In this study, we used numerical simulations to estimate extreme wave height, sea current velocity and sea-level height in western Laizhou Bay. The results show that the sea-level rise starts at the mouth of the bay, increases toward west/southwest, and reaches its maximum in the deepest basin of the bay. The 100-year return-period values of sea level rise can reach 3.4–4.0 m in the western bay. The elevation of the western part of the Qingdong Oil Field would remain above the sea surface during extreme low sea level, while the rest of the oil field would be 1.6–2.4 m below the sea surface. The return-period value of wave height is strongly affected by water depth; in fact, its spatial distribution is similar to the isobath's. The 100-year return-period values of effective wave height can be 6 m or higher in the central bay and be more than 1 m in the shallow water near shore. The 100-year return-period values of current velocity is about 1.2–1.8 m s-1 in the Qingdong Oil Field. These results provide scientific basis for ensuring construction safety and reducing construction cost.  相似文献   

7.
To satisfy the growing of land demand from economic development,a large scale of land reclamation from sea has been carried out in Inner Lingdingyang Bay in the Zhujiang(Pearl)River estuary in recent years.As a result,the tidal flat and the water channels became narrow,the frequency of floods increased,and the environment was un-dermined.Guangzhou Marine Geological Survey(GMGS)conducted an integrated project for marine geo-environ-ment and geo-hazards survey in 2003.With the integration of multi-temporal remote sensing images of 1977,1978,1988,1996,and 2003,GIS spatial analyzing approach and GPS technique,as well as field data and other background data of the region,this research investigated the comprehensive characteristics and the drivers of coastal land use dy-namics and shoreline changes in Inner Lingdingyang Bay.The results reveal that the reclaimed coastal land was mainly for agriculture and aquaculture in early years,but now they are used for construction sites of harbors and in-dustries,especially high-tech industry.  相似文献   

8.
The chlorophyll a(Chl a) is an important indicator of marine ecosystems. The spatiotemporal variation of the Chl a greatly aff ects the mariculture and marine ranching in coastal waters of the Shandong Peninsula. In the current study, the climatology and seasonal variability of surface Chl-a concentration around the Shandong Peninsula are investigated based on 16 years(December 2002–November 2018) of satellite observations. The results indicate that the annual mean Chl-a concentration is greater in the Bohai Sea than in the Yellow Sea and decreases from coastal waters to off shore waters. The highest Chl-a concentrations are found in Laizhou Bay(4.2–8.0 mg/m 3), Haizhou Bay(4.2–5.9 mg/m 3) and the northeast coast of the Shandong Peninsula(4.4–5.0 mg/m 3), resulting from the combined eff ects of the intense riverine input and long residence time caused by the concave shape of the coastline. The seasonal Chl-a concentration shows a signifi cant spatial variation. The Chl-a concentrations in these three subregions generally exhibit an annual maximum in August/September, due to the combined eff ects of sea surface temperature, river discharge and sea surface wind. In the southeast coast region, however, the Chl-a concentration is lowest throughout the year and reaches a maximum in February with a minimum in July, forced by the seasonal evolution of the Yellow Sea Cold Water and monsoon winds. The interannual Chl-a concentration trends vary among regions and seasons. There are signifi cant increasing trends over a large area around Haizhou Bay from winter to summer, which are mainly caused by the rising sea surface temperature and eutrophication. In other coastal areas, the Chl-a concentration shows decreasing trends, which are clearest in summer and induced by the weakening land rainfall. This study highlights the diff erences in the Chl-a dynamics among regions around the Shandong Peninsula and is helpful for further studies of coupled physical-ecological-human interactions at multiple scales.  相似文献   

9.
The effects of tides, wind and river discharges on the flow patterns in Bohai Sea are investigated. The Finite Element Method is used to cast the vertically integrated, long wave equations into a system of nonlinear ordinary equations in time. For simplicity we adopted linear triangular elements which are easily integrated exactly and lead to matrices of relatively small bandwidth. The system of ordinary differential equations is solved using a simple finite difference scheme.Because of the small contribution from three partial tides S2, K1 and O1, we take only the M2 tide into account. In this study the computations show Liaodong Bay in the north to be the locale of both the maximum flood and ebb strengths; tidal currents in Laizhou Bay in the south are of less importance in the tidal circulation of Bohai Sea. The discharges of four major rivers and wind speed of 7.0 m/s blowing from the north are used for examining the change in the M2 tidal current field. The simulations show that the influence of wi  相似文献   

10.
Direct current observations in the Yellow Sea interior are very scarce due to intense fishing and trawling activities. Most previous studies on tides in the area were based on coastal measurements or satellite altimeter sea levels and have not been rigorously compared with direct measurements. In this paper, tidal currents are studied with current profiles from three bottom-moored Sontek Acoustic Doppler Profilers (ADPs) deployed in the southern Yellow Sea in summer of 2001 and 2003. The measured current series were dominated by tidal currents. Maximum velocities are between 40-80 cm/s at the mooring stations. M2 current is the most dominant primary tidal constituent, while MS4 and M4 are the most significant shallow water tides with much smaller amplitudes than the primary tides.  相似文献   

11.
Long term current observations in the southern Yellow Sea are very scarce because of the intense fishing and trawling activities. Most of the previous studies on tides and circulation were not rigorously validated with direct current measurements. In this study, tidal and sub-tidal currents were examined using current profiles from three bottom-moored Sontek Acoustic Doppler Profilers (ADPs) deployed in the southern Yellow Sea in the summers of 2001 and 2003. The measured current time series were dominated by tidal currents. The maximum velocities were between 40-80 cm s^-1 at the mooring stations. The M2 current was the dominant primary tidal constituent, while the MS4 and M4 components produced the most significant shallow water tidal currents with much weaker amplitudes. The measured mean sub-tidal velocities were less than 5 cmsl. The mean flows in the lower layer implied that an anti-cyclonic circulation pattern might exist in the deeper central Yellow Sea. However, the previously expected cyclonic circulation pattern in the upper layer was not clearly shown by the observations.  相似文献   

12.
The available data on tidal currents spanning periods greater than six months for the continental shelf of the East China Sea (26°30.052′N, 122°35.998′E) were analyzed using several methods. Tidal Current Harmonic Analysis results demonstrated that semi-diurnal tides dominated the current movement. The tidal currents of the principal diurnal and semidiurnal rotated clockwise with depth, with the deflection of the major semi-axes to the right in the upper layer and to the left in the lower layer. The vertical structures of two principal semi-diurnal constituents-M2 and S2-were similar, which indicates that the tidal currents are mainly barotropic in this area. The main features of the variation of the four principal tidal constituents with depth demonstrate that the currents in this region are influenced by the upper and lower boundary layers. Therefore, the tidal constituents of the shallow water are similar. Different vertical modes were calculated based on the Empirical Orthogonal Function (EOF) analysis of the Eastern and Northern components of the tidal currents, with a variance contribution for the zero-order model of at least 90%. The variance contribution of the baroclinic model is minimal, which further reveals a strong barotropic character for the tidal currents of this region.  相似文献   

13.
Topography around the Yellow River mouth has changed greatly in recent years, but studies on the current state of ma- rine dynamics off the Yellow River mouth are relatively scarce. This paper uses a two-dimension numerical model(MIKE 21) to reveal the tidal and wave dynamics in 2012, and conducts comparative analysis of the changes from 1996 to 2012. The results show that M2 amphidromic point moved southeastward by 11 km. It further reveals that the tides around the Yellow River mouth are relatively stable due to the small variations in the tidal constituents. Over the study period, there is no noticeable change in the distribution of tidal types and tidal range, and the mean tidal range off the river mouth during the period studied is 0.5–1.1 m. However, the tidal currents changed greatly due to large change in topography. It is observed that the area with strong tidal currents shifted from the old river mouth(1976–1996) to the modern river mouth(1996–present). While the tidal current speeds decreased continually off the old river mouth, they increased off the modern river mouth. The Maximum Tidal Current Speed(MTCS) reached 1.4 m s-1, and the maximum current speed of 50-year return period reached 2.8 m s-1. Waves also changed greatly due to change in topography. The significant wave height(H1/3) of 50-year return period changed proportionately with the water depth, and the ratio of H1/3 to depth being 0.4–0.6. H1/3 of the 50-year return period in erosion zone increased continually with increasing water depth, and the rate of change varied between 0.06 and 0.07 m yr-1. Based on the results of this study, we infer that in the future, the modern river mouth will protrude gradually northward, while the erosion zone, comprising the old river mouth and area between the modern river mouth and the old river mouth(Intermediate region) will continue to erode. As the modern river mouth protrudes towards the sea, there will be a gradual increase in the current speed and decrease in wave height. Conversely, the old river mouth will retreat, with gradual decrease in current speed and increase in wave height. As more coastal constructions spring up around the Yellow River mouth in the future, we recommend that variation in hydrodynamics over time should be taken into consideration when designing such coastal constructions.  相似文献   

14.
Study on morphological changes of a bay can help to identify the effects of anthropogenic activities on coastal environment and guide the exploration of marine resources. In this paper, morphological data including coastline and water areas in five discrete years between 1968 and 2015 were selected and extracted from the remote sensing images and historical marine charts to study the morphological changes in Laizhou Bay(LZB), one of the bays in the southwest of the Bohai Sea. A systematic analysis on spatial variations of the coastline and the surface areas of different types of waters in LZB was conducted. The results showed that the surface area of LZB was decreased by 1253.2 km~2 in the last half century, which is 17.4% of the total in the 1970 s. The areas of the natural wetland and the intertidal zone were decreased by 17.2% and 56.1%, respectively, and the average water depth varied from 9.05 m to 8.16 m at low tide level from 1968 to 2015. The coastline and shape variations of the bay turned to be complex after the 1980 s, and the shape index of LZB showed an increasing trend in more recent years. The centroid of the bay generally migrated to the northeast direction, i.e., the direction of the center of the Bohai Sea, and the shrinking direction of the bay was consistent with the migration direction of the coastline. The reclamation area during 1968–2015 in LZB was 1201.7 km2, and 94.1% was in the intertidal zone. The overall morphological change of the bay during the last half century was mainly controlled by the coastal reclamation activities, and the Yellow River runoff including the river course change and sediment load variation was also an important controlling factor.  相似文献   

15.
An improved 3-D ECOM-si model was used to study the impact of seasonal tide variation on saltwater intrusion into the Changjiang River estuary, especially at the bifurcation of the North Branch (NB) and the South Branch (SB). The study assumes that the river discharge and wind are constant. The model successfully reproduced the saltwater intrusion. During spring tide, there is water and salt spillover (WSO and SSO) from the NB into the SB, and tidally averaged (net) water and salt fluxes are 985 m3/s and 24.8 ton/s, respectively. During neap tide, the WSO disappears and its net water flux is 122 m3/s. Meanwhile, the SSO continues, with net salt flux of 1.01 ton/s, much smaller than during spring tide. Because the tidal range during spring tide is smaller in June than in March, overall saltwater intrusion is weaker in June than in March during that tidal period. However, the WSO and SSO still exist in June. Net water and salt fluxes in that month are 622 m3/s and 15.35 ton/s, respectively, decreasing by 363 m3/s and 9.45 ton/s over those in March. Because tidal range during neap tide is greater in June than in March, saltwater intrusion in June is stronger than in March during that tidal period. The WSO and SSO appear in June, with net water and salt fluxes of 280 m3/s and 8.55 ton/s, respectively, increasing by 402 m3/s and 7.54 ton/s over those in March. Saltwater intrusion in the estuary is controlled by the river discharge, semi-diurnal flood-ebb tide, semi-monthly spring or neap tide, and seasonal tide variation.  相似文献   

16.
Current data from a moored Acoustic Doppler Current Profiler(ADCP) deployed at 69?30.155′N,169?00.654′W in the central Chukchi Sea during 2012 summertime is analyzed in the present paper.Characteristics of tidal and residual currents are ob-tained with Cosine-Lanczos filter and cross-spectral analyses.The main achievements are as follows:1) Along with the local inertial frequency of 12.8 h,two other peaks at ~12-h and ~10-d dominate the time series of raw velocity;2) The M_2 dominates the 6 resolved tide constituents with significant amplitude variations over depth and the ratios of current speed of this constituent to that of the total tidal current are 54% and 47% for u and v components,respectively.All the resolved tidal constituents rotate clockwise at depth with the exception of MM and O1.The constituents of M_2 and S_2 with the largest major semi-axes are similar in eccentricity and orientation at deeper levels;3) The maximum of residual currents varies in a range of 20–30 cms~(-1) over depth and the current with lower velocities flow more true north with smaller magnitudes compared to the current in surface layer.The ~10 d fluctuation of residual current is found throughout the water column and attributed to the response of current to the local wind forcing,with an approximate 1.4 d lag-time at the surface level and occurring several hours later in the lower layer;4) Mean residual currents flow toward the north with the magnitudes smaller than 7 cms~(-1) in a general agreement with previous studies,which suggests a relatively weaker but stable northward flow indeed exists in the central Chukchi Sea.  相似文献   

17.
Spatial distributions and seasonal variations of picoplankton (i.e. Synechococcus spp., Prochlorococcus spp., picoeukaryotes and heterotrophic bacteria) and viruses in the Changjiang estuary have been reported in the past. However, short-term variations (e.g. at a tidal timescale) of these organisms and their regulating factors remain unclear. We determined the time-series of fluctuations of picoplankton and viruses with tide simultaneously in flow cytometry in the Changjiang estuary during a cruise in June 2006, in which a tidal model based rectangle equation was applied. The results indicate that high cell abundances of picoplankton and viruses occurred during flood tide and low cell abundances during ebb tide. The period of the surface cell abundance variations was about 13 h, suggesting the surface cell abundances in the Changjiang estuary were largely regulated by tide. However, cell abundances in middle and bottom waters varied in different periods due to influences of tidal induced physical forces such as resuspension and stratification. Therefore, tidal action is an important factor for the diel variations of picoplankton and viruses in the Changjiang estuary.  相似文献   

18.
Xiamen Bay in South China has experienced extensive coastal exploitation since the 1950s,resulting in some severe environmental problems.Local authorities now have completed or are implementing many environmental restoration projects.Evaluating the cumulative impact of exploitation and restoration activities on the environment is a complicated multi-disciplinary problem.However,hydrodynamic changes in the bay caused by such coastal projects can be characterized directly and definitively through numerical modeling.This paper assesses the cumulative effect of coastal projects on the hydrodynamic setting using a high-resolution numerical modeling method that makes use of tidal current speeds and the tidal prism as two hydrodynamic indices.Changes in tidal velocity and the characteristics of the tidal prism show that hydrodynamic conditions have declined from 1938 to 2007 in the full-tide area.The tidal current speed and tidal prism have decreased by 40% in the western part of the bay and 20% in the eastern part of the bay.Because of the linear relationship between tidal prism and area,the degraded hydrodynamic conditions are anticipated to be restored to 1972 levels following the completion of current and proposed restoration projects,i.e.33% and 15% decrease in the hydrodynamic conditions of 1938 for the western and eastern parts of the bay,respectively.The results indicate that hydrodynamic conditions can be restored to some extent with the implementation of a sustainable coastal development plan,although a full reversal of conditions is not possible.To fully assess the environmental changes in a region,more indices,e.g.,water quality and ecosystem parameters,should be considered in future evaluations.  相似文献   

19.
Because of the special topography and large tidal range in the South Yellow Sea, the dynamic process of tide and storm surge is very complicated. The shallow water circulation model Advanced Circulation(ADCIRC) was used to simulate the storm surge process during typhoon Winnie, Prapiroon, and Damrey, which represents three types of tracks attacking the South Yellow Sea, which are, moving northward after landing, no landing but active in offshore areas, and landing straightly to the coastline. Numerical experiments were carried out to investigate the effects of tidal phase on the tide-surge interaction as well as storm surge. The results show that the peak surge caused by Winnie and Prapiroon occurs 2–6 h before the high tide and its occurring time relative to high tide has little change with tidal phase variations. On the contrary, under the action of Damrey, the occurring time of the peak surge relative to high tide varies with tidal phase. The variation of tide-surge interaction is about 0.06–0.37 m, and the amplitude variations of interaction are smooth when tidal phase changes for Typhoon Winnie and Prapiroon. While the interaction is about 0.07–0.69 m, and great differences exists among the stations for Typhoon Damrey. It can be concluded that the tide-surge interaction of the former is dominated by the tidal phase modulation, and the time of surge peak is insensitive to the tidal phase variation. While the interaction of the latter is dominated by storm surge modulation due to the water depth varying with tide, the time of surge peak is significantly affected by tidal phase. Therefore, influence of tidal phase on storm surge is related to typhoon tracks which may provide very useful information at the design stage of coastal protection systems.  相似文献   

20.
A complete set of one-month Acoustic Doppler Profiler (ADP) current data at a station in the southern Yellow Sea (SYS) is analyzed using the rotary spectrum method. The results revealed different rotary properties between barotropic and baroclinic tidal currents. The barotropic and baroclinic tidal currents rotate elliptically counter-clockwise and clockwise, respectively. Meanwhile, baroclinic bottom tidal currents are almost along-isobath. The baroclinic cross-isobath velocities attenuate quickly at the bottom, implying important effects of bottom topography on the cross-isobath motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号