首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using the helium abundance measured by Galileo in the atmosphere of Jupiter and interior models reproducing the observed external gravitational field, we derive new constraints on the composition and structure of the planet. We conclude that, except for helium which must be more abundant in the metallic interior than in the molecular envelope, Jupiter could be homogeneous (no core) or could have a central dense core up to 12M. The mass fraction of heavy elements is less than 7.5 times the solar value in the metallic envelope and between 1 and 7.2 times solar in the molecular envelope. The total amount of elements other than hydrogen and helium in the planet is between 11 and 45M.  相似文献   

2.
《Planetary and Space Science》1999,47(10-11):1183-1200
Interior models of Jupiter and Saturn are calculated and compared in the framework of the three-layer assumption, which rely on the perception that both planets consist of three globally homogeneous regions: a dense core, a metallic hydrogen envelope, and a molecular hydrogen envelope. Within this framework, constraints on the core mass and abundance of heavy elements (i.e. elements other than hydrogen and helium) are given by accounting for uncertainties on the measured gravitational moments, surface temperature, surface helium abundance, and on the inferred protosolar helium abundance, equations of state, temperature profile and solid/differential interior rotation. Results obtained solely from static models matching the measured gravitational fields indicate that the mass of Jupiter’s dense core is less than 14 M (Earth masses), but that models with no core are possible given the current uncertainties on the hydrogen–helium equation of state. Similarly, Saturn’s core mass is less than 22 M but no lower limit can be inferred. The total mass of heavy elements (including that in the core) is constrained to lie between 11 and 42 M in Jupiter, and between 19 and 31 M in Saturn. The enrichment in heavy elements of their molecular envelopes is 1–6.5, and 0.5–12 times the solar value, respectively. Additional constraints from evolution models accounting for the progressive differentiation of helium (Hubbard WB, Guillot T, Marley MS, Burrows A, Lunine JI, Saumon D, 1999. Comparative evolution of Jupiter and Saturn. Planet. Space Sci. 47, 1175–1182) are used to obtain tighter, albeit less robust, constraints. The resulting core masses are then expected to be in the range 0–10 M, and 6–17 M for Jupiter and Saturn, respectively. Furthermore, it is shown that Saturn’s atmospheric helium mass mixing ratio, as derived from Voyager, Y=0.06±0.05, is probably too low. Static and evolution models favor a value of Y=0.11−0.25. Using, Y=0.16±0.05, Saturn’s molecular region is found to be enriched in heavy elements by 3.5 to 10 times the solar value, in relatively good agreement with the measured methane abundance. Finally, in all cases, the gravitational moment J6 of models matching all the constraints are found to lie between 0.35 and 0.38×10−4 for Jupiter, and between 0.90 and 0.98×10−4 for Saturn, assuming solid rotation. For comparison, the uncertainties on the measured J6 are about 10 times larger. More accurate measurements of J6 (as expected from the Cassini orbiter for Saturn) will therefore permit to test the validity of interior models calculations and the magnitude of differential rotation in the planetary interior.  相似文献   

3.
Planetary models for Jupiter and Saturn are computed using a fourth-order theory and a new molecular equation of state. The equation of state for the molecular hydrogen and helium planetary envelopes is taken from the Monte Carlo calculations of Slattery and Hubbard [Icarus 29, 187–192 (1976)]. Models for Jupiter are found that have a small amount of heavy elements either mixed with hydrogen and helium throughout the interior of the planet or concentrated in a small dense core. Saturn is modeled with a solar-composition hydrogen and helium envelope and a small derse core. We conclude that the molecular equation of state linked with suitable interior equations of state can produce Jovian models which satisfy the observational data. The planetary models show that the enrichment of heavy elements (relative to solar composition) is approximately 3 times for Jupiter and 10 times for Saturn.  相似文献   

4.
《Planetary and Space Science》1999,47(10-11):1175-1182
We present evolutionary sequences for Jupiter and Saturn, based on new non-gray model atmospheres, which take into account the evolution of the solar luminosity and partitioning of dense components to deeper layers. The results are used to set limits on the extent to which possible interior phase separation of hydrogen and helium may have progressed in the two planets. When combined with static models constrained by the gravity field, our evolutionary calculations constrain the helium mass fraction in Jupiter to be between 0.20 and 0.27, relative to total hydrogen and helium. This is consistent with the Galileo determination. The helium mass fraction in Saturn’s atmosphere lies between 0.11 and 0.21, higher than the Voyager determination. Based on the discrepancy between the Galileo and Voyager results for Jupiter, and our models, we predict that revised observational results for Saturn will yield a higher atmospheric helium mass fraction relative to the Voyager value.  相似文献   

5.
The interior structure of Jupiter serves as a benchmark for an entire astrophysical class of liquid–metallic hydrogen-rich objects with masses ranging from ~0.1M J to ~80M J (1M J = Jupiter mass = 1.9e30 g), comprising hydrogen-rich giant planets (mass < 13M J) and brown dwarfs (mass > 13M J but ~ < 80M J), the so-called substellar objects (SSOs). Formation of giant planets may involve nucleated collapse of nebular gas onto a solid, dense core of mass ~0.04M J rather than a stellar-like gravitational instability. Thus, detection of a primordial core in Jupiter is a prime objective for understanding the mode of origin of extrasolar giant planets and other SSOs. A basic method for core detection makes use of direct modeling of Jupiter’s external gravitational potential terms in response to rotational and tidal perturbations, and is highly sensitive to the thermodynamics of hydrogen at multi-megabar pressures. The present-day core masses of Jupiter and Saturn may be larger than their primordial core masses due to sedimentation of elements heavier than hydrogen. We show that there is a significant contribution of such sedimented mass to Saturn’s core mass. The sedimentation contribution to Jupiter’s core mass will be smaller and could be zero.  相似文献   

6.
We present the first models of Jupiter and Saturn to couple their evolution to both a radiative-atmosphere grid and to high-pressure phase diagrams of hydrogen with helium and other admixtures. We find that prior calculated phase diagrams in which Saturn's interior reaches a region of predicted helium immiscibility do not allow enough energy release to prolong Saturn's cooling to its known age and effective temperature. We explore modifications to published phase diagrams that would lead to greater energy release, and propose a modified H-He phase diagram that is physically reasonable, leads to the correct extension of Saturn's cooling, and predicts an atmospheric helium mass fraction Yatmos=0.185, in agreement with recent estimates. We also explore the possibility of internal separation of elements heavier than helium, and find that, alternatively, such separation could prolong Saturn's cooling to its known age and effective temperature under a realistic phase diagram and heavy element abundance (in which case Saturn's Yatmos would be solar but heavier elements would be depleted). In none of these scenarios does Jupiter's interior evolve to any region of helium or heavy-element immiscibility: Jupiter evolves homogeneously to the present day. We discuss the implications of our calculations for Saturn's primordial core mass.  相似文献   

7.
The discovery of planetary systems around alien stars is an outstanding achievement of recent years. The idea that the Solar System may be representative of planetary systems in the Galaxy in general develops upon the knowledge, current until the last decade of the 20th century, that it is the only object of its kind. Studies of the known planets gave rise to a certain stereotype in theoretical research. Therefore, the discovery of exoplanets, which are so different from objects of the Solar System, alters our basic notions concerning the physics and very criteria of normal planets. A substantial factor in the history of the Solar System was the formation of Jupiter. Two waves of meteorite bombardment played an important role in that history. Ultimately there arose a stable low-entropy state of the Solar System, in which Jupiter and the other giants in stable orbits protect the inner planets from impacts by dangerous celestial objects, reducing this danger by many orders of magnitude. There are even variants of the anthropic principle maintaining that life on Earth owes its genesis and development to Jupiter. Some 20 companions more or less similar to Jupiter in mass and a few infrared dwarfs, have been found among the 500 solar-type stars belonging to the main sequence. Approximately half of the exoplanets discovered are of the hot-Jupiter type. These are giants, sometimes of a mass several times that of Jupiter, in very low orbits and with periods of 3–14 days. All of their parent stars are enriched with heavy elements, [Fe/H] = 0.1–0.2. This may indicate that the process of exoplanet formation depends on the chemical composition of the protoplanetary disk. The very existence of exoplanets of the hot-Jupiter type considered in the context of new theoretical work comes up against the problem of the formation of Jupiter in its real orbit. All the exoplanets in orbits with a semimajor axis of more than 0.15–0.20 astronomical units (AU) have orbital eccentricities of more than 0.1, in most cases of 0.2–0.5. In conjunction with their possible migration into the inner reaches of the Solar System, this poses a threat to the very existence of the inner planets. Recent observations of gas–dust clouds in very young stars show that hydrogen dissipates rapidly, in several million years, and dissipation is completed earlier than, according to the accretion theory, the gas component of such a planet as Jupiter forms. The mass of the remaining hydrogen is usually small, much smaller than Jupiter's mass. However, the giant planets of the Solar System retain a few percent of the amount of hydrogen that should be contained in the early protoplanetary disk, creating difficulties in understanding their formation. A plausible explanation is that gravitational instabilities in the protoplanetary disk could be the mechanism of their rapid formation.  相似文献   

8.
R. Helled  P. Bodenheimer 《Icarus》2010,207(2):503-508
The final composition of giant planets formed as a result of gravitational instability in the disk gas depends on their ability to capture solid material (planetesimals) during their ‘pre-collapse’ stage, when they are extended and cold, and contracting quasi-statically. The duration of the pre-collapse stage is inversely proportional roughly to the square of the planetary mass, so massive protoplanets have shorter pre-collapse timescales and therefore limited opportunity for planetesimal capture. The available accretion time for protoplanets with masses of 3, 5, 7, and 10 Jupiter masses is found to be and 5.67×103 years, respectively. The total mass that can be captured by the protoplanets depends on the planetary mass, planetesimal size, the radial distance of the protoplanet from the parent star, and the local solid surface density. We consider three radial distances, 24, 38, and 68 AU, similar to the radial distances of the planets in the system HR 8799, and estimate the mass of heavy elements that can be accreted. We find that for the planetary masses usually adopted for the HR 8799 system, the amount of heavy elements accreted by the planets is small, leaving them with nearly stellar compositions.  相似文献   

9.
In this paper we investigate the evolution of a pair of interacting planets – a Jupiter-mass planet and a Super-Earth with a mass of  5.5 M   – orbiting a Solar-type star and embedded in a gaseous protoplanetary disc. We focus on the effects of type I and II orbital migrations, caused by the planet–disc interaction, leading to the capture of the Super-Earth in first-order mean-motion resonances by the Jupiter. The stability of the resulting resonant system in which the Super-Earth is on the internal orbit relative to the Jupiter is studied numerically by means of full 2D hydrodynamical simulations. Our main aim is to determine the Super-Earth behaviour in the presence of the gas giant in the system. It is found that the Jupiter captures the Super-Earth into the interior 3:2 or 4:3 mean-motion resonance, and that the stability of such configurations depends on the initial positions of the planets and on the evolution of the eccentricity. If the initial separation of the orbits of the planets is larger than or close to that required for the exact resonance, the final outcome is the migration of the pair of planets at a rate similar to that of the gas giant, at least for the time of our simulations. Otherwise, we observe a scattering of the Super-Earth from the disc. The evolution of planets immersed in a gaseous disc is compared with their behaviour in the case of the classical three-body problem when the disc is absent.  相似文献   

10.
《Planetary and Space Science》1999,47(10-11):1201-1210
New models of Jupiter are based on observational data provided by the Galileo spaceprobe, which considerably improved previously existing estimates of the helium abundance in the atmosphere of Jupiter. These data yield for Jupiter’s atmosphere 20% of the solar oxygen abundance and do not agree with the results of the analysis of the collision of comet Shoemaker-Levy 9 with Jupiter (10 times the solar value). Therefore, both the models of Jupiter with water-depleted and water-enriched atmosphere are considered. By analogy with Jupiter, trial models of Saturn with a water-depleted external envelope are also developed. The molecular-metallic phase transition pressure of hydrogen Pm was taken to be 1.5, 2 and 3 Mbar. Since Saturn’s internal molecular envelope is noticeably enriched in the IR-component (its weight concentration, 0.25–0.30, being by a factor of 3–4 higher than in Jupiter), the phase transition pressure in Saturn can be lower than in Jupiter. In the constructed models, the IR-core masses are 3–3.5 M for Jupiter and 3–5.5 M for Saturn. Jupiter’s and Saturn’s IR-cores can be considered embryos onto which the accretion of the gas occurred during the formation of the planets. The mass of the hydrogen–helium component dispersed in the zone of planetary formation constitutes ≈2–5 planetary masses for Jupiter and ≈11–14 planetary masses for Saturn.  相似文献   

11.
Abstract— The main asteroid belt has lost >99.9% of its solid mass since the time at which the planets were forming, according to models for the protoplanetary nebula. Here we show that the primordial asteroid belt could have been cleared efficiently if much of the original mass accreted to form planetsized bodies, which were capable of perturbing one another into unstable orbits. We provide results from 25 N‐body integrations of up to 200 planets in the asteroid belt, with individual masses in the range 0.017–0.33 Earth masses. In the simulations, these bodies undergo repeated close encounters which scatter one another into unstable resonances with the giant planets, leading to collision with the Sun or ejection from the solar system. In response, the giant planets' orbits migrate radially and become more circular. This reduces the size of the main‐belt resonances and the clearing rate, although clearing continues. If ~3 Earth masses of material was removed from the belt this way, Jupiter and Saturn would initially have had orbital eccentricities almost twice their current values. Such orbits would have made Jupiter and Saturn 10–100x more effective at clearing material from the belt than they are on their current orbits. The time required to remove 90% of the initial mass from the belt depends sensitively on the giant planets' orbits, and weakly on the masses of the asteroidal planets. 18 of the 25 simulations end with no planets left in the belt, and the clearing takes up to several hundred million years. Typically, the last one or two asteroidal planets are removed by interactions with planets in the terrestrial region  相似文献   

12.
More than 80 giant planets are known by mass and radius. Their interior structure in terms of core mass, number of layers, and composition however is still poorly known. An overview is presented about the core mass M core and envelope mass of metals M Z in Jupiter as predicted by various equations of state. It is argued that the uncertainty about the true H/He EOS in a pressure regime where the gravitational moments J 2 and J 4 are most sensitive, i.e. between 0.5 and 4 Mbar, is in part responsible for the broad range \(M_{\mathit{core}}=0{-}18\:M_{\oplus }\), \(M_{Z}=0{-}38\:M_{\oplus }\), and \(M_{\mathit{core}}+M_{Z}=14{-}38\:M_{\oplus }\) currently offered for Jupiter. We then compare the Jupiter models obtained when we only match J 2 with the range of solutions for the exoplanet \(\mathrm{GJ}\:436\mathrm{b}\), when we match an assumed tidal Love number k 2 value.  相似文献   

13.
A fraction of small bodies from the once existing proto-planetary disc was ejected, by the giant planets, to large heliocentric distances and start to build the comet Oort cloud. Considering four models of initial proto-planetary disc, we attempt to roughly map a dependence between the initial disc’s structure and some properties of the Oort cloud. We find that it is difficult to construct the proto-planetary disc if (i) the amount of heavy chemical elements in Jupiter and Saturn is as high as currently accepted and (ii) the total mass of the minimum-mass solar nebula is assumed to be lower than $\approx0.05\,\hbox{M}_{\odot}.$ The behaviour of the Oort cloud formation does not crucially depend on the initial disc model. Some differences in its structure are obvious: since the cloud is known to be filled mainly by Uranus and Neptune, the efficiency of its formation is higher when the initial amount of particles in the Uranus-Neptune region is relatively higher. A significantly large number of Jupiter Trojans in our simulation appears, however, only in the case of the initially non-gapped disc, with the particles situated also close to the Jupiter’s orbit.  相似文献   

14.
Recently published laboratory measurements of the isotopic exchange rate constant k(T) between CD4 and H2 are used to calculate f(z)—the isotopic enrichment factor between CH4 and H2—at every level in the outer atmosphere of the giant planets. The variation of f(z) with local vertical velocity, temperature and pressure has been calculated under the assumption that atmospheres are convective and uncertainties have been calculated by error propagation. Considering only the random errors—mainly the uncertainty on k(T)—the f values in the observable upper atmospheres of giant planets (i.e. at z = 0, P = 1 bar) are: f(0) = 1.25 ± 0.05, 1.38 ± 0.06, 1.68 ± 0.09, and 1.61 ± 0.08 for Jupiter, Saturn, Uranus, and Neptune, respectively. Additional systematic errors due to the uncertainty in calculating the vertical velocity in the framework of the mixing length Prandtl theory lead to an overall uncertainty on f(0) of ±0.12, ±0.15, ±0.23, and ±0.21 for each planet, respectively. The D/H ratios in H2 derived from the measured CH3D/CH4 ratios in the upper atmosphere of the four giant planets are then recalculated. Uranus and Neptune seem to be enriched in deuterium with respect to the protosolar nebula but depleted relative to the Standard Mean Oceanic Water on the Earth (SMOW). However calculations based on current interior models of Neptune suggest that ices which formed the core of the planet had a D/H ratio of the order of the SMOW. The deuterium abundance in proto-Uranian ices remains uncertain. The case where water is a major constituent of the fluid envelope of Neptune is discussed. It is shown that the D/H ratio of the planet would then be higher than the value measured in hydrogen. Even in this case, the D/H ratio in proto-Neptunian ices is less than the recently revised value in P/Halley and less than the value measured in water of the Semarkona meteorite. These results suggest that the ices which formed the core of Neptune did not have an interstellar origin. Similarly, the comparison of the most recent determination of the D/H ratio in the atmosphere of Titan with the value of D/H in P/Halley suggests that this atmosphere was not formed by infalling comets but more likely from grains embedded in the sub-nebula of Saturn.  相似文献   

15.
For a long time it was believed that the atmospheres of the giant planets, dominated by molecular hydrogen and helium, were similar in composition to the primordial nebula from which they formed. However, this image has strongly evolved over the past twenty years, due to new developments of ground-based infrared spectroscopy, coupled with the success of the Voyager space mission.Significant differences were measured in the abundances of helium, deuterium and carbon of the four giant planets. The variations in the C/H and D/H ratios have given support to the "nucleation" formation scenario, in which the four giant planets first accreted a nucleus of about ten terrestrial masses, big enough to bind gravitationally the surrounding gaseous nebula; the helium depletion in Saturn has been interpreted as a differentiation effect in Saturn's interior; the apparent helium excess in Neptune, coupled with the recent unexpected detection of CO and HCN in this planet, might imply the presence of molecular nitrogen. In the case of Jupiter and Saturn, disequilibrium species have been detected (CO, PH3, GeH4, AsH3), which are tracers of vertical dynamical motions.In the future, significant progress in our knowledge of the Jovian composition, including the noble gases, should be obtained with the mass spectrometer of the Galileo probe. The ISO mission is expected to provide new far-infrared spectroscopic data which should lead to the detection of new minor species and a better determination of the D/H ratio.  相似文献   

16.
系外类地行星是目前搜寻地外生命的主要目标.随着观测仪器的发展,现在已经能探测到低于10个地球质量的系外行星.该文简要回顾了系外类地行星的形成与演化,介绍了当前研究它们内部结构的模型和方法,以及由此得出的类地行星质量-半径关系.同时,对应不同的行星初始物质成分,讨论了各种可能的大气结构.最后介绍了未来的空间任务在相关方面的工作.  相似文献   

17.
We give an overview of our current understanding of the structure of gas giant planets, from Jupiter and Saturn to extrasolar giant planets. We focus on addressing what high-pressure laboratory experiments on hydrogen and helium can help to elucidate about the structure of these planets.  相似文献   

18.
We present thermal mass loss calculations over evolutionary time scales for the investigation if the smallest transiting rocky exoplanets CoRoT-7b (∼1.68REarth) and Kepler-10b (∼1.416REarth) could be remnants of an initially more massive hydrogen-rich gas giant or a hot Neptune-class exoplanet. We apply a thermal mass loss formula which yields results that are comparable to hydrodynamic loss models. Our approach considers the effect of the Roche lobe, realistic heating efficiencies and a radius scaling law derived from observations of hot Jupiters. We study the influence of the mean planetary density on the thermal mass loss by placing hypothetical exoplanets with the characteristics of Jupiter, Saturn, Neptune, and Uranus to the orbital location of CoRoT-7b at 0.017 AU and Kepler-10b at 0.01684 AU and assuming that these planets orbit a K- or G-type host star. Our findings indicate that hydrogen-rich gas giants within the mass domain of Saturn or Jupiter cannot thermally lose such an amount of mass that CoRoT-7b and Kepler-10b would result in a rocky residue. Moreover, our calculations show that the present time mass of both rocky exoplanets can be neither a result of evaporation of a hydrogen envelope of a “Hot Neptune” nor a “Hot Uranus”-class object. Depending on the initial density and mass, these planets most likely were always rocky planets which could lose a thin hydrogen envelope, but not cores of thermally evaporated initially much more massive and larger objects.  相似文献   

19.
The last few years brought progress in our understanding of the interiors of the giant planets especially of the two larger ones which have been visited by Pioneer and Voyager spacecraft. An analysis of the formation of the giant planets also heped to clarify certain important common features. The presently available model of Jupiter is still based on certain somewhat bothersome approximations but it appears to satisfy the main observational constraints. Saturn's interior is much better understood than it was previously although the quantitative aspects of the role of the miscibility gap in the hydrogen-helium system have not yet been entirely resolved. Much attention has been directed at the interiors of Uranus and Neptune and the outstanding question appears to be the location and the amount of ices and methane present in their outer layers. Both the two-and the three-layer models are moderately successful. Serious difficulties arise from the considerable uncertainties concerning the rotational periods of both planets. Also the estimates of the internal heat fluxes and of the magnetic fields of both planets are not sufficiently certain. It is hoped that the forthcoming flyby of these two planets by a Voyager spacecraft will provide important new data for a future study of their interiors.  相似文献   

20.
On the migration of a system of protoplanets   总被引:1,自引:0,他引:1  
The evolution of a system consisting of a protoplanetary disc with two embedded Jupiter-sized planets is studied numerically. The disc is assumed to be flat and non-self-gravitating; this is modelled by the planar (two-dimensional) Navier–Stokes equations. The mutual gravitational interaction of the planets and the star, and the gravitational torques of the disc acting on the planets and the central star are included. The planets have an initial mass of one Jupiter mass M Jup each, and the radial distances from the star are one and two semimajor axes of Jupiter, respectively.
During the evolution a joint wide annular gap is created by the planets. Both planets increase their mass owing to accretion of gas from the disc: after about 2500 orbital periods of the inner planet it has reached a mass of 2.3  M Jup, while the outer planet has reached a mass of 3.2  M Jup. The net gravitational torques exerted by the disc on the planets result in an inward migration of the outer planet on time-scales comparable to the viscous evolution time of the disc. The semimajor axis of the inner planet remains constant as there is very little gas left in its vicinity to induce any migration. When the distance of close approach eventually becomes smaller than the mutual Hill radius, the eccentricities increase strongly and the system may become unstable.
If disc depletion occurs rapidly enough before the planets come too close to each other, a stable system similar to our own Solar system may remain. Otherwise the orbits may become unstable and produce systems like υ And.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号