首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Abstract— We review the results of our recent experimental studies of astrophysical dust analogs. We discuss the condensation of amorphous silicates from mixed metal vapors, including evidence that such condensates form with metastable eutectic compositions. We consider the spectral evolution of amorphous magnesium silicate condensates as a function of time and temperature. Magnesium silicate smokes anneal readily at temperatures of about 1000–1100 K. In contrast we find that iron silicates require much higher temperatures (?1300 K) to bring about similar changes on the same timescale (days to months). We first apply these results to infrared space observatory observations of crystalline magnesium silicate grains around high‐mass‐outflow asymptotic giant branch stars in order to demonstrate their general utility in a rather simple environment. Finally, we apply these experimental results to infrared observations of comets and protostars in order to derive some interesting conclusions regarding large‐scale nebular dynamics, the natural production of organic molecules in protostellar nebulae, and the use of crystalline magnesium silicates as a relative indicator of a comet's formation age.  相似文献   

2.
Silicates are one of the principal components present in Solar System objects.Silicates evolve in space modifying their physical properties according to theastronomical environments they go through. To characterise the nature of TNOsin the framework of the formation and evolution of the Solar System, experimentson structural transitions of silicates have been performed in the laboratoryto simulate some of the processing suffered by the dust. The infrared spectralproperties of possible silicate candidates thought to be present in TNOs have beenstudied. The results of thermal annealing of amorphous silicates and amorphisationof crystalline forsterite (pure-Mg olivine) by ion irradiation are presented. Theobservable properties of TNOs surfaces are inferred.  相似文献   

3.
Primitive meteorites contain microscopic pre-solar stardust grains that originated from stellar outflows and supernova ejecta. Identified phases include nano-diamond, graphite, silicon carbide, corundum, spinel, hibonite, nitride, and silicates. Their stellar origin was manifested by their enormous isotopic ratio variations compared to solar system materials. They are solid samples from various stellar sources, including red giant stars, AGB stars, novae, and supernovae. Laboratory isotopic analyses of these grains provide unique insights into stellar evolution, nucleosynthesis and mixing processes, dust formation in stellar envelopes, and galactic chemical evolution. Pre-solar grains open a new observational window for astrophysical researches.  相似文献   

4.
恒星尘埃的实验室研究--实验天体物理学   总被引:1,自引:0,他引:1  
原始球粒陨石含有来自恒星的微小固体颗粒(微米级),这些尘埃的同位素组成与太阳系物质截然不同,它们是目前唯一能直接获得的恒星固体样品.已发现的恒星尘埃有金刚石、石墨、碳化硅、刚玉、尖晶石、氮化物、和硅酸盐等,它们的母体恒星包括红巨星,AGB恒星、新星和超新星.对恒星尘埃的研究,使得更深入地了解星系的化学演化历史、恒星内部的核反应和湍流机制、恒星大气中尘埃的形成、星际介质物理现象等.恒星尘埃把天体物理领域延伸到了微观世界,它有机地结合了地球化学实验技术和天体物理理论,开辟了一门崭新的天文学分支实验天体物理学.  相似文献   

5.
Abstract. Silicate grains in space have attracted recently a wide interest of astrophysicists due to the increasing amount and quality of observational data, especially thanks to the results obtained by the Infrared Space Observatory. The observations have shown that the presence of silicates is ubiquitous in space and that their properties vary with environmental characteristics. Silicates, together with carbon, are the principal components of solid matter in space. Since their formation, silicate grains cross many environments characterised by different physical and chemical conditions which can induce changes to their nature. Moreover, the transformations experienced in the interplay of silicate grains and the medium where they are dipped, are part of a series of processes which are the subject of possible changes in the nature of the space environment itself. Then, chemical and physical changes of silicate grains during their life play a key role in the chemical evolution of the entire Galaxy. The knowledge of silicate properties related to the conditions where they are found in space is strictly related to the study in the laboratory of the possible formation and transformation mechanisms they experience. The application of production and processing methods, capable to reproduce actual space conditions, together with the use of analytical techniques to investigate the nature of the material samples, form a subject of a complex laboratory experimental approach directed to the understanding of cosmic matter. The goal of the present paper is to review the experimental methods applied in various laboratories to the simulation and characterisation of cosmic silicate analogues. The paper describes also laboratory studies of the chemical reactions undergone and induced by silicate grains. The comparison of available laboratory results with observational data shows the essential constraints imposed by astronomical observations and, at the same time, indicates the most puzzling problems that deserve particular attention for the future. The outstanding open problems are reported and discussed. The final purpose of this paper is to provide an overview of the present stage of knowledge about silicates in space and to provide to the reader some indication of the future developments in the field. Received 25 April 2002 / Published online 14 November 2002 Send offprint requests to: L. Colangeli e–mail: colangeli@na.astro.it  相似文献   

6.
Abstract— We present the results of irradiation experiments aimed at understanding the structural and chemical evolution of silicate grains in the interstellar medium. A series of He+ irradiation experiments have been performed on ultra‐thin olivine, (Mg,Fe)2SiO4, samples having a high surface/volume (S/V) ratio, comparable to the expected S/V ratio of interstellar dust. The energies and fluences of the helium ions used in this study have been chosen to simulate the irradiation of interstellar dust grains in supernovae shock waves. The samples were mainly studied using analytical transmission electron microscopy. Our results show that olivine is amorphized by low‐energy ion irradiation. Changes in composition are also observed. In particular, irradiation leads to a decrease of the atomic ratios O/Si and Mg/Si as determined by x‐ray photoelectron spectroscopy and by x‐ray energy dispersive spectroscopy. This chemical evolution is due to the differential sputtering of atoms near the surfaces. We also observe a reduction process resulting in the formation of metallic iron. The use of very thin samples emphasizes the role of surface/volume ratio and thus the importance of the particle size in the irradiation‐induced effects. These results allow us to account qualitatively for the observed properties of interstellar grains in different environments, that is, at different stages of their evolution: chemical and structural evolution in the interstellar medium, from olivine to pyroxene‐type and from crystalline to amorphous silicates, porosity of cometary grains as well as the formation of metallic inclusions in silicates.  相似文献   

7.
Recent observations of long-period variable stars at spatial resolutions from approximately 1 arcsec to several milli-arcsecs have provided new insights into pulsation, dust formation, and mass-loss of AGB stars. These insights have come from long baseline interferometric observations obtained across a wide range of wavelengths, from the optical, through the infrared, to wavelengths as long as several millimeters. The present status and recent results from long baseline interferometry, particularly at optical and infrared wavelengths, are discussed. Such results include diameters and limb-darkening, surface features, mode of pulsation, location of SiO masers, inner radii of dust shells, physical conditions in the dust formation zone and of the inner regions of the dust shells. The results are interpreted in terms of present models of dust formation and mass-loss.  相似文献   

8.
Comets and the chondritic porous interplanetary dust particles (CP IDPs) that they shed in their comae are reservoirs of primitive solar nebula materials. The high porosity and fragility of cometary grains and CP IDPs, and anomalously high deuterium contents of highly fragile, pyroxene-rich Cluster IDPs imply these aggregate particles contain significant abundances of grains from the interstellar medium (ISM). IR spectra of comets (3–40 μm) reveal the presence of a warm (near-IR) featureless emission modeled by amorphous carbon grains. Broad andnarrow resonances near 10 and 20 microns are modeled by warm chondritic (50% Feand 50% Mg) amorphous silicates and cooler Mg-rich crystalline silicate minerals, respectively. Cometary amorphous silicates resonances are well matched by IRspectra of CP IDPs dominated by GEMS (0.1 μm silicate spherules) that are thought to be the interstellar Fe-bearing amorphous silicates produced in AGB stars. Acid-etched ultramicrotomed CP IDP samples, however, show that both the carbon phase (amorphous and aliphatic) and the Mg-rich amorphous silicate phase in GEMS are not optically absorbing. Rather, it is Fe and FeS nanoparticles embedded in the GEMS that makes the CP IDPs dark. Therefore, CP IDPs suggest significant processing has occurred in the ISM. ISM processing probably includes in He+ ion bombardment in supernovae shocks. Laboratory experiments show He+ ion bombardment amorphizes crystalline silicates, increases porosity, and reduces Fe into nanoparticles. Cometary crystalline silicate resonances are well matched by IR spectra of laboratory submicron Mg-rich olivine crystals and pyroxene crystals. Discovery of a Mg-pure olivine crystal in a Cluster IDP with isotopically anomalous oxygen indicates that a small fraction of crystalline silicates may have survived their journey from AGB stars through the ISM to the early solar nebula. The ISM does not have enough crystalline silicates (<5%), however, to account for the deduced abundance of crystalline silicates in comet dust. An insufficient source of ISMMg-rich crystals leads to the inference that most Mg-rich crystals in comets are primitive grains processed in the early solar nebula prior to their incorporation into comets. Mg-rich crystals may condense in the hot (~1450 K), inner zones of the early solar nebula and then travel large radial distances out to the comet-forming zone. On the other hand, Mg-rich silicate crystals may be ISM amorphous silicates annealed at ~1000 K and radially distributed out to the comet-forming zone or annealed in nebular shocks at ~5-10 AU. Determining the relative abundance of amorphous and crystalline silicatesin comets probes the relative contributions of ISM grains and primitive grains to small, icy bodies in the solar system. The life cycle of dust from its stardust origins through the ISM to its incorporation into comets is discussed.  相似文献   

9.
大质量恒星演化研究   总被引:1,自引:0,他引:1  
由于高光度和高质量损失率等特性,大质量恒星在星系形成和演化等现代天体物理学的研究中扮演着重要的角色。自上世纪中叶以来,恒星物理研究揭示了大质量恒星内部结构和演化的主要特性,并且构造了一些大质量恒星的演化模型。然而,近年来对大质量恒星的观测表明,已有的这些理论演化模型与观测结果之间存在着严重的分歧。在主导大质量恒星演化最主要因素(即质量损失、内部对流等问题)的处理上,现有的理论有很大的缺陷。综述了目前对上述这些问题的研究现状,并探讨了今后的研究方向。  相似文献   

10.
As low- and intermediate-mass stars reach the asymptotic giant branch (AGB), they have developed into intriguing and complex objects that are major players in the cosmic gas/dust cycle. At this stage, their appearance and evolution are strongly affected by a range of dynamical processes. Large-scale convective flows bring newly-formed chemical elements to the stellar surface and, together with pulsations, they trigger shock waves in the extended stellar atmosphere. There, massive outflows of gas and dust have their origin, which enrich the interstellar medium and, eventually, lead to a transformation of the cool luminous giants into white dwarfs. Dust grains forming in the upper atmospheric layers play a critical role in the wind acceleration process, by scattering and absorbing stellar photons and transferring their outward-directed momentum to the surrounding gas through collisions. Recent progress in high-angular-resolution instrumentation, from the visual to the radio regime, is leading to valuable new insights into the complex dynamical atmospheres of AGB stars and their wind-forming regions. Observations are revealing asymmetries and inhomogeneities in the photospheric and dust-forming layers which vary on time-scales of months, as well as more long-lived large-scale structures in the circumstellar envelopes. High-angular-resolution observations indicate at what distances from the stars dust condensation occurs, and they give information on the chemical composition and sizes of dust grains in the close vicinity of cool giants. These are essential constraints for building realistic models of wind acceleration and developing a predictive theory of mass loss for AGB stars, which is a crucial ingredient of stellar and galactic chemical evolution models. At present, it is still not fully possible to model all these phenomena from first principles, and to predict the mass-loss rate based on fundamental stellar parameters only. However, much progress has been made in recent years, which is described in this review. We complement this by discussing how observations of emission from circumstellar molecules and dust can be used to estimate the characteristics of the mass loss along the AGB, and in different environments. We also briefly touch upon the issue of binarity.  相似文献   

11.
We report on SWS and LWS observations of the circumstellar disks of young stars of a few solar masses. The ISO spectra of these objects present a diversity of emission features of carbon-rich and oxygen-rich grains. The similarity of the forsterite spectra observed for Comet Hale-Bopp and the Haebe star HD100546 is particularly striking and provides a new argument that huge comet swarms are formed in the disks surrounding young stars. While the data suggest that the formation of crystalline silicates in the dust disks essentially occurs when a Haebe star has already reached the main sequence, no clear correlation with stellar age only is apparent. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Abstract— The laboratory analyses of cosmic dust analogues—that in the context of this paper include interstellar, circumstellar as well as cometary dust—have a critical role in the study of circumstellar and cometary dust. The morphological, structural and chemical characterization of these analogues are critical for comparisons of their infrared and ultraviolet spectra with those obtained by astronomical observations, as well as for modeling purposes. Besides, the results from these laboratory studies are important to the success of space missions to comets when testing and calibrating the payload instruments. The interpretations of returned scientific data would benefit from the comparison with data recorded by the instruments in a laboratory setting for different classes of previously characterized analogues. We produced various types of condensed samples: (1) Mg,Fe‐silicates, (olivine, pyroxene), (2) carbon‐rich dust, and (3) mixed carbon‐silicate dust. The samples were prepared using different techniques, viz. (1) laser bombardment of solid targets in an Ar and O2 atmosphere, (2) arc discharge in an Ar and H2 atmosphere, and (3) grinding powders of natural minerals. We simulated various post‐condensation processes, such as thermal annealing, ultraviolet irradiation, ion bombardment and exposure to atomic hydrogen. These processes produced compound samples of a wide range of physico‐chemical properties. To identify their textures, morphologies, grain compositions and crystallographic properties we used electron microscopy and far‐ultraviolet to far‐infrared (millimeter range) spectroscopy.  相似文献   

13.
The nearby Mira-like variable L2 Pup is shown to be undergoing an unprecedented dimming episode. The stability of the period rules out intrinsic changes to the star, leaving dust formation along the line of sight as the most likely explanation. Episodic dust obscuration events are fairly common in carbon stars but have not been seen in oxygen-rich stars. We also present a 10-μm spectrum, taken with the Japanese Infrared Telescope in Space satellite, showing strong silicate emission that can be fitted with a detached, thin dust shell, containing silicates and corundum.  相似文献   

14.
We report new infrared and submillimetre observations of a sample of 24 candidate Vega-excess stars, and derive CO masses, dust masses, gas to dust ratios and the strengths of various emission lines. Most of these stars have dustier discs than the class archetypes (Vega, Fomalhaut, β Pic, etc.), yet, like the archetypes, all the stars observed in CO show the gas content of their discs to be depleted compared with molecular cloud values. We discuss how the extra dust content might imply that these stars are less evolved than the archetypes, and use other infrared and submillimetre characteristics to support this contention.  相似文献   

15.
Frans J.M. Rietmeijer 《Icarus》2011,211(2):948-959
Chondrite aggregate interplanetary dust particle IDP L2011K7, collected in the Earth’s lower stratosphere, is an agglomerate of diopside, Mg,Fe-olivine, rare Fe-sulfide and abundant amorphous Mg,Fe-silicates. The overwhelming majority of amorphous silicates have a serpentine-dehydroxylate [(Mg,Fe)3Si2O7] composition; a few have a smectite-dehydroxylate [(Mg,Fe)6Si8O22] composition. The cation ratios of the amorphous silicates are notably identical to those of serpentine and smectite phyllosilicates. This paper follows the chronological changes in the amorphous silicates that include (1) formation of nanometer scale crystalline silicates (Mg,Fe-olivine and pyroxene), (2) partial hydration and formation of antigorite-serpentine proto-phyllosilicates, (3) partial dehydration of these proto-phyllosilicates, and finally oxidation and Fe-oxide formation by flash heating during atmospheric entry. Environmental conditions capable of driving these changes in the diffuse interstellar medium or solar nebula, in a comet nucleus, or in circumsolar orbit as a cometary meteoroid were marginal at best. These changes could only proceed because of the unique amorphous silicate compositions. While this study cannot make a firm statement about an interstellar or solar nebula origin for its amorphous silicates that are irradiation-induced olivine, this study does find that amorphous silicates with serpentine and (rare) smectite compositions are an important fraction of the amorphous silicates in comets in addition to amorphous olivine and pyroxene. It is noted that an ice and water-free, millimeter-scale, structurally coherent crumb would be an ample ‘microenvironment’ to evolve micrometer-scale dust. After all IDP L2011K7 only measures 22 × 17 μm.  相似文献   

16.
The structural evolution of sol–gel‐produced amorphous Mg(x)Ca(1–x)SiO3 silicates is investigated. Mid‐IR Fourier transform infrared spectroscopy and synchrotron X‐ray diffraction are used to confirm the amorphous nature of the as‐prepared silicates, while subsequent in situ synchrotron X‐ray powder diffraction measurements are used to study the evolution of crystalline mineral phases as a function of annealing temperature. Multiple silicate phases, including diopside, enstatite, forsterite, and SiO2, are identified, while Rietveld (i.e., structure) refinement of the diffraction data is used to quantify phase change relationships. Investigated as possible analogs for the refractory dust grain materials likely to have been present in the early solar nebula, the likely relevance of these investigations to the observed silicate compositions of chondritic meteorites and cometary bodies and the processing of their precursor materials is discussed.  相似文献   

17.
Understanding the formation and evolution of the soil and dust of the Moon addresses the fundamental question of the interactions of space with the surface of an airless body. The physical and chemical properties of the lunar dust, the <20 μm portion of lunar soil, are key properties necessary for studies of the toxicity and the electrostatic charging of the dust. These properties have been largely overlooked until recent years. Although chemical and physical studies of the <20 μm portion of lunar soil have been the topic of several studies, there is still need for further studies, primarily of the <1 μm particles. This paper presents a review of the studies of lunar dust that have been conducted to date. As many preparations for future exploration or science activities on the Moon require testing using lunar soil/dust simulants, we also include a brief review of past and current simulants.  相似文献   

18.
In binary stellar systems, exoplanet searches have revealed planetary mass companions orbiting both in circumstellar and in circumbinary orbits. Modelling studies suggest increased dynamical complexity around the young stars that form such systems. Circumstellar and circumbinary disks likely exhibit different physical conditions for planet formation, which also depends on the stellar separation. Although binaries and higher order multiple stars are relatively common in nearby star-forming regions, surprisingly few systems with circumbinary distributions of proto-planetary material have been found. With its spectacular ring of dust and gas encircling the central triple star, one such system, GG Tau A, has become a unique laboratory for investigating the physics of circumsystem gas and dust evolution. We review here its physical properties.  相似文献   

19.
Renazzo‐type (CR) carbonaceous chondrites belong to one of the most pristine meteorite groups containing various early solar system components such as matrix and fine‐grained rims (FGRs), whose formation mechanisms are still debated. Here, we have investigated FGRs of three Antarctic CR chondrites (GRA 95229, MIL 07525, and EET 92161) by electron microscopy techniques. We specifically focused on the abundances and chemical compositions of the amorphous silicates within the rims and matrix by analytical transmission electron microscopy. Comparison of the amorphous silicate composition to a matrix area of GRA 95229 clearly shows a compositional relationship between the matrix and the fine‐grained rim, such as similar Mg/Si and Fe/Si ratios. This relationship and the abundance of the amorphous silicates in the rims strengthen a solar nebular origin and rule out a primary formation mechanism by parent body processes such as chondrule erosion. Moreover, our chemical analyses of the amorphous silicates and their abundance indicate that the CR rims experienced progressive alteration stages. According to our analyses, the GRA 95229 sample is the least altered one based on its high modal abundance of amorphous silicates (31%) and close‐to‐chondritic Fe/Si ratios, followed by MIL 07525 and finally EET 92161 with lesser amounts of amorphous silicates (12% and 5%, respectively) and higher Fe/Si ratios. Abundances and chemical compositions of amorphous silicates within matrix and rims are therefore suitable recorders to track different alteration stages on a submicron scale within variably altered CR chondrites.  相似文献   

20.
Summary Cosmic dust grains play an important role for the thermal, dynamical, and chemical structure of the interstellar medium. This is especially true for the star formation process and the late stages of stellar evolution. Dust grains determine the spectral appearance of protostars, very young stellar objects with disk-like structures as well as of evolved stars with circumstellar envelopes.In this review, we will demonstrate that solid particles in interstellar space are both agent and subject of galactic evolution. We will especially discuss the different dust populations in circumstellar envelopes, the diffuse interstellar medium, and the molecular clouds with strong emphasis on the evolutionary aspects and the metamorphosis of these populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号