首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang Hongqi 《Solar physics》1993,144(2):323-340
In this paper, the formation and the measurement of the H line in chromospheric magnetic fields are discussed. The evolution of the chromospheric magnetic structures and the relation with the photospheric vector magnetic fields and chromospheric velocity fields in the flare producing active region AR 5747 are also demonstrated.The chromospheric magnetic gulfs and islands of opposite polarity relative to the photospheric field are found in the flare-producing region. This probably reflects the complication of the magnetic force lines above the photosphere in the active region. The evolution of the chromospheric magnetic structures in the active region is caused by the emergence of magnetic flux from the sub-atmosphere or the shear motion of photospheric magnetic fields. The filaments separate the opposite polarities of the chromospheric magnetic field, but only roughly those of the photospheric field. The filaments also mark the inversion lines of the chromospheric Doppler velocity field which are caused by the relative motion of the main magnetic poles of opposite polarities in the active region under discussion.  相似文献   

2.
A series of H chromospheric magnetograms was obtained at various wavelengths near the line center with the vector video magnetograph at Huairou Solar Observing Station as a diagnostic of chromospheric magnetic structures. The two-dimensional distribution of the circular polarization light of the H line with its blended lines at various wavelength in active regions was obtained, which consists of the analyses of Stokes' profileV of this line. Due to the disturbance of the photospheric blended line Fei 4860.98 for the measurement of the chromospheric magnetic field, a reversal in the chromospheric magnetograms relative to the photospheric ones occurs in the sunspot umbrae. But in the quiet, plage regions, even penumbrae, the influence of the photospheric blended Fei 4860.98 line is not obvious. As regards the observation of the H chromospheric magnetograms, we can select the working wavelength between -0.20 and -0.24 from the line core of H to avoid the wavelengths of the photospheric blended lines in the wing of H.After the spectral analysis of chromospheric magnetograms, we conclude that the distribution of the chromospheric magnetic field is similar to the photospheric field, especially in the umbrae of the sunspots. The chromospheric magnetic field is the result of the extension of the photospheric field.  相似文献   

3.
Observations of reversed-polarity features in the chromosphere as well as in the photosphere in the form of magnetic gulfs or islands of opposite polarity have been reported recently. In this paper, we present a possible explanation for the appearance of reversed-polarity features observed in the chromospheric magnetograms of the NOAA AR 7321 observed during October 25–27, 1992. It is suggested that the large-scale reversed-polarity features may occur due to the twisting of the smaller-scale magnetic flux tubes in the layer between the photosphere and the chromosphere.  相似文献   

4.
Zhang  Hongqi 《Solar physics》1997,174(1-2):219-227
In this paper we present the observational results of chromospheric and photospheric magnetograms in active regions obtained at the Huairou Solar Observing Station of the Beijing Astronomical Observatory. Simultaneous observations of the chromospheric and photospheric magnetic fields enable us to construct a possible configuration of the magnetic field in the solar atmosphere. The chromospheric magnetic field shows more diffusion than the photospheric magnetic field and consists of fibril-like features. We also discuss the possible configuration of the magnetic shear in highly sheared active regions.  相似文献   

5.
Five days of coordinated observation were carried out from 24–29 September, 1987 at Big Bear and Huairou Solar Observatories. Longitudinal magnetic fields of an p sunspot active region were observed almost continuously by the two observatories. In addition, vector magnetic fields, photospheric and chromospheric Doppler velocity fields of the active region were also observed at Huairou Solar Observatory. We studied the evolution of magnetic fields and mass motions of the active region and obtained the following results: (1) There are two kinds of Moving Magnetic Features (MMFs). (a) MMFs with the same magnetic polarity as the center sunspot. These MMFs carry net flux from the spot, move through the moat, and accumulate at the moat's outer boundary. (b) MMFs in pairs of mixed polarity. These MMFs are not responsible for the decay of the spot since they do not carry away the net flux. MMFs in category (b) move faster than those of (a). (2) The speed of the mixed polarity MMFs is larger than the outflow measured by photospheric Dopplergrams. The uni-polar MMFs are moving at about the same speed as the Doppler outflow. (3) The chromospheric velocity is in approximately the opposite direction from the photospheric velocity. The photospheric Doppler flow is outward; chromospheric flow is inward. We also found evidence that downward flow appears in the photospheric umbra; in the chromosphere there is an upflow.  相似文献   

6.
We discuss the study of solar magnetic fields based on the photospheric vector magnetograms of solar active regions which were obtained at Huairou Solar Observing Station near Beijing in the period of 22nd and 23th solar cycles. The measurements of the chromospheric magnetic field and the spatial configuration of the field at the lower solar atmosphere inferred by the distribution of the solar photospheric and chromospheric magnetic field. After the analysis on the formation process of delta configuration in some super active regions based on the photospheric vector magnetogram observations, some results are obtained: (1) The analysis of magnetic writhe of whole active regions cannot be limited in the strong field of sunspots, because the contribution of the fraction of decayed magnetic field is non-negligible. (2) The magnetic model of kink magnetic ropes, proposed to be generated in the subatmosphere, is not consistent with the evolution of large-scale twisted photospheric transverse magnetic field and the relationship with magnetic shear in some delta active regions completely. (3) The proposition is that the large-scale delta active regions are formed from contribution by highly sheared non-potential magnetic flux bundles generated in the subatmosphere. We present some results of a study of the magnetic helicity. We also compare these results with other data sets obtained by magnetographs (or Stokes polarimeters) at different observatories, and analyze the basic chirality of the magnetic field in the solar atmosphere.  相似文献   

7.
NOAA active region 6659, during its June 1991 transit across the solar disk, showed highly sheared vector magnetic field structures and produced numerous powerful flares, including five white-light flares. Photospheric vector magnetograms of this active region were obtained at the Huairou Solar Observing Station of the Beijing Astronomical Observatory. After the resolution of the 180° ambiguity of the transverse magnetic field and transformation of off-center vector magnetograms to the heliographic plane, we have determined the photospheric vertical current density and discussed the relationship with powerful flares. The following results were obtained: (a) The powerful 3B/X12 flare on June 9, 1991 was triggered by the interaction between the large-scale electric current system and magnetic flux of opposite polarity. (b) The kernels of the powerful Hβ flare (sites of the white-light flare) were close to the peaks of the vertical electric current density. (c) Some small-scale structures of the vertical current relative to the magnetic islands of opposite polarity have not been found. This probably implies that the electric current is not always parallel to the magnetic field in solar active regions.  相似文献   

8.
A case of cancellation of magnetic fields is observed during the decay of a small active region. Three different sources of information were simultaneously used: high resolution magnetograms, chromospheric Caii filtergrams and transverse velocity fields.A magnetic structure is apparently dragged to the network by the supergranular velocity field while it splits into two. There, they meet another structure with opposite magnetic polarity. After a period of coexistence, the magnetic pairs vanish, leaving no trace of either magnetic or chromospheric structures.Visiting astronomer, Sacramento Peak Observatory, operated by the Association of Universities for Research in Astronomy, Inc. under contract AST-78-17292 with the National Science Foundation.  相似文献   

9.
Liu  Yang  Wang  Jingxiu  Yan  Yihua  Ai  Guoxiang 《Solar physics》1996,169(1):79-89
The gradients of line-of-sight magnetic fields in active region NOAA 6659 on 1991 June 8 have been calculated based on the photospheric and chromospheric magnetograms taken at Huairou Solar Observing Station. We found that high gradients coincided with high strengths of the transverse magnetic fields, implying a complicated configuration of the magnetic field in the lower atmosphere.For this extraordinarily flare-prolific region, a possible relationship between the gradients and the flares was inferred.  相似文献   

10.
We observed the line-of-sight magnetic field in the chromosphereand photosphere of a large quiescent filament on the solar disk on September 6, 2001 using the Solar Magnetic Field Telescope in Huairou Solar Observing Station. The chromospheric and photospheric magnetograms together with Hβ filtergrams of the filament were examined. The filament was located on the neutral line of the large scale longitudinal magnetic field in the photosphere and the chromosphere. The lateral feet of the filament were found to be related to magnetic structures with opposite polarities. Two small lateral feet are linked to weak parasitic polarity. There is a negative magnetic structure in the photosphere under a break of the filament. At the location corresponding to the filament in the chromospheric magnetograms, the magnetic strength is found to be about 40-70 Gauss (measuring error about 39 Gauss). The magnetic signal indicates the amplitude and orientation of the internal magnetic field in the filament. We discuss several possible causes which may produce such a measured signal. A twisted magnetic configuration inside the filament is suggested .  相似文献   

11.
L. A. Plyusnina 《Solar physics》1985,102(1-2):191-201
For the period 1969–1975, a study has been made of the dependence of the interplanetary magnetic field structure on the distribution and evolutionary properties of solar magnetic fields. By direct comparison of a sequence of synoptic charts of the photospheric magnetic field with the interplanetary magnetic field, and by applying the method of correlation analysis, it is shown that to areas with an unstable polarity of the interplanetary magnetic field there correspond regions with a complicated inverse polarity line that forms either narrow gulfs and islands against a background of the dominant polarity, or bipolar magnetic regions and their clusters. At the time of reconstruction of the photospheric magnetic field the correlation between the photospheric and interplanetary magnetic field element distributions worsens. An asymmetry of the correlation between the interplanetary and photospheric magnetic field structures of different hemispheres is found. During the period of study, the interplanetary field structure shows a better correlation with the distribution of the photospheric magnetic field at middle and lower latitudes (0°–40°) of the southern hemisphere.  相似文献   

12.
Solar Wind Forecasting with Coronal Holes   总被引:1,自引:0,他引:1  
An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang–Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best 1-month period, and it has a linear correlation coefficient of ∼0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.  相似文献   

13.
Hongqi Zhang 《Solar physics》1994,154(2):207-214
A set of H chromospheric magnetograms at various wavelengths near the line center, chromospheric Dopplergrams, and photospheric vector magnetograms of a unipolar sunspot region near the solar limb were obtained with the vector video magnetograph at the Huairou Solar Observing Station. The superpenumbral chromospheric magnetic field is almost parallel to the surface at the outside of the sunspot penumbra, where the magnetic lines of force are mainly concentrated in the superpenumbral filaments. In the gaps between the filaments the chromospheric horizontal field is weak.  相似文献   

14.
During 23–28 August 1988, at the Huairou Solar Observation Station of Beijing Observatory, the full development process of the region HR 88059 was observed. It emerged near the center of the solar disk and formed a medium active region. A complete series of vector magnetograms and photospheric and chromospheric Dopplergrams was obtained. From an analysis of these data, combined with some numerical simulations, the following conclusions can be drawn. (1) The emergence of new magnetic flux from enhanced networks followed by sunspot formation is an interesting physical process which can be simply described by MHD numerical simulation. The phenomena accompanying it occur according to a definite law summarized by Zwaan (1985). The condition for gas cooling and sunspot formation seems to be transverse field strength > 50 G together with longitudinal field strength > 700 G. For a period of 4 to 5 hours, the orientation of the transverse field shows little change. The configuration of field lines may be derived from vector magnetograms. The arch filament system can be recognized as an MHD shock. (2) New opposite bipolar features emerge within the former bipolar field with an identical strength which will develop a sunspot group complex. Also, arch filament systems appear there located in the position of flux emergence. The neutral line is often pushed aside and curved, leading to faculae heating and the formation of a current sheet. In spite of complicated Dopplergrams, the same phenomena occur at the site of flux emergence as usual: upward flow appears at the location of the emerging and rapidly varying flux near the magnetic neutral line, and downdraft occurs over large parts of the legs of the emerging flux tubes. The age of magnetic emerging flux (or a sunspot) can be estimated in terms of transverse field strengths: when 50 G < transverse field < 200 G, the longitudinal magnetogram and Dopplergram change rapidly, which indicates a rigourously emerging magnetic flux. When the transverse field is between 200 and 400 G, the area concerned is in middle age, and some of the new flux is still emerging there. When the transverse field > 400 G, the variation of the longitudinal magnetogram slows down and the emerging arch becomes relatively stable and a photospheric Evershed flow forms at the penumbra of the sunspot.  相似文献   

15.
Zhang  Mei  Zhang  Hongqi 《Solar physics》2000,194(1):19-28
Photospheric (Fei 5324.19 Å line) and chromospheric (H line) magnetic fields in quiet-Sun regions have been observed in the solar disk center by using the vector video magnetograph at Huairou Solar Observing Station of Beijing Astronomical Observatory. Observational results show that the quiet-Sun magnetic elements in the solar photosphere and chromosphere present similar magnetic structures. Photospheric and chromospheric magnetograms show corresponding time variations. This suggests that the magnetic fields in quiet-Sun regions present different 3-D magnetic configurations compared to those in solar active regions.  相似文献   

16.
Solar Active Region NOAA 2372 was observed extensively by the Solar Maximum Mission (SMM) satellite and several ground-based observatories during 1980 April 4–13 in the Solar Maximum Year. After its birth around April 4, it underwent a rapid growth and produced a reported 84 flares in the course of its disc passage. In this paper, we have studied photospheric and chromospheric observations of this active region together with Marshall Space Flight Center magnetograms and X-ray data from HXIS aboard the SMM satellite. In particular, we discuss the relationship of the flare-productivity with sunspot proper motions and emergence of new regions of magnetic flux in the active region from its birth to its disappearance at the W-limb.  相似文献   

17.
Radio observations of some active regions (ARs) obtained with the Nobeyama radioheliograph at λ=1.76cm are used for estimating the magnetic field strength in the upper chromosphere, based on thermal bremsstrahlung. The results are compared with the magnetic field strength in the photosphere from observations with the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station of Beijing Astronomical Observatory. The difference in the magnetic field strength between the two layers seems reasonable. The solar radio maps of active regions obtained with the Nobeyama radioheliograph, both in total intensity (I-map) and in circular polarizations (V-map), are compared with the optical magnetograms obtained with the SMFT. The comparison between the radio map in circular polarization and the longitudinal photospheric magnetogram of a plage region suggest that the radio map in circular polarization is a kind of magnetogram of the upper chromosphere. The comparison of the radio map in total intensity with the photospheric vector magnetogram of an AR shows that the radio map in total intensity gives indications of magnetic loops in the corona, thus we have a method of defining the coronal magnetic structure from the radio I-maps at λ=1.76 cm. Analysing the I-maps, we identified three components: (a) a compact bright source; (b) a narrow elongated structure connecting two main magnetic islands of opposite polarities (observed in both the optical and radio magnetograms); (c) a wide, diffuse, weak component that corresponds to a wide structure in the solar active region which shows in most cases an S or a reversed S contour, which is probably due to the differential rotation of the Sun. The last two components suggest coronal loops on different spatial scales above the neutral line of the longitudinal photospheric magnetic field.  相似文献   

18.
In this paper, the chromospheric magnetic structures and their relation to the photospheric vector magnetic field in the vicinity of a dark filament in active region 5669 have been demonstrated. Structural variations are shown in chromospheric magnetograms after a solar flare. Filament-like structures in the chromospheric magnetograms occurred after a solar flare. They correspond to the reformation of the chromospheric dark filament, but there is no obvious variation of the photospheric magnetic field. We conclude that (a) some of the obvious changes of the chromospheric magnetic fields occurred after the flare, and (b) a part of these changes is perhaps due to flare brightening in the chromospheric H line.During the reforming process of the dark filament, a part of its chromospheric velocity field shows downward flow, and it later shows upward flow.  相似文献   

19.
In this paper, we analyze the relations between photospheric vector magnetic fields, chromospheric longitudinal magnetic fields and velocity fields in a solar active region. Agreements between the photospheric and chromospheric magnetograms can be found in large-scale structures or in the stronger magnetic structures, but differences also can be found in the fine structures or in other places, which reflect the variation of the magnetic force lines from the photosphere to the chromosphere. The chromospheric superpenumbral magnetic field, measured by the Hline, presents a spoke-like structure. It consists of thick magnetic fibrils which are different from photospheric penumbral magnetic fibrils. The outer superpenumbral magnetic field is almost horizontal. The direction of the chromospheric magnetic fibrils is generally parallel to the transverse components of the photospheric vector magnetic fields. The chromospheric material flow is coupled with the magnetic field structure. The structures of the H chromospheric magnetic fibrils in the network are similar to H dark fibrils, and the feet of the magnetic fibrils are located at the photospheric magnetic elements.  相似文献   

20.
Zhang  H.  Scharmer  G.  Lofdahl  M.  Yi  Z. 《Solar physics》1998,183(2):283-290
In this paper, we present a time series of Fei 5250.2 Å photospheric filtergrams and corresponding magnetograms in a quiet region. The relationship between fine structures of granulation and magnetic fields is analyzed. It is found that although most bright filigree features in photospheric filtergrams are related to corresponding magnetic features, they are generally not cospatial. It is also found that some bright features and their corresponding photospheric magnetic fields show fast changes within several minutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号