首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Younger Dryas impact hypothesis suggests that multiple airbursts or extraterrestrial impacts occurring at the end of the Allerød interstadial resulted in the Younger Dryas cold period. So far, no reproducible, diagnostic evidence has, however, been reported. Quartz grains containing planar deformation features (known as shocked quartz grains), are considered a reliable indicator for the occurrence of an extraterrestrial impact when found in a geological setting. Although alleged shocked quartz grains have been reported at a possible Allerød‐Younger Dryas boundary layer in Venezuela, the identification of shocked quartz in this layer is ambiguous. To test whether shocked quartz is indeed present in the proposed impact layer, we investigated the quartz fraction of multiple Allerød‐Younger Dryas boundary layers from Europe and North America, where proposed impact markers have been reported. Grains were analyzed using a combination of light and electron microscopy techniques. All samples contained a variable amount of quartz grains with (sub)planar microstructures, often tectonic deformation lamellae. A total of one quartz grain containing planar deformation features was found in our samples. This shocked quartz grain comes from the Usselo palaeosol at Geldrop Aalsterhut, the Netherlands. Scanning electron microscopy cathodoluminescence imaging and transmission electron microscopy imaging, however, show that the planar deformation features in this grain are healed and thus likely to be older than the Allerød‐Younger Dryas boundary. We suggest that this grain was possibly eroded from an older crater or distal ejecta layer and later redeposited in the European sandbelt. The single shocked quartz grain at this moment thus cannot be used to support the Younger Dryas impact hypothesis.  相似文献   

2.
Abstract— Previous workers have shown that an impact ejecta layer at Massignano, Italy contains a positive Ir anomaly, flattened spheroids (pancake spherules), Ni‐rich spinel crystals, and shocked quartz with multiple sets of planar deformation features. Because of sample sizes and work by different investigators, it was not clear if the shocked quartz is associated with the Ir anomaly and pancake spherules or if it belongs to a separate impact event. To address this problem, we carried out a high‐resolution stratigraphic study of this ejecta layer. The ejecta layer was sampled continuously at 1 cm intervals in two adjacent columns. The carbonate was removed with dilute HCl, and the non‐carbonate fraction was gently sieved. Pancake spherules were recovered from the 250–500 μm size fraction and counted. At the peak abundance, the number of pancake spherules in the 250–500 μm size fraction is about 6–7/g of sample. The pancake spherules removed from the 250–500 μm size fraction are mostly translucent to opaque pale green, but some have a grey color or dark opaque patches due to a coating of Ni‐ and Cr‐rich spinel crystals. Energy‐dispersive X‐ray analysis and X‐ray diffraction data indicate that the green spherules are composed of iron‐rich smectite, probably nontronite. Black opaque spinel stringers (dark spinel‐rich pancake spherules), usually <200 μm across, can be seen in a polished section of a block that includes the ejecta layer. None of the dark spinel‐rich pancake spherules were recovered from the sieved non‐carbonate fraction due to their fragile nature, but we believe that they are from the same impact event as the green pancake spherules. The <250 μm size fractions from both columns were disaggregated using ultrasonics and re‐sieved. The 63–125 μm size fractions were then searched for shocked quartz using a petrographic microscope. At the peak‐abundance level, the number of shocked quartz grains in the 63–125 μm size fraction is about 7/g of sample. Some of the shocked quartz grains have a “toasted” appearance. These grains have a brownish color and contain a patchy distribution of faint, densely spaced planar deformation features (PDFs). Polymineralic fragments containing one or two shocked quartz grains with one or two sets of PDFs were observed. They appear to have an organic matrix and are probably fragments of agglutinated foraminiferal tests. We searched for, but did not find, coesite or shocked zircons. We found that the peak abundance of the shocked quartz is within a centimeter of the peak abundance of the green pancake spherules. We conclude that the pancake spherules are diagenetically altered clinopyroxene‐bearing spherules and that the shocked quartz, green (and presumably the dark spinel‐rich) pancake spherules, and Ir anomaly all belong to the same impact event. This conclusion is consistent with previous suggestions that the cpx spherule layer may be from the 100 km‐diameter Popigai impact crater in northern Siberia.  相似文献   

3.
Yallalie is a ~12 km diameter circular structure located ~200 km north of Perth, Australia. Previous studies have proposed that the buried structure is a complex impact crater based on geophysical data. Allochthonous breccia exposed near the structure has previously been interpreted as proximal impact ejecta; however, no diagnostic indicators of shock metamorphism have been found. Here we report multiple (27) shocked quartz grains containing planar fractures (PFs) and planar deformation features (PDFs) in the breccia. The PFs occur in up to five sets per grain, while the PDFs occur in up to four sets per grain. Universal stage measurements of all 27 shocked quartz grains confirms that the planar microstructures occur in known crystallographic orientations in quartz corresponding to shock compression from 5 to 20 GPa. Proximity to the buried structure (~4 km) and occurrence of shocked quartz indicates that the breccia represents either primary or reworked ejecta. Ejecta distribution simulated using iSALE hydrocode predicts the same distribution of shock levels at the site as those found in the breccia, which supports a primary ejecta interpretation, although local reworking cannot be excluded. The Yallalie impact event is stratigraphically constrained to have occurred in the interval from 89.8 to 83.6 Ma based on the occurrence of Coniacian clasts in the breccia and undisturbed overlying Santonian to Campanian sedimentary rocks. Yallalie is thus the first confirmed Upper Cretaceous impact structure in Australia.  相似文献   

4.
Abstract– The Chesapeake Bay impact structure, approximately 85 km in diameter, has been drilled in 2005–2006 at Eyreville (Virginia, USA), to a total depth of 1766 m. In the drill cores, the abundance of shock metamorphosed material is very variable with depth. Shocked mineral and lithic clasts, as well as melt particles, are most abundant in suevitic impact breccia section (1397–1451 m depth). Shocked quartz (i.e., quartz grains with planar fractures and/or planar deformation features) and melt particles, although rare, are also dispersed in the Exmore Formation unit (444–867 m depth). Other lithologies in the Eyreville drill cores show no clear evidence of shock metamorphism. Here, we report on the investigations of 40 samples from the impact breccia section. A total of more than 27,000 quartz grains were examined in about 200 clasts. The abundance of highly shocked clasts tends to decrease with increasing depth. Crystalline clasts derived from the crystalline basement are commonly only slightly shocked (contain generally <10 rel% of shocked quartz grains). The clasts of metamorphosed sediments show a low proportion of shocked quartz grains (mostly <10 rel%). Sedimentary clasts show a wide range of proportions of shocked quartz grains, with several of them being highly shocked clasts (most values between 0 and 40 rel%). Conglomerates show the highest proportion of shocked quartz grains of all types of clasts (up to 83 rel%). Polycrystalline quartz clasts are also commonly highly shocked (contain mostly between 10 and 40 rel% of shocked quartz grains). These hard nonporous clasts are possibly more liable to show evidence of shock. The investigations suggest that the intensity of shock metamorphism is the result of several parameters, such as original position in the target (both horizontal and vertical) and the properties of each lithology (e.g., grain size, porosity, and amount of matrix). According to the universal‐stage investigations, the dominant orientations of planar deformation features in quartz are , , and also .  相似文献   

5.
Abstract— Quartz grains subjected to high‐strain‐rate shock waves owing to meteorite or cometary impact on Earth's surface commonly display shock lamellae. These lamellae appear as remarkably straight, thin, planar features (microstructures) in sets within which lamellae are essentially parallel to each other and spaced ≤ 20 μm apart. Two or more intersecting sets are typically present. Shock lamellae are commonly recognized and identified by optical methods, by use of the transmission electron microscope (TEM), and by etching polished sections and subsequent examination with a scanning electron microscope (SEM) operated in the secondary electron mode. We present here a method for observing planar microstructures in shocked quartz by using a cathodoluminescence (CL) detector attached to a SEM. The method relies on the fact that planar microstructures in quartz arising as a result of shock display no CL whatever; thus, they show up as distinct, thin, black lines on otherwise luminescent quartz grains. We used scanning CL imaging to study shocked quartz from the Ries Crater, Germany, a well‐known impact crater of Miocene age. We demonstrate that shock‐produced planar microstructures are clearly displayed in SEM‐CL images and can be distinguished from microfractures generated by tectonism, and subsequently filled with quartz, and other similar features not related to impact events. The SEM‐CL method provides a powerful supplement to other methods of identifying shocked quartz. It commonly provides better spatial resolution than does standard optical methods, and does not require etching of quartz grains. Further, it is easier and faster to use than are TEM methods, although it is not capable of the fine‐scale defect analysis possible with TEM.  相似文献   

6.
Shock metamorphism of the lunar samples is discussed. All types of lunar glasses formed by various-size collision-type impact are found as impact glass, ropy glass and agglutinates. The agglutinates bonded by crystal and glassy materials contain hydrogen and helium from the solar wind components. Lunar shocked minerals of plagioclase and silica show anomalous compositions and densities. There are typical two formation processes on planetary materials formed by shock events; that is (1) shocked quartz formed by silica-rich target rocks (esp. on evolved planets of the Earth and Mars), and (2) shocked silica with minor Al contents formed from plagioclase-rich primordial crusts of the Moon. The both shocked silica grows to coarse-grain normal crystals after high-temperature metamorphism which cannot distinguish the original main formation event of impact process.  相似文献   

7.
Abstract– The petrographic investigation of a shocked, chalcedony‐, quartzine‐, and quartz‐bearing allochthonous chert nodule (probably Upper Cretaceous) recovered from surficial wadi gravels in the inner parts of the central uplift of the approximately 6 km in diameter Jebel Waqf as Suwwan impact structure, Jordan, reveals new potential shock indicators in microfibrous–spherulitic silica, in addition to well‐established shock‐metamorphic effects in coarser crystalline quartz. The microcrystalline chert groundmass exhibits a macroscopic dendritic and suborthogonal fracture pattern commonly associated with thin “recrystallization bands” that intersect the pre‐existing diagenetic chert fabric. Fibrous aggregates of quartzine spherulites in chalcedony‐quartzine‐quartz veinlets locally have a shattered appearance and show conspicuous “curved fractures” perpendicular to the quartzine fiber direction (and parallel to [0001]) that commonly trend subparallel to planar fractures (PFs) in neighboring shocked quartz. Quartz exhibits PFs, feather features (FFs), and mainly single sets of planar deformation features (PDFs) parallel to the basal plane (0001) (Brazil twins) and, rarely, additional PDFs parallel to {101¯3}. Shock petrography indicates shock pressures of ≥10 GPa and high shock‐induced differential stresses that affected the chert nodule. The internal crosscutting relationships of primary diagenetic and impact‐related deformational features together with shockpressure estimates suggest that the curved fractures across quartzine spherulites might represent specific (low‐ to medium‐pressure) shock‐metamorphic features, possibly in structural analogy to basal plane PFs in quartz. The dendritic–suborthogonal fractures in the microcrystalline chert groundmass and recrystallization bands are likely related to impact‐induced shear deformation and recrystallization, respectively, and cannot be considered as definite shock indicators.  相似文献   

8.
The occurrence of coesite in suevites from the Chesapeake Bay impact structure is confirmed within a variety of textural domains in situ by Raman spectroscopy for the first time and in mechanically separated grains by X‐ray diffraction. Microtextures of coesite identified in situ investigated under transmitted light and by scanning electron microscope reveal coesite as micrometer‐sized grains (1–3 μm) within amorphous silica of impact‐melt clasts and as submicrometer‐sized grains and polycrystalline aggregates within shocked quartz grains. Coesite‐bearing quartz grains are present both idiomorphically with original grain margins intact and as highly strained grains that underwent shock‐produced plastic deformation. Coesite commonly occurs in plastically deformed quartz grains within domains that appear brown (toasted) in transmitted light and rarely within quartz of spheroidal texture. The coesite likely developed by a mechanism of solid‐state transformation from precursor quartz. Raman spectroscopy also showed a series of unidentified peaks associated with shocked quartz grains that likely represent unidentified silica phases, possibly including a moganite‐like phase that has not previously been associated with coesite.  相似文献   

9.
Abstract– The Siljan impact structure in Sweden is the largest confirmed impact structure in Western Europe. Despite this, the structure has been poorly studied in the past, and detailed studies of shock metamorphic features in the target lithologies are missing. Here, we present the results of a detailed systematic search for shock metamorphic features in quartz grains from 73 sampled localities at Siljan. At 21 localities from an area approximately 20 km in diameter located centrally in the structure, the orientations of 2851 planar deformation feature sets in 1179 quartz grains were measured. Observations of shatter cones outside of the zone with shocked quartz extend the total shocked area to approximately 30 km in diameter. The most strongly shocked samples, recording pressures of up to 20 GPa, occur at the very central part of the structure, and locally in these samples, higher pressures causing melting conditions in the affected rocks were reached. Pressures recorded in the studied samples decrease outwards from the center of the structure, forming roughly circular envelopes around the proposed shock center. Based on the distribution pattern of shocked quartz at Siljan, the original transient cavity can be estimated at approximately 32–38 km in diameter. After correcting for erosion, we conclude that the original rim to rim diameter of the Siljan crater was somewhere in the size range 50–90 km.  相似文献   

10.
Abstract— The presence of shocked quartz is one of the key lines of evidence for the impact origin of rocks. Crystallographic orientations of planar deformation feature (PDF) sets in shocked quartz have been used to constrain the peak shock pressure that these grains have experienced. So far no systematic and comparative studies of the various orientation measurement methods and their biases are available. Therefore, three shocked‐quartz‐bearing thin sections from a meta‐greywacke clast in breccia, a biotite‐gneiss, and a sandstone, respectively, were independently analyzed by three operators (two experienced and one inexperienced) using a four‐axis universal‐stage (U‐stage), in order to evaluate the quality, precision, repeatability, and representativeness of U‐stage measurements. Based on the indexing of PDF sets using a new version of the commonly used stereographic projection template, the study of 1751 PDF set orientations in 666 quartz grains in three different shocked rocks shows that differences in abundance and orientation of various PDF sets, as measured by the three separate operators, are rather limited. The precision of U‐stage measurements depends mainly on the number of PDF sets investigated, as the ability level of the operator (experienced versus inexperienced) is only responsible for minor deviations in the number of unindexed planes. The frequency percent of dominant PDF planes may vary by up to 20 percentage points (pp) or 81% for a given crystallographic orientation when only 25 sets are measured. When 100 PDF sets are measured, however, this deviation in dominant orientations is reduced to about 7 pp or 28%. We recommend the use of a new stereographic projection template, which plots the pole positions of five additional, commonly occurring PDF orientations, as it can allow indexing of up to 12 pp more PDF planes; these are planes that would previously be considered unindexed and potentially regarded as errors of measurement. Our results suggest that by following a strict measurement procedure, the reproducibility of U‐stage measurements is good and the results of different studies can be readily compared. However, it is critical that published PDF orientation histograms clearly define what type of frequency measurement is used, whether or not unindexed PDF sets are included in the frequency calculations, the numbers of grains and sets analyzed, and the relative proportions of each PDF set population that are combined in the histograms. This information appears to be essential for effectively comparing datasets from different studies.  相似文献   

11.
Abstract— The central uplift of the 40-km wide Araguainha impact structure, Brazil, consists of a ring, about 8 km in diameter, of up to 150-m high blocks of Devonian Furnas sandstone, which surround a central depression of elliptical shape (4.5 × 3.0 km). The depression is occupied by a pre-Devonian alkali-feldspar granite, shocked by pressures of 20–25 GPa and permeated by cataclastic shear zones and dikes of shocked granitic material. The granite is flanked and partly covered by several impact breccias: (1) Impact breccia with melt matrix overlies the granite in places and forms hills, bordering the granitic center in the S and SW. It is chemically identical with the granite and consists of thermally altered granitic clasts in a matrix of sanidine, quartz, biotite, muscovite, chlorite and riebeckite. (2) Polymict breccias form hills which border the central depression in the N and NW. Components are unshocked and shocked sediments, shock-melted sandstone, shocked granite and shock melt rocks in irregular masses and individual bodies, embedded in a fine-grained matrix. 40Ar/39Ar analyses show that the melt rocks solidified 246 Ma ago, indicating that the impact occurred at near the Permian-Triassic boundary, possibly when the area was covered by a shallow sea. The present chemistry and petrography of the melt rocks suggest that by reacting with seawater granitic impact melt was depleted of K and Rb and enriched in Na, and that later diagenetic processes produced replacement of feldspar by quartz and deposition of hematite. (3) Monomict breccias, consisting of unshocked, shocked and shock-fused quartz sandstones, form hills which surround the central depression in the SE and S. The Araguainha structure is an eroded complex crater, produced by an impact, 246 Ma ago. The depth of excavation was about 2.4 km, comprising Permian, Permo-Carboniferous and Devonian sediments and the granitic basement. The diameter of the transient crater was about 24 km. Erosion and weathering have removed most of the original crater fill and ejecta deposits, with the exception of remnants, preserved in the central uplift.  相似文献   

12.
Here we present a study of the abundance and orientation of planar deformation features (PDFs) in the Vakkejokk Breccia, a proposed lower Cambrian impact ejecta layer in the North‐Swedish Caledonides. The presence of PDFs is widely accepted as evidence for shock metamorphism associated with cosmic impact events and their presence confirms that the Vakkejokk Breccia is indeed the result of an impact. The breccia has previously been divided into four lithological subunits (from bottom to top), viz. lower polymict breccia (LPB), graded polymict breccia (GPB), top sandstone (TS), and top conglomerate (TC). Here we show that the LPB contains no shock metamorphic features, indicating that the material derives from just outside of the crater and represents low‐shock semi‐autochthonous bombarded strata. In the overlying, more fine‐grained GPB and TS, quartz grains with PDFs are relatively abundant (2–5% of the grain population), and with higher shock levels in the upper parts, suggesting that they have formed by reworking of more distal ejecta by resurge of water toward the crater in a marine setting. The absence of shocked quartz grains in the TC indicates that this unit represents later slumps associated with weathering and erosion of the protruding crater rim. Sparse shocked quartz grains (<0.2%) were also found in sandstone beds occurring at the same stratigraphic level as the Vakkejokk Breccia 15–20 km from the inferred crater site. It is currently unresolved whether the sandstone at these distal sites is related to the impact or just contains rare reworked quartz grains with PDFs.  相似文献   

13.
Abstract— The El'gygytgyn impact structure is about 18 km in diameter and is located in the central part of Chukotka, arctic Russia. The crater was formed in volcanic rock strata of Cretaceous age, which include lava and tuffs of rhyolites, dacites, and andesites. A mid‐Pliocene age of the crater was previously determined by fission track (3.45 ± 0.15 Ma) and 40Ar/39Ar dating (3.58 ± 0.04 Ma). The ejecta layer around the crater is completely eroded. Shock‐metamorphosed volcanic rocks, impact melt rocks, and bomb‐shaped impact glasses occur in lacustrine terraces but have been redeposited after the impact event. Clasts of volcanic rocks, which range in composition from rhyolite to dacite, represent all stages of shock metamorphism, including selective melting and formation of homogeneous impact melt. Four stages of shocked volcanic rocks were identified: stage I (≤35 GPa; lava and tuff contain weakly to strongly shocked quartz and feldspar clasts with abundant PFs and PDFs; coesite and stishovite occur as well), stage II (35–45 GPa; quartz and feldspar are converted to diaplectic glass; coesite but no stishovite), stage III (45–55 GPa; partly melted volcanic rocks; common diaplectic quartz glass; feldspar is melted), and stage IV (>55 GPa; melt rocks and glasses). Two main types of impact melt rocks occur in the crater: 1) impact melt rocks and impact melt breccias (containing abundant fragments of shocked volcanic rocks) that were probably derived from (now eroded) impact melt flows on the crater walls, and 2) aerodynamically shaped impact melt glass “bombs” composed of homogeneous glass. The composition of the glasses is almost identical to that of rhyolites from the uppermost part of the target. Cobalt, Ni, and Ir abundances in the impact glasses and melt rocks are not or only slightly enriched compared to the volcanic target rocks; only the Cr abundances show a distinct enrichment, which points toward an achondritic projectile. However, the present data do not allow one to unambiguously identify a meteoritic component in the El'gygytgyn impact melt rocks.  相似文献   

14.
Abstract– Planar deformation features (PDFs) and planar fractures (PFs) have been found and confirmed by optical microscope observations and microRaman spectroscopy in quartz grains from Mt. Oikeyama (Akaishi Mountains, Central Japan), for which the semicircular topographic feature of the ridge suggests a crater formed by an impact event. According to the optical microscope observations, a low shock pressure (8–10 GPa) is estimated by the occurrence of basal or ω PDFs leading to lack of multiple sets of PDFs. In addition, a new type of planar microstructure was found in several quartz grains. The microRaman characteristics of PDFs in quartz from Mt. Oikeyama show the amorphous state indicating the presence of weak broad bands at 400 and 800 cm?1 peak positions. These characteristics are indicative of PDFs that are limited to shocked quartz. This indicates an impact origin for distinct planar microstructures in quartz from Mt. Oikeyama.  相似文献   

15.
The natural thermoluminescence of samples of limestone from within and near the Charlevoix meteorite impact structure indicates that the effect of impact, strain due to faulting, low grade thermal metamorphism, and recrystallization can often be distinguished on the basis of the shape and either the total emission or amplitude of the peaks of the thermoluminescence curves. Impact causes a reduction of thermoluminescence which is detectable in the Charlevoix structure for about 10 Km outside the known limits of shatter cone development. It is inferred that thermoluminescence investigations should provide a useful means of investigating other impact structures. Impact effects on quartz rich rocks appear to be somewhat similar to the effects in calcareous rocks, but a fundamental difference in the electronic properties of shocked quartz and calcite demonstrate that identical effects should not be anticipated.  相似文献   

16.
Core samples from the Chicxulub impact structure provide insights into the formation processes of a shallow-marine-target, complex crater. Although previous studies investigated the impactites (generally suevitic and polymict breccias) of the Yaxcopoil-1 (YAX-1) drill core in the Chicxulub impact structure, the interpretation of its deposition remains controversial. Here, we analyze planar deformation features (PDFs), grain size, and abundance of shocked quartz throughout the YAX-1 impactite sequence (794–895 m in depth). PDF orientations of most quartz grains in YAX-1 impactites show a distribution of both low angles ({104}, {103}, {102}) and high angles (orientations higher than 55° to c-axis), while the lower part of the impactite sequence contains quartz showing only PDF orientations of low angles. High-abundance, coarse-grained shocked quartz is found from the lower to middle parts of the impactites, whereas it abruptly changes to low-abundance, fine-grained shocked quartz within the upper part. In the uppermost part of the impactites, repeated oscillations in contents of these two components are observed. PDF orientation pattern suggests most of the shocked quartz grains experienced a range of shock pressure, except two samples in the lower part of impactites, which experienced only a high level of shock. We suggest that the base and lower part of the impactite sequence were formed by ejecta curtain and melt surge deposits, respectively. Our results are also consistent with the interpretation that the middle part of the impactite sequence is fallback ejecta from the impact plume. Additionally, we support the contention that massive seawater resurges into the crater occurred during the deposition of the upper and uppermost part of the impactites.  相似文献   

17.
18.
Abstract— Previous X‐ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X‐ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.  相似文献   

19.
20.
Abstract— The ~400 Ma old Ilyinets impact structure was formed in the Precambrian basement of the Ukrainian Shield and is now mostly covered by Quaternary sediments. Various impact breccias and melts are exposed in its southern section. The crater is a complex structure with a central uplift that is surrounded by an annular deposit of breccias and melt rocks. In the annulus, brecciated basement rocks are overlain by up to 80 m of glass-poor suevitic breccia, which is overlain (and partly intercalated) by glass-rich suevite with a thickness of up to 130 m. Impact-melt rocks occur within and on top of the suevites—in some cases in the form of devitrified bomb-shaped impact-glass fragments. We have studied the petrographic and geochemical characteristics of 31, mostly shocked, target rock samples (granites, gneisses, and one amphibolite) obtained from drill cores within the structure, and impact breccias and melt rock samples from drill cores and surface exposures. Multiple sets of planar deformation features (PDFs) are common in quartz, potassium feldspar, and plagioclase of the shocked target rocks. The breccias comprise more or less devitrified impact melt with shocked clasts. The impact-melt rocks (“bombs”) show abundant vesicles and, in some cases, glass is still present as brownish patches and schlieren. All impact breccias (including the melt rocks) are strongly altered and have significantly elevated K contents and lower Na contents than the target rocks. The alteration could have occurred in an impact-induced hydrothermal system. The bomb-shaped melt rocks have lower Mg and Ca contents than other rock types at the crater. Compared to target rocks, only minor enrichments of siderophile element contents (e.g., Ni, Co, Ir) in impact-melt rocks were found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号