首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Habitat created or modified by the physical architecture of large or spatially dominant species plays an important role in structuring communities in a variety of terrestrial, aquatic, and marine habitats. At hydrothermal vents, the giant tubeworm Riftia pachyptila forms large and dense aggregations in a spatially and temporally variable environment. The density and diversity of smaller invertebrates is higher in association with aggregations of R. pachyptila than on the surrounding basalt rock seafloor. Artificial substrata designed to mimic R. pachyptila aggregations were deployed along a gradient of productivity to test the hypothesis that high local species diversity is maintained by the provision of complex physical structure in areas of diffuse hydrothermal flow. After 1 year, species assemblages were compared among artificial aggregations in low‐, intermediate‐, and high‐productivity zones and compared to natural aggregations of R. pachyptila from the same site. Hydrothermal vent fauna colonized every artificial aggregation, and both epifaunal density and species richness were highest in areas of high chemosynthetic primary production. The species richness was also similar between natural aggregations of R. pachyptila and artificial aggregations in intermediate‐ and high‐productivity zones, suggesting that complex physical structure alone can support local species diversity in areas of chemosynthetic primary production. Differences in the community composition between natural and artificial aggregations reflect the variability in microhabitat conditions and biological interactions associated with hydrothermal fluid flux at low‐temperature hydrothermal vents. Moreover, these local ecological factors may further contribute to the maintenance of regional species diversity in hydrothermal vent communities on the East Pacific Rise.  相似文献   

2.
Larval transport from distant populations is essential for maintenance and renewal of populations in patchy and disturbed ecosystems such as deep-sea hydrothermal vents. We use quasi-geostrophic modeling to consider the potential for long-distance dispersal of hydrothermal vent larvae in mesoscale eddies interacting with the northern East Pacific Rise. Modeled eddy dynamics were similar to the observed propagation dynamics of Tehuantepec eddies, including their ability to cross the ridge. Simulated surface anticyclones were associated with coherent cyclones in the deep layer with relatively strong current velocities that could significantly increase the dispersal potential of passive particles. Eddy interactions with ridge topography further enhanced tracer dispersal along the ridge axis through shearing and elongation of the eddy core. Simulations suggest that the passage of an eddy would result in local loss from the vent field and aggregate transport with potential enhancement of dispersal between vent fields separated by up to 270 km. Based on the latitude at which most Tehuantepec eddies cross the ridge, eddy-induced flows would enhance connectivity between the 13°N, 11°N, and 9°N vent fields along the East Pacific Rise asymmetrically with higher transport from northern vent fields to southern vent fields.  相似文献   

3.
Vesicomyid clams, vestimentiferans, and some bathymodiolin mussels from hydrothermal vents and cold seeps possess thiotrophic endosymbionts, high levels of hypotaurine and, in tissues with symbionts, thiotaurine. The latter, a product of hypotaurine and sulfide, may store and/or transport sulfide non‐toxically, and the ratio to hypotaurine plus thiotaurine (Th/[H + Th]) may reflect an animal's sulfide exposure. To test this, we analyzed seep and vent animals with in situ sulfide measurements. Calyptogena kilmeri clams occur at high‐sulfide seeps in Monterey Canyon, while C. (Vesicomya) pacifica clams occur at seeps with lower levels but take up and metabolize sulfide more effectively. From one seep where they co‐occur, both had gill thiotaurine contents at 22–25 mmol kg−1 wet mass, and while C. (V.) pacifica had a higher blood sulfide level, it had a lower Th/[H + Th] (0.39) than C. kilmeri (0.63). However, these same species from different seeps with lower sulfide exposures had lower ratios. Bathymodiolus thermophilus [East Pacific Rise (EPR 9°50′ N)] from high‐(84 μm ) and a low‐(7 μm ) sulfide vents had gill ratios of 0.40 and 0.12, respectively. Trophosomes of Riftia pachyptila (EPR 9°50′ N) from medium‐(33 μm ) and low‐(4 μm ) sulfide vents had ratios of 0.23 and 0.20, respectively (not significantly different). Ridgeia piscesae vestimentiferans (Juan de Fuca Ridge) have very different phenotypes at high‐ and low‐sulfide sites, and their trophosomes had the greatest differences: 0.81 and 0.04 ratios from high‐ and low‐sulfide sites, respectively. Thus Th/[H + Th] may indicate sulfide exposure levels within species, but not in interspecies comparisons, possibly due to phylogenetic and metabolic differences. Total H + Th was constant within each species (except in R. piscesae); the sum may indicate the maximum potential sulfide load that a species faces.  相似文献   

4.
曾志刚 《海洋与湖沼》2021,52(6):1333-1349
海底热液活动调查研究是深海进入、深海探测和深海开发的切入点之一。近十年来,中国在西太平洋弧后盆地、东太平洋海隆、大西洋洋中脊和印度洋脊,发现了一批新的海底热液活动区,围绕着热液活动区的硫化物、流体、热液柱、生物等热液产物开展了调查研究,构建了海底热液地质学,提出了热液活动、冷泉及天然气水合物的同源异汇假说,出版了《海底热液地质学》、《现代海底热液硫化物成矿地质学》、《现代海底热液活动》、《东太平洋海隆热液地质》专著,获得了一批调查研究成果。未来,聚焦海底热液活动的深部过程及其资源环境效应关键问题,发展海底热液活动探测技术,拓展极地海底热液活动调查研究新领域,围绕烟囱体、热液柱、含金属沉积物、流体以及热液区生物等热液产物,开展深入、系统的调查研究工作,无疑将推动海底热液地质学取得新的进展。  相似文献   

5.
Marine organisms with a pelagic stage are often assumed to display minor population structure given their extended larval development and subsequent high long‐distance dispersal ability. Nonetheless, considerable population structure might still occur in species with high dispersal ability due to current oceanographic and/or historical processes. Specifically, for the wider Caribbean and Gulf of Mexico, theoretical and empirical considerations suggest that populations inhabiting each of the following areas should be genetically distinct: Panama, Belize, Southwest Florida (Tampa), and Southeast Florida (Fort Pierce). This study tests the hypothesis of significant genetic differentiation in Palaemon floridanus populations across the wider Caribbean and Gulf of Mexico. Population level comparisons were conducted using sequences of the mtDNA COI. In agreement with predictions, AMOVA and pairwise FST values demonstrated population differentiation among most pairs of the studied populations. Only Panama and East Florida populations were genetically similar. An isolation‐with‐migration population divergence model (implemented in IMA2) indicated that population divergence with incomplete lineage sorting can be invoked as the single mechanism explaining genetic dissimilarity between populations from the east and west coast of Florida. Historical demographic analyses indicated demographic expansion of P. floridanus in some localities [recent in Panama and ancient in East Florida and the wider Caribbean (entire dataset)] but constant population in other localities (in Belize and West Florida). This study rejects the idea of panmixia in marine species with high long‐distance dispersal ability. Contemporary and historical processes might interact in a complex manner to determine current phylogeographic patterns.  相似文献   

6.
Occasional population outbreaks of the crown‐of‐thorns sea star, Acanthaster planci, are a major threat to coral reefs across the Indo‐Pacific. The presumed association between the serial nature of these outbreaks and the long larval dispersal phase makes it important to estimate larval dispersal; many studies have examined the population genetic structure of A. planci for this purpose using different genetic markers. However, only a few have focused on reef‐scale as well as archipelago‐scale genetic structure and none has used a combination of different genetic markers with different effective population sizes. In our study, we used both mtDNA and microsatellite loci to examine A. planci population genetic structure at multiple spatial scales (from <2 km to almost 300 km) within and among four islands of the Society Archipelago, French Polynesia. Our analysis detected no significant genetic structure based on mtDNA (global FST = ?0.007, P = 0.997) and low levels of genetic structure using microsatellite loci (global FST = 0.006, P = 0.005). We found no significant isolation by distance patterns within the study area for either genetic marker. The overall genetically homogenized pattern found in both the mitochondrial and nuclear loci of A. planci in the Society Archipelago underscores the significant role of larval dispersal that may cause secondary outbreaks, as well as possible recent colonization in this area.  相似文献   

7.
During the past 30 years, 42 molecular studies have been undertaken in New Zealand to examine the phylogeography of coastal benthic invertebrates and plants. Here, we identify generalities and/or patterns that have emerged from this research and consider the processes implicated in generating genetic structure within populations. Studies have used various molecular markers and examined taxonomic groups with a range of life histories and dispersal strategies. Genetic disjunctions have been identified at multiple locations, with the most frequently observed division occurring between northern and southern populations at the top of the South Island. Although upwelling has been implicated as a cause of this disjunction, oceanographic evidence is lacking and alternative hypotheses exist. A significant negative correlation between larval duration and genetic differentiation (r2 = 0.39, P < 0.001, n = 29) across all studies suggests that larval duration might be used as a proxy for dispersal potential. However, among taxa with short larval durations (<10 days) there was greater variability in genetic differentiation than among taxa with longer pelagic periods. This variability implies that when larval duration is short, other factors may determine dispersal and connectivity among populations. Although there has been little congruence between the phylogeographic data and recognised biogeographic regions, recent research has resolved population subdivision at finer spatial scales corresponding more closely with existing biogeographic classifications. The use of fast‐evolving and ecologically significant molecular markers in hypothesis‐driven research could further improve our ability to detect population subdivision and identify the processes structuring marine ecosystems.  相似文献   

8.
On 12 November 2006, 3 kg of sulfur hexafluoride were released in a 1.2 km long streak in the axial summit trough of the East Pacific Rise at 9°30′N to study how circulation and mixing affect larval dispersion. The first half of a tracer survey performed approximately 40 days after the injection found a small percentage of the tracer on the ridge axis between 9°30′N and 10°10′N, with the main concentration near 9°50′N, a site of many active hydrothermal vents. These observations provide evidence of larval connectivity between vent sites on the ridge. The latter half of the survey detected the primary patch of tracer west of the ridge and just south of the Lamont Seamounts, as a majority of the tracer had been transported off the ridge. However, by the end of the survey, the eastern edge of this patch was transported back to within 10 km of the ridge crest at 9°50′N by a reversal in the subinertial flow, suggesting another pathway for larvae between points along the ridge. Both the horizontal and vertical distributions of the tracer were complex and were likely heavily influenced by topography and vents in the area. Elevated tracer concentrations within the axial summit trough and an adjacent depression on the upper ridge flank suggest that tracers may be detained in such depressions. Correlated tracer/turbidity profiles provide direct evidence of entrainment of the tracer into vent plumes from 9°30′N to 10°N. A comparison of the vertical tracer inventory with neutral density vent-plume observations suggests that on the order of 10% of the tracer injected was entrained into vent plumes near the injection site. The results imply that effluent from diffuse hydrothermal sources and larvae of hydrothermal vent fauna can be entrained in significant quantities into plumes from discrete sources and dispersed in the neutrally buoyant plumes.  相似文献   

9.
Species lists for vent fields on the Mid‐Atlantic Ridge (MAR) from 14°N to 38°N suggest that there is a northern (>27°N), shallow (<2000 m) fauna and a southern (<27°N), deeper (>3000 m) endemic vent fauna, but little is known about how community structure varies along the ridge axis. In this study, quantitative samples of macrofaunal invertebrates associated with mussels (Bathymodiolus puteoserpentis) were collected at Logatchev (14°45′N), the southern‐most explored vent field on the MAR. Community structure (including species composition, species richness, diversity, and relative species abundances) in mussel beds at Logatchev was compared with that of Snake Pit (23°22′N) and Lucky Strike (37°17′N) mussel beds. The most striking feature of the Logatchev mussel‐bed macrofaunal invertebrate community was the tremendous abundance (up to 2390 individuals per liter of mussel‐volume sampled) and biomass of the ophiuroid, Ophioctenella acies. Logatchev and Snake Pit mussel beds share >50% of their associated macrofaunal species; these two sites share only 20–25% of their macrofaunal species with Lucky Strike. Species–effort curves and univariate measures of diversity (H′, J′) do not support the claim that diversity of vent organisms on the MAR is highest at Logatchev, at least when one assesses this within a habitat type. Multivariate analysis readily differentiates the species‐abundance characteristics of Logatchev, Snake Pit, and Lucky Strike mussel‐bed macrofaunas. The relationship between sea‐floor spreading rate and diversity was explored through comparison of species richness in mussel‐bed habitats on slow‐spreading (MAR), fast‐spreading [northern East Pacific Rise (EPR)], and ultra‐fast‐spreading (southern EPR) mid‐ocean ridges. Species richness was greater in samples from the faster‐spreading ridge axes, where vents are more closely spaced but shorter lived, than on slow‐spreading centers, where vents are further apart but longer lived.  相似文献   

10.
TheSnake Pit Hydrothermal Site lies on the axis of the Mid-Atlantic Ridge at 23°22′ N latitude, about 30 km south of the Kane Transform Intersection. Active ‘black smoker’ vents and a surrounding field of hydrothermal sediment occur at the crest of a laterally extensive neovolcanic ridge. It is one of the first active hydrothermal vent fields to be found on a slow-spreading ridge axis and despite significant differences in its geologic setting from those of the East Pacific Rise, has many similarities to its fast-spreading counterparts. Although preliminary reports have documented many interesting aspects of these vents and their surroundings, new data collected from the manned submersible ALVIN and the deep-towed ANGUS camera system define the regional tectonic setting as well as the local geologic environment of this fascinating area. The Snake Pit vents are located on a local peak of a volcanic constructional ridge at a depth of 3450 m, 700–800 m deeper than vents known from the East Pacific Rise, Galapagos, or Juan de Fuca spreading centers. The vent field is at least 600 m long and up to 200 m wide and is covered by a thick blanket of greenish to yellow-orange hydrothermal sediment. Both active and extinct vents are perched along the crests of steep-sided sulfide mounds that reach heights of over 40 m. High-temperature (350° C) fluids are vented from black smoker chimneys and low-temperature (226° C) fluids seep from sulphide domes and subordinate anhydrite constructions. Water temperatures, flow rates, fluid chemistries, and mineralization are strikingly similar to vents of faster spreading ridge crests; however, a somewhat distinct fauna inhabit the area.  相似文献   

11.
The Wild Coast in south-eastern South Africa is strongly influenced by the warm, southward-flowing Agulhas Current. This current has a significant impact on dispersal in the coastal biota of the region, and facilitates high levels of connectivity among populations. However, it is not known how the region's high-velocity hydrology affects genetic population structure in endemic estuarine species, populations of which are frequently isolated from the sea. Here, we compared genetic structure in two estuarine crabs of the family Hymenosomatidae. Both are presumed to have low dispersal potential, but they differ in terms of their life histories. Hymenosoma longicrure has abbreviated larval development and can complete its entire life cycle within estuaries, whereas Neorhynchoplax bovis is a direct developer that lacks planktonic larvae. Using DNA sequence data from the mitochondrial COI gene and the intron of the nuclear ANT gene, we found that levels of genetic structure differ considerably between the species. Depending on the genetic marker used, H. longicrure is genetically homogeneous (COI) or displays low levels of genetic structure and minor evidence of recruitment near natal sites (ANT). In contrast, connectivity in N. bovis is much lower, as this species has a unique combination of alleles at each site, indicating that recruitment is mostly local. These results support previous findings suggesting that even a short larval dispersal phase is sufficient to maintain high levels of connectivity and prevent genetic divergence among populations.  相似文献   

12.
Barriers to dispersal are recognized to play an important role in the differentiation of populations and ultimately in speciation. In the southeast Pacific, on the northern coast of Peru, a transition zone between the Peruvian and Panamic marine biogeographic provinces exists. Here, the convergence between two contrasting surface currents could generate a barrier effect for the larval dispersal of meroplanktonic invertebrates, which could in turn generate differentiated populations or genetic lineages on both sides of the transition zone. To address this, we studied to Echinolittorina paytensis, an abundant rocky intertidal periwinkle that spans both biogeographic provinces. A total of 95 individuals from Ecuador (2°19′S) to central Peru (7°31′S), covering the Panamic Province, the Peruvian Province, and the transition zone between, were collected. The mitochondrial markers cytochrome c oxidase I and 16SrRNA were sequenced in order to investigate phylogeography and genetic structuring. In general, no genetic structuring was found across the transition zone, suggesting this biogeographic boundary would not be acting as a barrier in this species. Factors such as a high larval dispersal capability and the occurrence of El Niño–Southern Oscillation events such as El Niño are discussed.  相似文献   

13.
For most marine invertebrate species, dispersal is achieved mainly or exclusively by pelagic larvae. When the duration of the pelagic larval stage is long, genetic homogeneity over large geographic scales is expected. However, genetic structure has often been reported over small spatial scales, suggesting that more complex processes occur than a simple positive relationship between pelagic larval duration and gene flow. Concholepas concholepas has a larval stage that can last up to 3 months in the water column with a wide distributional range covering from 6°S to 56°S. We used a hierarchical sampling technique to test if the genetic homogeneity of this highly dispersive species is maintained throughout its total geographic range in spite of environmental heterogeneity. In the three studied regions (Antofagasta Bay, Valdivia and Patagonia), a spatial pattern of isolation by distance in conjunction with a spatial genetic structure was observed. Within each region, different spatial genetic patterns were detected. In Antofagasta Bay and Valdivia there was evidence of substantial gene flow among populations, whereas in Patagonia, populations showed genetic structure and a unique, genetically isolated location was identified. These results revealed the existence of spatial differences in the genetic patterns among regions with different coastal topographies in C. concholepas, and give us new insights into the inter‐relationships of larval dispersal potential, actual larval dispersal and physical processes. Regarding the sustainable management of C. concholepas, two important issues are derived from this study: (i) to highlight the need for a regional context in the management of C. concholepas, (ii) to determine the distinctiveness of the most austral population and to focus on the conservation efforts due to the relevance of this area.  相似文献   

14.
The vestimentiferan tubeworm Ridgeia piscesae is an ecosystem-structuring organism in the hydrothermal vent environments of the Northeast Pacific. During this study, a single representative aggregation of the long-skinny morphotype of R. piscesae from the main endeavor segment was monitored for 3 yr before being collected in its entirety with a hydraulically actuated collection device manipulated in situ by a research vehicle. Vestimentiferan growth rates in this aggregation were determined by staining the exterior of the tubes and measuring newly deposited tube sections. The average growth rate of R. piscesae in this aggregation was very low in both years of the growth study (3.2 mm yr−1). Although the incidence of plume damage from partial predation was very high (>95%), mortality was very low (<4% yr−1). The distribution and the very tight clustering of recently recruited individuals indicated gregarious settlement behavior that is hypothesized to be partly due to biotic cues from settled larvae. Coupled measurements of vent fluid sulfide concentration and temperature were used to calculate the exposure of the vestimentiferans to sulfide from short- and long-term temperature monitoring. Plume-level temperature records indicate that most of the time individuals in this aggregation were exposed to extremely low levels of vent fluid, and therefore sulfide (<0.1 μM), while their posterior sections were consistently exposed to sulfide concentrations in the 100 μM range. A rootball-like structure formed the common base of the aggregation. In contrast to the anterior sections of the tubeworm tubes, the portions of the tubes within the “rootball” were freely permeable to sulfide. The results of this study show that R. piscesae, unlike vestimentiferans from the East Pacific Rise, can survive and grow in areas of low diffuse vent flow with very low plume-level exposure to sulfide. We propose that this morphotype of R. piscesae has the ability to acquire sulfide from sources near their posterior ends, similar to some species of cold seep vestimentiferans from the Gulf of Mexico. The ability of this single species of vestimentiferan to survive low exposure to vent flow with low mortality coupled with sulfide uptake across posterior tube sections may help explain the occurrence of a single vent vestimentiferan species in a wide variety of habitat conditions at hydrothermal vent sites in the Northeast Pacific.  相似文献   

15.
Hydrothermal vent animals were kept and displayed at atmospheric pressure with an artificial hydrothermal vent system in Enoshima Aquarium, Fujisawa, Kanagawa, Japan. The artificial hydrothermal vent system was composed of a main rearing tank, a heating tank, a hot water outlet with added Na2S as the source of H2S, and added CO2 for chemosynthetic bacteria and pH regulation. When the need arises, a dissolved oxygen control unit and submersible heaters can be attached. We are now rearing hydrothermal vent crabs (Austinograea yunohana), hydrothermal vent galatheid crabs (Shinkaia crosnieri), vestimentiferan tubeworms (Lamellibrachia satsuma), hydrothermal vent shrimp (Opaepele spp.), hydrothermal vent barnacles (Ashinkailepas seepiophilia and Neoverruca sp.), and tonguefish (Symphurus sp.). In the artificial hydrothermal vent tank, shrimp and crabs have been observed to cluster close to the artificial hydrothermal vent. In particular, large (adult) crabs needed a heat source to live in the aquarium over a long term. Additionally, some species (A. yunohana, S. crosnieri, Opaepele sp. and Symphurus sp.) have spawned and hatched in captivity. It is likely higher water temperatures are needed for egg and larval development compared with temperatures for adult requirements.  相似文献   

16.
Various authors have suggested that the Islas Marias archipelago, Mexico, may play a significant biogeographic role in the dispersal of Indo Pacific coral species into the Eastern Pacific; however, the coral communities of this archipelago have received scarce attention to date. Here, we first addressed coral community structure across the islands and, by employing ordination analysis, minimum spanning tree and particle‐tracking experiments, used this information to evaluate the relevance of the archipelago for coral dispersal. Twenty‐four coral communities were recorded in the archipelago. Coral cover varied significantly among islands: Maria Cleofas had large values (38.5%), intermediate values were observed for Maria Madre (26.5%) and Maria Magdalena (22.84%), and relatively low values were recorded for San Juanito (18.5%). Coral communities mainly consisted of Pocillopora (57.3%) and Porites (25.5%) species, while species of Pavona (16%) and Psammocora (0.6%) made relatively minor contributions. Thirteen stony coral species were identified in the archipelago; of these Psammocora profundacella and Pavona duerdeni represent new records. Ordination analysis, minimum spanning tree and particle‐tracking experiments suggested similar connecting paths in the studied area; in general, the Islas Marias stands as a route for coral dispersal of Indo Pacific species into the Northeastern Pacific. In a regional context, the Islas Marias has three major biogeographic implications to coral dispersal: (i) the archipelago stands as a major stepping stone for the transport of species and individuals among the Revillagigedo archipelago, the Gulf of California and the tropical Mexican Pacific; (ii) the Islas Marias may play a seminal role in maintaining the genetic connectivity between southern and northern coral populations along the Mexican Pacific and (iii) because of its relatively pristine status and low levels of human impact, the archipelago may potentially serve as a source of coral propagules for ecosystem recovery in the Gulf of California and along the Pacific coast of the Mexican mainland following natural and/or human induced perturbations.  相似文献   

17.
The discovery of deep-sea hydrothermal vent fauna, kilometres deep in the oceans, is a great achievement of 20th-century marine biology. The deep-sea hydrothermal food web does not directly depend on the sun's energy. Vent communities rely primarily on trophic associations between chemoautotrophic bacteria and consumers. A small number of endemic taxa are adapted to the inhospitable vent environments that are distributed along ridge crests. Where these vent communities originated and how they dispersed are among the important questions ecologists must answer. Here, by statistical analysis of the most comprehensive database ever assembled about deep-sea hydrothermal fauna, we delineate six major hydrothermal provinces in the world ocean and identify seven possible dispersal pathways between adjacent provinces. Our model suggests that the East-Pacific Rise may have played a pivotal role as a centre of dispersal for the hydrothermal fauna. Our data-driven conclusion will have to be tested by phylogenetic studies and completed by surveys of less-explored fields.  相似文献   

18.
Earth’s fastest present seafloor spreading occurs along the East Pacific Rise near 31°–32° S. Two of the major hydrothermal plume areas discovered during a 1998 multidisciplinary geophysical/hydrothermal investigation of these mid-ocean ridge axes were explored during a 1999 Alvin expedition. Both occur in recently eruptive areas where shallow collapse structures mark the neovolcanic axis. The 31° S vent area occurs in a broad linear zone of collapses and fractures coalescing into an axial summit trough. The 32° S vent area has been volcanically repaved by a more recent eruption, with non-linear collapses that have not yet coalesced. Both sites occur in highly inflated areas, near local inflation peaks, which is the best segment-scale predictor of hydrothermal activity at these superfast spreading rates (150 mm/yr).  相似文献   

19.
In 2003, several hydrothermal mounds located at 9°50′ N on the East Pacific Rise were described and sampled during the expedition of R/V Akademik Mstislav Keldysh during dives of Mir deep-sea manned submersibles. These hydrothermal mounds were formed during a few recent years after the volcanic activity in this region that occurred in 1991. The studies of the chemical and mineralogical compositions of the hydrothermal deposits of these mounds and of the chemical composition of the principal sulfide minerals helped to describe the initial stage of the formation of the hydrothermal circulation system and the initiation of the hydrothermal ore formation.  相似文献   

20.
In situ measurements have been shown to be the most relevant means to characterise the chemical properties of the highly dynamic medium surrounding hydrothermal vent organisms. However, few instrumental devices can perform such measurements at great depth, and there is great need to extend the range of chemical parameters that can be determined in situ. To investigate the spatial and temporal variations of pH within the habitats of vent organisms, a deep-sea probe was developed and successfully tested during the HOPE’99 diving cruise (13°N, East Pacific Rise). In situ measurements allowed us to quantify the pH range over different biological communities, highlighting differences between the habitats, as well as micro-scale variations. As pH is expected to play a significant role in major biogeochemical processes occurring in the seawater/fluid-mixing zone, this probe should be of great utility for the study of interactions between vent communities and their environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号