首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 335 毫秒
1.
In this paper, we present data on major and trace elements in highly metamorphosed mafic rocks from the granulite-gneiss complex of the Angara-Kan block (southwestern Siberian craton), identify igneous protoliths of the metabasites, and assess the mobility of elements during metamorphism. Two types of rocks with different geologic relations and compositions were recognized. Garnet-bearing two-pyroxene granulites (Cpx + Pl + Grt + Opx) occur as sheet- and boudin-like bodies, which were folded and deformed with their host paragneisses. Dikes, which in most cases underwent only brittle deformation, are composed of metabasites characterized by the assemblage Cpx + Hbl + Pl + Grt. The major element compositions of igneous protoliths for the mafic granulites and metabasite dykes correspond to variously differentiated basaltic magmas. The protoliths of the metabasites are depleted in K2O, LILE, Zr, Nb, and LREE and were derived from a depleted mantle source. The major and trace element compositions of the dike metabasites are similar to those of low-K tholeiitic basalts of oceanic island arcs. Continental intraplate basalts derived from an enriched mantle source are possible igneous protoliths for the mafic granulites enriched in Ba, LREE, Nb, Ta, Zr, and Hf. It is assumed that lower Rb, Th, and U contents in the mafic granulites compared with continental flood basalts, high K/Rb and La/Th, and moderate Th/U ratios reflect the loss of Rb, Th and U during granulite-facies metamorphism.  相似文献   

2.
The Singhbhum craton has a chequred history of mafic magmatism spanning from early Archaean to Proterozoic. However, lack of adequate isotopic age data put constraints on accurately establishing the history of spatial growth of the craton in which mafic magmatism played a very significant role. Mafic magmatism in the craton spreads from ca.3.3 Ga (oldest “enclaves” of orthoamphibolites) to about 0.1 Ga (‘Newer dolerite’ dyke swarms). Nearly contemporaneous amphibolite and intimately associated tonalitic orthogneiss may represent Archaean bimodal magmatism. The metabasic enclaves are appreciably enriched and do not fulfill the geochemical characteristics of worldwide known early Archaean (>3.0 Ga) mafic magmatism. The enclaves reveal compositional spectrum from siliceous high-magnesian basalt (SHMB) to andesite. However, the occurrence of minor depleted boninitic type within the assemblage has so far been overlooked. High magnesian basalt with boninitic character of Mesoarchaean age is also reported in association with supracrustals from southern fringe of the granitoid cratonic nucleus. The subcontinental lithospheric mantle (SCLM) below the craton is conjectured to have initiated during the early Archaean. Significantly, recurrence of depleted magma types in the craton is observed during the whole span of mafic igneous activity which has been vaguely related to “mantle heterogeneity”, although the alternative model of sequential mantle melting is also being explored. The Singhbhum craton includes the Banded Iron Formation (BIF) associated mafic lavas, MORB-like basic and komatiitic ultrabasic bimodal volcanism — documented as Dalma volcanics, Dhanjori lavas, and the Proterozoic Newer dolerite dykes. Three different types of REE fractionation patterns are observed in the BIF-associated mafic lavas. These are the REE unfractionated type is more depleted than N-MORB and some lavas with boninitic type of REE distribution. MORB-like basic and komatiitic ultrabasic (Dalma volcanics) are emplaced within the Proterozoic Singhbhum Basin (PSB). The vista of magmatism in the basin was controlled by a miniature spreading centre represented by the mid-basinal Dalma volcanic ridge. The volcano-sedimentary basinal domain of Dhanjori emerged at the interface of two subprovinces (viz. the mobile volcano-sedimentary belt of PSB and rigid granite platform) under unique stress environment related to extensional tectonic regime. Trace element distribution in Dhanjori lavas is remarkably similar to that in PSB minor intrusions and lavas (except a Ta spike in the latter). The Proterozoic Newer dolerite dykes within Singhbhum nucleus manifest an unusually wide spam of intrusive activity (ca 2100 Ma to 1100 Ma) and unexpectedly uniform mantle melting behaviour.  相似文献   

3.
The mineralogical, petrological, geochemical and geochronological data were used to evaluate the age and petrogenesis of compositionally contrasting metamorphic rocks at the junction between Meso-Neoproterozoic Transangarian structures and Archean-Paleoproterozoic complexes of the Angara–Kan inlier of the Yenisei Ridge. The studied metabasites and metapelites provide clues for understanding the evolution of the region. The magmatic protoliths of low-Ti metabasites were derived by melting of depleted (N-MORB) upper mantle, and their high-Ti counterparts are interpreted to have originated from an enriched mantle source (E-MORB). The petrogeochemical characteristics of protoliths of the metabasite dikes resemble those of within-plate basalts and ocean island tholeiites. The Fe- and Al-rich metapelites are redeposited and metamorphosed products of Precambrian weathering crusts of kaolinite and montmorillonite-chlorite-hydromica compositions. The Р–Т conditions of metamorphism (4.9–5.5 kbar/570–650°С for metabasites; 4.1–7.1 kbar/500–630°С for metapelites) correspond to epidote–amphibolite to amphibolite facies transition. The evolution of the Angara complex occurred in two stages. The early stage (1.18–0.85 Ga) is associated with Grenville tectonics and the late stage is correlated with accretion/collision episodes of the Valhalla orogeny, with the peaks at 810–790 and 730–720 Ma, and the final stage of the Neoproterozoic evolution of the orogen on the southwestern margin of the Siberian craton. The correlation of regional crustal processes with globalscale geological events in the Precambrian evolution of the Earth supports recent paleomagnetic reconstructions that allow a direct, long-lived (1400–600 Ma) spatial and temporal connection between Siberia, Laurentia, and Baltica, which have been parts of ancient supercontinents.  相似文献   

4.
In the Austroalpine Basement to the south of the Tauern Window, distinct suites of metabasites occur with orthogneisses in pre-Early-Ordovician units. Tholeiitic and alkaline within-plate basalt-type metabasites are associated with acid meta-porphyroids in the post-Early-Ordovician Thurntaler Phyllite Group. According to their correlated trace element abundances, metabasite zircons crystallized with their host rocks. Protolith Pb–Pb zircon ages, whole-rock Ta/Yb–Th/Yb and oxygen, Sr, Nd isotope data define two principal evolution lines. An older evolution at elevated Th/Yb typical of subduction-related magmatism, started by 590-Ma N-MORB-type and 550–530 Ma volcanic arc basalt type basic suites, which mainly involved depleted mantle sources. It finished with mainly crustal-source 470–450-Ma acid magmatites. An other evolution line by tholeiitic and 430-Ma alkaline within-plate basalt-type suites in both pre- and post-Early-Ordovician units is characterized by an intraplate mantle metasomatism and enrichment trend along multicomponent sources. These magmatic evolution lines can be related to a plate tectonic scenario that involved terranes in a progressively mature Neoproterozoic to Ordovician active margin, and a subsequent Palaeo-Tethys passive margin along the north Gondwanan periphery.  相似文献   

5.
The tectonic transition from Prototethys to Paleotethys orogeny in the East Kunlun orogenic belt is not completely clear, and is a major unresolved geologic issue in Northern Tibet Plateau. Here, we present zircon geochronology, whole-rock elemental and zircon Hf isotopic geochemistry for newly discovered mafic dykes in the East Kunlun orogenic belt, to provide constraints on this issue. The studied mafic dykes are hornblende gabbros, consisting of hornblende (60–65 vol.%), plagioclase (15–25 vol.%) and augite and biotite (0–5 vol.%). LA–ICP–MS zircon U–Pb dating shows that these mafic dykes were emplaced at about 393 Ma. All the mafic dykes are characterized by high contents of CaO (8.82–11.48 wt.%), MgO (9.07–11.39 wt.%), V (275–336 ppm), Cr (370–467 ppm) and Ni (78.3–120 ppm), with high Mg# (63–67), flat CI-normalized REE distribution and depleted ?Hf(t) values (2.03–5.35), showing tholeiitic affinities and geochemical characteristics similar to those of mid-ocean ridge basalts. They were derived from low degree (about 5–15%) partial melting of a fertile spinel lherzolite source, which have been metasomatized by fluids introduced to the mantle by former subducted slab. The geologic–petrologic evidence suggests that the mafic dykes were emplaced in a shift tectonic setting related to continental rifting, which was caused by the extensional collapse related to the lithospheric thinning after the Prototethys orogeny. The delamination-induced thermal disturbance and extensional decompression triggered partial melting of the mantle and the emplacement of the mafic dykes. Combined with previous work, we propose that the Middle Devonian mafic dykes may be the early magmatic response to the transition from Prototethys to Paleotethys marking the opening of the Paleotethys in the East Kunlun orogenic belt.  相似文献   

6.
The Bastar craton has experienced many episodes of mafic magmatism during the Precambrian. This is evidenced from a variety of Precambrian mafic rocks exposed in all parts of the Bastar craton in the form of volcanics and dykes. They include (i) three distinct mafic dyke swarms and a variety of mafic volcanic rocks of Precambrian age in the southern Bastar region; two sets of mafic dyke swarms are sub-alkaline tholeiitic in nature, whereas the third dyke swarm is high-Si, low-Ti and high-Mg in nature and documented as boninite-norite mafic rocks, (ii) mafic dykes of varying composition exposed in Bhanupratappur-Keskal area having dominantly high-Mg and high-Fe quartz tholeiitic compositions and rarely olivine and nepheline normative nature, (iii) four suites of Paleoproterozoic mafic dykes are recognized in and around the Chattisgarh basin comprising metadolerite, metagabbro, and metapyroxenite, Neoarchaean amphibolite dykes, Neoproterozoic younger fine-grained dolerite dykes, and Early Precambrian boninite dykes, and (iv) Dongargarh mafic volcanics, which are classified into three groups, viz. early Pitepani mafic volcanic rocks, later Sitagota and Mangikhuta mafic volcanics, and Pitepani siliceous high-magnesium basalts (SHMB). Available petrological and geochemical data on these distinct mafic rocks of the Bastar craton are summarized in this paper. Recently high precision U-Pb dates of 1891.1±0.9 Ma and 1883.0±1.4 Ma for two SE-trending mafic dykes from the BD2 (subalkaline) dyke swarm, from the southern Bastar craton have been reported. But more precise radiometric age determinations for a number of litho-units are required to establish discrete mafic magmatic episodes experienced by the craton. It is also important to note that very close geochemical similarity exist between boninite-norite suite exposed in the Bastar craton and many parts of the world. Spatial and temporal correlation suggests that such magmatism occurred globally during the Neoarchaean-Paleoproterozoic boundary. Many Archaean terrains were united as a supercontinent as Expanded Ur and Arctica at that time, and its rifting gave rise to numerous mafic dyke swarms, including boninitenorite, world-wide.  相似文献   

7.
中国东南部晚中生代-新生代玄武岩与壳幔作用   总被引:46,自引:2,他引:44  
中国东南部的火山活动在早中生代时期仅有很小规模,晚中生代最早的、较大规模的岩浆活动始于中侏罗世早期,至早白垩世是火山岩浆活动的鼎盛期,在近100个Ma的时间内形成了大面积分布的晚中生代火山-侵入岩,而在新生代则以面积较小的玄武岩浆喷出活动为主,局限分布于沿海一带。以晚中生代湘南、赣南和闽西南的近EW向火山岩带和浙、闽沿海地区的近NNE向火山岩带,以及新生代近NNE向火山岩带为研究对象,对这些火山岩的地球化学特征对比研究,结合时空分布,讨论了它们的起源及其与壳幔相互作用的关系,以及它们形成的构造环境,其结果显示,EW向晚中生代火山岩带(180~170Ma)的西段玄武岩独立产出,且明显属碱性系列;而中段和东段玄武岩和流纹岩伴生,其中的玄武岩均为亚碱性系列的拉斑玄武岩。它们形成于板内拉张构造环境,是中国东南部特提斯构造域向太平洋构造域转换、晚中生代大规模岩浆作用的序幕。研究表明,该火山岩带自西向东表现出不同程度的壳幔相互作用,玄武岩在成岩过程中有少量陆壳组分加入。NNE向晚中生代火山岩带(130~90Ma)主要为流纹质岩石,安山岩和玄武岩很少。即使是双峰式火山岩也以酸性岩为主,玄武岩仅占全部火山岩体积的30%以下。其中的玄武岩主要属钙碱性系列,少数属拉斑系列。它们形成于火山弧构造环境,是中国东南部受太平洋构造域影响发生大规模火山岩浆作用的主旋律。其中玄武岩岩浆成分受到了较高程度的陆壳物质混染,同时代的中性火山岩是由底侵的玄武岩岩浆和陆壳物质来源的酸性岩浆发生岩浆混合作用而形成的,反映了强烈的壳幔相互作用。NNE向新生代火山岩带,分布在浙闽沿海,以碱性系列玄武岩为主,均含幔源包体,并受NNE向大陆边缘断裂构造的控制。它们形成于板内裂谷环境,是中国东南沿海由晚中生代火山弧构造环境转换为新生代板内裂谷环境的标志,起源于软流圈地幔,并有EMII岩石圈地幔的混合组分,但基本没有受到陆壳物质的混染。  相似文献   

8.
A comparative analysis of within-plate (intracontinental) and orogenic magmatic series formed during various evolution stages of the East European Craton (EEC) was performed using geological-petrological, geochemical, and isotopic data. The example of Baltic shield indicates that the compositions and tectonic settings of mantle melts in the Early Precambrian (Archean and Early Paleoproterozoic) significantly differed from those in the Phanerozoic. The Early Precambrian magmas were dominated by high-Mg low-Ti melts of the komatiite-basaltic and boninite-like series; this tectonomagmatic activity was determined by the ascent of mantle superplumes of the first generation, which originated in the depleted mantle. In the interval of 2.3–2.0 Ga, high-Mg mantle melts gradually gave place to the Fe-Ti picrites and basalts that are typical of within-plate Phanerozoic magmatism; at ~2 Ga, plume tectonics of the Early Precambrian gave way to plate tectonics. This is considered to be linked to the activity of mantle superplumes of the second generation (thermochemical), which originated from the liquid metallic core/mantle interface. Owing to the presence of fluid components, these superplumes reached much higher levels, where spreading of their head portions led to the active interaction with overlaying thinned rigid lithosphere. Sm-Nd isotopic studies showed that orogenic Neoarchean and Middle Paleoproterozoic magmatism of the Baltic shield was connected to the melting of the lithospheric mantle and crust; the melting of crustal sources gave rise to felsic members of the considered complexes. The systematic geochemical variations observed in these rocks with time presumably reflect a general trend toward an increase of the thickness of the continental crust serving as the basement for orogens. Beginning at ~2 Ga, the Meso, Neoproterozoic, and Phanerozoic including, no systematic variations were observed in the isotopic-geochemical characteristics of within-plate magmatism. All considered age sections demonstrate that isotopic-geochemical characteristics of parental mantle melts were strongly modified by crustal contamination. Mesoproterozoic magmatism of EEC was unique in the development of giant anorthosite-rapakivi granite complexes. Kimberlites and lamproites were repeatedly formed within EEC in the time interval from 1.8 to 0.36 Ga; their maximal development was noted in the Late Devonian. It was shown that only kimberlites derived from weakly enriched mantle are diamondiferous in the Arkhangelsk province; in the classic diamond provinces (Africa and Yakutia), diamondiferous kimberlites were derived from both depleted and enriched mantle.  相似文献   

9.
Numerous early Cretaceous mafic and alkaline dykes, mostly trending in N-S direction, are emplaced in the Archaean gneissic complex of the Shillong plateau, northeastern India. These dykes are spatially associated with the N-S trending deep-seated Nongchram fault and well exposed around the Swangkre-Rongmil region. The petrological and geochemical characteristics of mafic dykes from this area are presented. These mafic dykes show very sharp contact with the host rocks and do not show any signature of assimilation with them. Petrographically these mafic dykes vary from fine-grained basalt (samples from the dyke margin) to medium-grained dolerite (samples from the middle of the dyke) having very similar chemical compositions, which may be classified as basaltic-andesite/andesite. The geochemical characteristics of these mafic dykes suggest that these are genetically related to each other and probably derived from the same parental magma. Although, the high-field strength element (+rare-earth elements) compositions disallow the possibility of any crustal involvement in the genesis of these rocks, but Nb/La, La/Ta, and Ba/Ta ratios, and similarities of geochemical characteristics of present samples with the Elan Bank basalts and Rajmahal (Group II) mafic dyke samples, suggest minor contamination by assimilation with a small amount of upper crustal material. Chemistry, particularly REE, hints at an alkaline basaltic nature of melt. Trace element modelling suggests that the melt responsible for these mafic dykes had undergone extreme differentiation (∼ 50%) before its emplacement. The basaltic-andesite nature of these rocks may be attributed to this differentiation. Chemistry of these rocks also indicates ∼ 10–15% melting of the mantle source. The mafic dyke samples of the present investigation show very close geochemical similarities with the mafic rocks derived from the Kerguelen mantle plume. Perhaps the Swangkre-Rongmil mafic dykes are also derived from the Kerguelen mantle plume.  相似文献   

10.
The Izera Complex (West Sudetes) contains widespread bodies of metagabbro, metadolerite and amphibolite (the Izera metabasites), and less abundant dykes of weakly altered dolerites, emplaced in a continental setting. The primary magmas of the Izera metabasites were probably formed through adiabatic decompression melting of upwelling asthenosphere (mantle plume) that was associated with the early Palaeozoic fragmentation of Gondwana (initial rift). The rocks are mildly alkaline, transitional-to-tholeiitic basalts and have OIB-like trace element patterns. Trace element modelling reveals that the mafic magmas were generated by variable degrees of partial melting (1–7%) of fertile, garnet-bearing asthenospheric source similar in composition to primitive mantle. Together with an increase in degree of partial melting, the compositional affinity of the magmas and the depth of segregation changed progressively from ca. 70–90 km (mildly alkaline magmas of the metadolerites and amphibolites) to ca. 60–75 km (transitional-to-tholeiitic magmas of the metagabbros). The systematics of incompatible versus compatible element distribution, and major and trace element modelling, indicate that some rocks experienced low-pressure (<5 kbar) differentiation resulting in up to 50% fractionation of clinopyroxene, olivine and minor plagioclase and ilmenite. The genetically distinct weakly altered dolerites are basaltic andesite in composition and possibly related to late- or post-orogenic events in the Karkonosze-Izera Block. These rocks are calc-alkaline, with relatively flat MREE–HREE patterns, enrichment in LREE and other highly incompatible elements relative to primitive mantle, and negative Nb–Ta, Ti, P anomalies. The geochemical features and geochemical modelling, indicate that their primary magmas segregated at depths ≤70 km and were produced by ~2% melting of a metasomatized sublithospheric mantle source presumably containing small amounts of hydrated phases. Although the present study is inconclusive as to the origin of the metasomatic component in the source (? slab-derived fluid/melts, OIB-like alkaline melt percolation of subcontinental lithosphere), the genesis of the Izera basaltic andesites is seemingly related to upwelling of asthenosphere and heat flow triggered by a postulated decoupling of the mantle lithosphere and post-collisional extensional collapse and uplift in the Karkonosze-Izera Block.  相似文献   

11.
Mafic rocks of Western Dharwar Craton (WDC) belong to two greenstone cycles of Sargur Group (3.1–3.3 Ga) and Dharwar Supergroup (2.6–2.8 Ga), belonging to different depositional environments. Proterozoic mafic dyke swarms (2.4, 2.0–2.2 and 1.6 Ga) constitute the third important cycle. Mafic rocks of Sargur Group mainly constitute a komatiitic-tholeiite suite, closely associated with layered basic-ultrabasic complexes. They form linear ultramaficmafic belts, and scattered enclaves associated with orthoquartzite-carbonate-pelite-BIF suite. Since the country rocks of Peninsular Gneiss intrude these rocks and dismember them, stratigraphy of Sargur Group is largely conceptual and its tectonic environment speculative. It is believed that the Sargur tholeiites are not fractionated from komatiites, but might have been generated and evolved from a similar mantle source at shallower depths. The layered basic-ultrabasic complexes are believed to be products of fractionation from tholeiitic parent magma. The Dharwar mafic rocks are essentially a bimodal basalt-rhyolite association that is dominated by Fe-rich and normal tholeiites. Calc-alkaline basalts and andesites are nearly absent, but reference to their presence in literature pertains mainly to carbonated, spilitized and altered tholeiitic suites. Geochemical discrimination diagrams of Dharwar lavas favour island arc settings that include fore-, intra- and back-arcs. The Dharwar mafic rocks are possibly derived by partial melting of a lherzolite mantle source and involved in fractionation of olivine and pyroxene followed by plagioclase. Distinctive differences in the petrography and geochemistry of mafic rocks across regional unconformities between Sargur Group and Dharwar Supergroup provide clinching evidences in favour of distinguishing two greenstone cycles in the craton. This has also negated the earlier preliminary attempts to lump together all mafic volcanics into a single contemporaneous suite, leading to erroneous interpretations. After giving allowances for differences in depositional and tectonic settings, the chemical distinction between Sargur and Dharwar mafic suites throws light on secular variations and crustal evolution. Proterozoic mafic dyke swarms of three major periods (2.4, 2.0–2.2 and 1.6 Ga) occur around Tiptur and Hunsur. The dykes also conform to the regional metamorphic gradient, with greenschist facies in the north and granulite facies in the south, resulting from the tilt of the craton towards north, exposing progressively deeper crustal levels towards the south. The low-grade terrain in the north does not have recognizable swarms, but the Tiptur swarm consists essentially of amphibolites and Hunsur swarm mainly of basic granulites, all of them preserving cross-cutting relations with host rocks, chilled margins and relict igneous textures. There are also younger dolerite dykes scattered throughout the craton that are unaffected by this metamorphic zonation. Large-scale geochemical, geochronological and palaeomagnetic data acquisition through state-of-the-art instrumentation is urgently needed in the Dharwar craton to catch up with contemporary advancements in the classical greenstone terrains of the world.  相似文献   

12.
We present new regional petrologic, geochemical, Sr–Nd isotopic, and U–Pb geochronological data on the Turonian–Campanian mafic igneous rocks of Central Hispaniola that provide important clues on the development of the Caribbean island-arc. Central Hispaniola is made up of three main tectonic blocks—Jicomé, Jarabacoa and Bonao—that include four broad geochemical groups of Late Cretaceous mafic igneous rocks: group I, tholeiitic to calc-alkaline basalts and andesites; group II, low-Ti high-Mg andesites and basalts; group III, tholeiitic basalts and gabbros/dolerites; and group IV, tholeiitic to transitional and alkalic basalts. These igneous rocks show significant differences in time and space, from arc-like to non-arc-like characteristics, suggesting that they were derived from different mantle sources. We interpret these groups as the record of Caribbean arc-rifting and back-arc basin development in the Late Cretaceous. The> 90 Ma group I volcanic rocks and associated cumulate complexes preserved in the Jicomé and Jarabacoa blocks represent the Albian to Cenomanian Caribbean island-arc material. The arc rift stage magmatism in these blocks took place during the deposition of the Restauración Formation from the Turonian–Coniacian transition (~ 90 Ma) to Santonian/Lower Campanian, particularly in its lower part with extrusion at 90–88 Ma of group II low-Ti, high-Mg andesites/basalts. During this time or slightly afterwards adakitic rhyolites erupted in the Jarabacoa block. Group III tholeiitic lavas represent the initiation of Coniacian–Lower Campanian back-arc spreading. In the Bonao block, this stage is represented by back-arc basin-like basalts, gabbros and dolerite/diorite dykes intruded into the Loma Caribe peridotite, as well as the Peralvillo Sur Formation basalts, capped by tuffs, shales and Campanian cherts. This dismembered ophiolitic stratigraphy indicates that the Bonao block is a fragment of an ensimatic back-arc basin. In the Jicomé and Jarabacoa blocks, the mainly Campanian group IV basalts of the Peña Blanca, Siete Cabezas and Pelona–Pico Duarte Formation, represent the subsequent stage of back-arc spreading and off-axis non-arc-like magmatism, caused by migration of the arc toward the northeast. These basalts have geochemical affinities with the mantle domain influenced by the Caribbean plume, suggesting that mantle was flowing toward the NE, beneath the extended Caribbean island-arc, in response to rollback of the subducting proto-Caribbean slab.  相似文献   

13.
Mafic dykes of the Antarctic Peninsula continental-margin arc are compositionally diverse, comprising calc-alkaline (dominant), shoshonite, tholeiite, and OIB-like varieties. Their compositions give information about different mafic magma sources tapped during arc evolution. The compositional groups represent partial melts of at least five distinct mantle sources: a low-ɛNd subduction-modified, garnet-bearing, lithospheric mantle (older calc-alkaline); a high-ɛNd subduction-modified, garnet-bearing, lithospheric mantle (shoshonites); a high-ɛNd subduction-modified, spinel-bearing, asthenospheric mantle (younger calc-alkaline); E-MORB-like spinel-bearing asthenosphere depleted by a previous melting event (tholeiites); and within-plate non-subduction modified, garnet- and spinel-bearing, asthenosphere (OIB-like). Slab-derived fluids, subducted sediment, and arc crust also contributed to the magmas. Consideration of previous work in the light of our new compositional and geochronological data enables presentation of a summary of arc evolution. For most of the Cretaceous and Tertiary, the tectonic regime of the Antarctic Peninsula arc was transtensional, and calc-alkaline magmas intruded. An oceanic spreading centre collided with the trench during the Late Cretaceous and induced tectonic changes which caused tapping of different magma sources. A pulse of shoshonitic, tholeiitic, and OIB-like mafic magmatism resulted. Three ridge-trench collisions are now recognized during the history of the arc, in Mid–Late Jurassic, Late Cretaceous, and Early–Mid Tertiary times. Received: 13 January 1997 / Accepted: 5 December 1997  相似文献   

14.
 Early Cretaceous (146–115 Ma) magmatism in the region of Mt. Hermon, Northern Israel, is part of an extensive Mesozoic igneous province within the Levant associated with the evolution of the Neotethyan passive margin of Gondwana. The initial stages of activity were characterised by the emplacement of tholeiitic dykes (146–140 Ma) which were uplifted and eroded prior to the eruption of a sequence of alkali basalts, basanites and more differentiated alkaline lavas and pyroclastics from 127 to 120 Ma. The latest stages of activity (120–115 Ma) were highly explosive, resulting in the emplacement of diatreme breccias. Trace element and Sr-Nd-Pb isotope data for the most primitive Early Cretaceous mafic igneous rocks sampled suggest that they were derived by mixing of melts derived by variable degrees of partial melting of both garnet- and spinel-peridotite-facies mantle sources. Though isotopically heterogeneous, the source of the magmas has many similarities to that of HIMU oceanic island basalts. Earlier Liassic (200 Ma) transitional basalts and Neogene–Quaternary (15–0 Ma) alkali basalts erupted within northern Israel also have HIMU affinities. The petrogenesis of the Early Cretaceous and Cenozoic basalts is explained by partial melting of a lithospheric mantle protolith metasomatically enriched during the Liassic volcanic phase, which may be plume-related. Received: 23 July 1998 / Accepted: 6 December 1999  相似文献   

15.
One of the most significant mafic intrusive events in the Zimbabwe Craton was the emplacement of the Great Dyke layered ultramafic-mafic complex and its two parallel ‘satellite’ dykes at the end of the Archæan (∼2.6 Ga). The two satellite dykes, the East Dyke and the West (Umvimeela) Dyke, were far less affected by crystal accumulation and layering processes than the Great Dyke, and therefore may provide a clearer picture of parental magma compositions of the Great Dyke event. The geochemical character of this major episode of mafic magmatism is markedly different to that of more typical continental tholeiites, such as the ∼1.9 Ga Mashonaland sills, and reflects significant contrasts in petrogenetic influences. Despite its mid-continental setting, the parental magma of the satellite dykes had geochemical characteristics more often associated with magmas generated at destructive plate margins, suggesting that the nature of this magma was perhaps more similar to high Mg andesitic, rather than continental tholeiitic magmatism. Fine-grained samples with ∼14% MgO perhaps most closely approximate to the parental magma composition. Certain major and trace element concentrations (high MgO, SiO2, LREE and LILE, and low Nb, Ta and Ti) and the lack of an Fe enrichment trend, suggest that the mafic magma had either suffered severe crustal contamination or had been derived from a metasomatised harzburgitic mantle source.  相似文献   

16.
邹金汐 《地质与勘探》2013,49(4):713-722
云南香格里拉县洛吉地区出露由洛吉组玄武岩和基性岩墙群组成的基性杂岩,其母岩浆起源于亚碱性-碱性系列的拉斑玄武系列,地球化学特征表明该基性杂岩体形成于构造变动的复杂环境,并与不同源区岩浆混合及一定程度的壳幔混染有关,其中的碱性玄武岩与基性岩墙属具有相似性OIB玄武岩,是深部地幔石榴石橄榄岩与尖晶石橄榄石小部分熔融的产物,形成于大陆内或陆缘裂谷转变为盆缘造山带的过渡环境,亚碱性玄武岩属于E-MORB并有向OIB过渡趋势,由源区相对浅的尖晶石橄榄石熔融形成,为洋中脊向大陆过渡环境的蛇绿岩质分子,属甘孜-理塘结合带残余产物。  相似文献   

17.
Paleoproterozoic basaltic, andesitic and rhyolitic dykes crosscut the Archaean Carajás basement. Basalts are distinguished into a high and a low TiO2 group (HTi and LTi), each group consisting of geochemically distinct NE- and NW-trending swarms. The HTi dykes are evolved transitional basalts having essentially EMORB-type geochemistry. The LTi basalts are tholeiites (NE-trending swarm) and high-Al basalts (NW-trending swarm) displaying incompatible trace elements patterns with variably negative Nb anomaly, enrichment in Rb, Ba, K (LILE) and La, Ce and Nd (LREE) and positive Sr anomaly. With respect to orogenic analogues, andesites have lower Al2O3, CaO and Ni, higher FeO, LILE, LREE, Nb, Zr and Ti and negative Sr anomaly. Rhyolites have geochemical characteristics comparable with those of A-type granites. At 1.8 Ga, ranges from 0.700 to 0.705 in the HTi basalts and from 0.700 to 0.704 in the LTi group. Andesites define an isochron of 1874±110 Ma (Sro=0.7038±0.0010). Rhyolites from Southern and Northern Carajás define two isochrons of 1802±130 Ma (Sro=0.7062±0.0046) and 1535±82 Ga (Sro=0.7625) respectively, the younger date being interpreted as resetting of the Rb–Sr isotopic system. We propose a petrogenetic model relating LTi basalts with melting of lithospheric mantle metasomatized by acid melts derived from incipient melting of eclogites, representing in turn the subsolidus product of basaltic batches trapped in the mantle. The HTi basalts are explained by melting of the lithospheric mantle containing the complementary residual eclogite. Andesite petrogenesis is consistent with crystal fractionation from a high-Mg andesite parent derived from a mantle source more extensively metasomatized by eclogite-derived melts. Rhyolite composition is consistent with low melting degree of the basement rocks. The basalt–andesite–rhyolite dykes may represent the effects of crustal extension and arching in Carajás, which produced the anorogenic acid to intermediate magmatism (Uatumã group) and affecting a large part of the Amazon craton between 1.85 and 1.7 Ga.  相似文献   

18.
《Precambrian Research》2001,105(2-4):183-203
Previous studies have shown that the 2.04 Ga Kangâmiut dyke swarm of SW Greenland was injected into an active tectonic environment associated with the formation of the Nagssugtoqidian orogenic belt. Major and trace element modelling of the swarm shows that its chemical evolution was controlled by simple clinopyroxene–plagioclase fractionation. However, such trends — although typical of continental flood basalts and mafic dyke swarms — are at variance with their mineralogy and petrography, which show that locally hornblende is the dominant primary ferromagnesian mineral. Modelling of intradyke fractionation alone shows that hornblende could locally have been an important crystallising phase within several dykes. Normal basaltic fractionation must have occurred before dyke injection at the exposed crustal levels, where the influx of water into the dykes is believed to be responsible for the transition from clinopyroxene–plagioclase (tholeiitic) to hornblende–plagioclase±oxides (calc–alkaline) crystallisation. Overall geochemical trends are dominated by tholeiitic fractionation because (1) hornblende fractionation tended to buffer chemical composition; (2) the presence of water in the surrounding country rocks may have resulted in the advection of heat away from the dyke and consequently resulted in rapid crystallisation, particularly in thin dykes. There is no evidence from trace element data, and particularly Pb isotopic ratios, of any significant assimilation of country rocks occurring during clinopyroxene–plagioclase fractionation, although this does not preclude contamination of the mantle source prior to magma generation. It is likely that the incompatible element enrichment within the dykes resulted from subduction-related mantle metasomatism. The Kangâmiut dyke swarm was both a syn-tectonic and thermal event, which triggered it may be linked to passage of a slab window underneath the metasomatised region, or a mantle plume ascending under a subduction zone.  相似文献   

19.
F. Lucassen  G. Franz 《Lithos》1994,32(3-4):273-298
A deep section of the Jurassic, 200-150 Ma old magmatic arc is exposed in the Coastal Cordillera south of Antofagasta in northern Chile. The chemical compositions of metabasic and plutonic rocks from the deep level are compared with those of Jurassic volcanic rocks and ≈ 150 Ma old dykes. The metabasites, most of the plutonic rocks, and the dykes have calc-alkaline characteristics. However, small postmetamorphic gabbro plutons are tholeiitic. The composition of the volcanic rocks is not related to the plutonic rocks, metabasites and dykes. All igneous and meta-igneous rocks of the arc are derived from a similar source in the upper mantle and evolved without major crustal contamination.

The general tectonic setting was dominated by extension, and Pre-Jurassic crust is extremely thinned or absent in the area. Details of the tectonic, magmatic and metamorphic development remain still a matter of speculation.  相似文献   


20.
布青山蛇绿混杂岩位于阿尼玛卿带西段,它是由早古生代和早石炭世一早二叠世两期蛇绿岩组成的复合蛇绿混杂岩带。蛇绿岩中的变质橄榄岩以方辉橄榄为主,高镁,∑PEE是球粒陨石的0.2-0.65倍,HREE是球粒陨石的0.28-0.32倍,属亏损的大洋岩石圈地幔。早古生代蛇绿岩中辉长岩、辉绿岩和玄武岩等镁铁质岩主要具N-MORB性质,少量具T-MORB性质。早石炭世一早二叠世蛇绿岩中玄武岩也主要具N-MORB性质、少量具T-MORB性质。它们均形成于洋中脊环境。本区曾存在成熟的早古生代洋盆和古特提斯洋盆,有更复杂的构造演化史。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号