首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have analyzed the behavior of the F2 layer parameters during nighttime periods of enhanced electron concentration by the results of vertical sounding of the ionosphere carried out with five-minute periodicity in Almaty (76°55′ E, 43°15′ N) in 2001–2012. The results are obtained within the frameworks of the unified concept of different types of ionospheric plasma disturbances manifested as variations in the height and half-thickness of the layer accompanied by an increase and decrease of N m F2 at the moments of maximum compression and expansion of the layer. A good correlation is found between height h Am , which corresponds to the maximum increase, and layer peak height h m F, while h Am is always less than h m F. The difference between h Am and h m F linearly increases with increasing h m F. Whereas the difference is ~38 km for h m F = 280 km, it is ~54 km for h m F = 380 km. Additionally, the correlation is good between the increase in the electron concentration in the layer maximum ΔN m and the maximum enhancement at the fixed height ΔN; the electron concentration enhancement in the layer maximum is about two to three times lower than its maximum enhancement at the fixed height.  相似文献   

2.
The influence of geomagnetic disturbances on electron density Ne at F1 layer altitudes in different conditions of solar activity during the autumnal and vernal seasons of 2003–2015, according to the data from the Irkutsk digital ionospheric station (52° N, 104° Е) is examined. Variations of Ne at heights of 150–190 km during the periods of twenty medium-scale and strong geomagnetic storms have been analyzed. At these specified heights, a vernal–autumn asymmetry of geomagnetic storm effects is discovered in all periods of solar activity of 2003–2015: a considerable Ne decrease at a height of 190 km and a weaker effect at lower levels during the autumnal storms. During vernal storms, no significant Ne decrease as compared with quiet conditions was registered over the entire analyzed interval of 150?190 km.  相似文献   

3.
The behavior of the vertical structure of the ionospheric F2 layer, including the variations in the heights of the maximum and bottom of the layer, its half-thickness, and electron content at some fixed heights during postmidnight enhancements in the electron density at the F2 layer maximum (NmF2), has been studied based on the data of the ionospheric vertical sounding, conducted in Alma-Ata (76°55′ E, 43°15′ N) in 2005–2006. The analysis of the amplitude and phase relationships between the measured parameters of the layer made it possible to qualitatively complete the existing concepts of the mechanisms by which the discussed effect is maintained. It is shown that the accelerated decrease in the electron density of the layer within a short time interval preceding the beginning of the postmidnight increase in NmF2 is governed not only by recombination processes but also by the plasma redistribution over the increasing thickness of the layer. The regularly observed effect of the delay in the moment of reversal in the motion direction of the layer bottom relative to the corresponding moment for the layer maximum made it possible to conclude that the meridional wind asynchronously reverses its direction from the poleward daytime to the equatorward nighttime in the entire layer: the direction changes later with decreasing height.  相似文献   

4.
The response of the midlatitude F 2 layer to the effect of powerful HF radiowaves is studied using the numerical model of the ionosphere. The large-scale modification of the F 2 layer over the Sura heating facility near Nizhni Novgorod is considered for autumnal conditions. The calculations are performed for various cases when the heating wave has different frequencies under the daytime and nighttime conditions. The calculation results show that large-scale changes in the electron temperature and density in the F 2 layer caused by the artificial heating should substantially depend on the heating radiowave frequency. It is found that there should exist such, most effective, heating wave frequency at which a decrease in the electron density at the F 2 layer maximum height over the heating facility should be maximal.  相似文献   

5.
The structure and dynamics of the ionosphere and plasmasphere at high solar activity under quiet geomagnetic conditions of June 2–3, 1979, and January 5–6, 1980, over Millstone Hill station and Argentine Islands ionosonde, the locations of which are approximately magnetically conjugate, have been theoretically calculated. The plasma drift velocity, determined by comparing the calculated and measured heights of the F 2 layer maximum (hmF2), and the correction of [N2] and [O2], found in the NRLMSISE-00 model, make it possible to coordinate the electron densities (NmF2) calculated at the hmF2 height and the measured anomalous variations in NmF2 over the Argentine Islands ionosonde as well as the calculated and measured NmF2 and electron temperature at the hmF2 height over Millstone Hill station. It has been shown that, if the interference of the diffusion velocities of O+(4S) and H+ ions is taken into account, the additional heating of plasmaspheric electrons leads to an increase in the flux of O+(4S) ions from the topside ionosphere to lower F 2 layer altitudes, as a result of which an anomalous nighttime increase in NmF2 6, observed on January 6, 1980, over Millstone Hill station, is mainly produced. The second component of the formation of anomalous night-time NmF2 is the plasma drift along the magnetic field caused by the neutral wind, which shifts O+(4S) ions to higher altitudes where the recombination rate of O+(4S) with N2 and O2 is lower and slows down a decrease in NmF2 in the course of time. It has been shown that the influence of electronically excited O+ ions and vibrationally excited N2 and O2 molecules on electron density (N e ) considerably differs under winter and summer conditions. This difference forms significant part of the winter anomaly in N e at heights of the F 2 region and topside ionosphere over Millstone Hill station.  相似文献   

6.
The occurrence probabilities of the first and second anomalous nighttime local maximums in the diurnal variations in the electron density at a maximum of the ionospheric F 2 layer (NmF2) in the region where the crest (hump) of the equatorial anomaly originates in the northern geographic hemisphere have been studied using the data of the stations for vertical sounding of the ionosphere (Paramaribo, Dakar, Quagadougou, Ahmedabad, Delhi, Calcutta, Chongoing, Guangzhou, Taipei, Chung-Li, Okinawa, Yamagawa, Panama, and Bogota) from 1957 to 2004. It has been demonstrated that the anomalous nighttime NmF2 maximums are least frequently formed at ~53° geomagnetic longitude. The calculations have indicated that the studied probabilities are independent of solar activity. Geomagnetic activity weakly affects the rate of occurrence of the first nighttime NmF2 maximum at geomagnetic longitudes of approximately 140° to 358°. At geomagnetic longitudes of approximately 16° to 70° (i.e., in the longitudinal zone of a decreased occurrence frequency of anomalous nighttime maximums), the occurrence probability of the first anomalous nighttime NmF2 maximum under geomagnetically quiet conditions is pronouncedly lower than under geomagnetically disturbed conditions. The dependence of the occurrence probabilities of the first and second anomalous nighttime NmF2 maximums on the month number in a year has been studied.  相似文献   

7.
The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of ?26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from ?20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.  相似文献   

8.
Using model simulations, the morphological picture (revealed earlier) of the disturbances in the F 2 region of the equatorial ionosphere under quiet geomagnetic conditions (Q-disturbances) is interpreted. It is shown that the observed variations in the velocity of the vertical E × B plasma drift, related to the zonal E y component of the electric field, are responsible for the formation of Q-disturbances. The plasma recombination at altitudes of the lower part of the F 2 region and the dependence of the rate of this process on heliogeophysical conditions compose the mechanism of Q-disturbance formation at night. The daytime positive Q-disturbances are caused exclusively by a decrease in the upward E × B drift, and this type of disturbances could be related to the known phenomenon of counter electrojet. Possible causes of formation of the daytime negative Q-disturbances are discussed.  相似文献   

9.
Results of the study of the behavior of the F 2 region and topside ionosphere during the magnetic storm on November 7–10, 2004, which was a superposition of two sequent Severe magnetic disturbances (Kp = 9–) are presented. The observations were conducted by the incoherent scatter radar at Kharkov. Considerable effects of a negative ionospheric disturbance are registered, including a decrease in the electron density in the F 2-layer maximum by a factor of 6–7 and of the total electron content up to a height of 1000 km by a factor of 2, a lifting up of the ionospheric F 2 layer by 300 km at night and by 150–180 km in the daytime, unusual nighttime heating of the plasma with an increase of the ion and electron temperatures up to 2000 and 3000 K, respectively, and a decrease in the relative density of hydrogen ions N(H+)/N e by a factor of up to 3.5 because of the emptying of the magnetic flux tube passing over Kharkov. The effects usually observed in the high-latitude ionosphere, including the coherent echoes, are detected during the main phase of the storm. The results obtained manifest a shift of the large-scale structures of the high-latitude ionosphere (the auroral oval, main ionospheric trough, hot zone, etc.) down to latitudes close to the latitude of the Kharkov radar.  相似文献   

10.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

11.
This paper deals with the interpretation of Bouguer gravity anomalies measured along a 250 km long Suhaitu-Etuokeqi gravity profile located at the transitional zone of the Alxa and Ordos blocks where geophysical characteristics are very complex. The analysis is carried out in terms of the ratio of elevation and Bouguer gravity anomaly, the normalized full gradient of a section of the Bouguer gravity anomaly (G h ) and the crustal density structure reveal that (1) the ratio of highs and lows of elevation and Bouguer gravity anomaly is large between Zhengyiguan fault (F4) and Helandonglu fault (F6), which can be explained due to crustal inhomogeneities related to the uplift of the Qinghai-Tibet block in the northeast; (2) the main active faults correspond to the G h contour strip or cut the local region, and generally show strong deformation characteristics, for example the Bayanwulashan mountain front fault (F1) or the southeast boundary of Alxa block is in accord with the western change belt of G h , a belt about 10 km wide that extends to about 30 km; (3) Yinchuan-Pingluo fault (F8) is the seismogenic structure of the Pingluo M earthquake, and its focal depth is about 15 km; (4) the Moho depth trend and Bouguer gravity anomaly variation indicates that the regional gravity field is strongly correlated with the Moho discontinuity.  相似文献   

12.
Variations in the frequency of occurrence of riometer absorption, minimum frequency of reflection of the ionospheric F layer, minimum height, and height of maximum electron density of the ionospheric F layer near the solar minimum have been studied. Application of the superposed epoch technique has detected the Moon phase effect on these ionospheric parameters. This effect was: three events per day in the occurrence of riometer absorption, 0.056 MHz in the minimum frequency of reflection of the F layer, and 2.6 and 6.7 km, in the change of the minimum height of reflection and height of reflection from the region with maximum electron density of the ionospheric F layer, respectively. The lunar tide action changes the ionospheric conductivity and, thus, influences the current systems of the magnetosphere. Through changes of magnetospheric currents, the Moon phase effect is exhibited in the Ap and Dst indices and is 4.3 and 4.25 nT, respectively.  相似文献   

13.
The structure and dynamics of the ionosphere and plasmasphere at low solar activity under quiet geomagnetic conditions on January 15–17, 1985, and July 10–13, 1986, over Millstone Hill station and Argentine Islands ionosonde, the locations of which are approximately magnetically conjugate, have been theoretically calculated. The detected correction of the model input parameters makes it possible to coordinate the measured and calculated anomalous variations in the electron density NmF2 at the height hmF2 of the ionospheric F2 layer over Argentine Islands ionosonde as well as the calculated and measured values of NmF2 and electron temperature at the hmF2 height over Millstone Hill station. It has been shown that vibrationally excited N2 and O2 molecules almost do not influence the formation of the winter anomaly under the conditions of low solar activity. A difference between the influence of electronically excited O+ on N e ions under winter and summer conditions forms not more than 11% of the N e winter anomaly event in the F 2 layer and topside ionosphere. The model without electronically excited O+ ions reduces the duration of the N e winter anomaly event. It has been shown that the seasonal variations in the composition of the neutral atmosphere form mainly the NmF2 winter anomaly event over the Millstone Hill radar at low solar activity.  相似文献   

14.
The observations of the effects of the partial (about 77%) solar eclipse (SE) of March 29, 2006, in the ionospheric plasma are presented. The experimental data were obtained using the Kharkov incoherent scatter radar. At the moment of the maximum phase of SE, a decrease in the critical frequency of the ionospheric F 2 layer by 18%, a depletion of the density in the F 2 layer maximum by 33%, and an increase in the maximum height z m by 30 km were observed. The solar eclipse caused a decrease in the electron and ion temperatures by 150–300 and 100–200 K, respectively, within the height range 210–490 km. An increase in the relative density of the hydrogen ions during the maximum phase of SE by 20–25% within the height range 900–1200 km is detected. Calculations of the parameters of dynamical processes and thermal regime of the ionospheric plasma during SE are performed.  相似文献   

15.
Long-term measurement of carbon metabolism of old-growth forests is critical to predict their behaviors and to reduce the uncertainties of carbon accounting under changing climate. Eddy covariance technology was applied to investigate the long-term carbon exchange over a 200 year-old Chinese broad-leaved Korean pine mixed forest in the Changbai Mountains (128°28′E and 42°24′N, Jilin Province, P. R. China) since August 2002. On the data obtained with open-path eddy covariance system and CO2 profile measurement system from Jan. 2003 to Dec. 2004, this paper reports (i) annual and seasonal variation of F NEE, F GPP and R E; (ii) regulation of environmental factors on phase and amplitude of ecosystem CO2 uptake and release Corrections due to storage and friction velocity were applied to the eddy carbon flux.LAI and soil temperature determined the seasonal and annual dynamics of FGPP and RE separately. VPD and air temperature regulated ecosystem photosynthesis at finer scales in growing seasons. Water condition at the root zone exerted a significant influence on ecosystem maintenance carbon metabolism of this forest in winter.The forest was a net sink of atmospheric CO2 and sequestered ?449 g C·m?2 during the study period; ?278 and ?171 gC·m?2 for 2003 and 2004 respectively. F GPP and F RE over 2003 and 2004 were ?1332, ?1294 g C·m?2. and 1054, 1124 g C·m?2 respectively. This study shows that old-growth forest can be a strong net carbon sink of atmospheric CO2.There was significant seasonal and annual variation in carbon metabolism. In winter, there was weak photosynthesis while the ecosystem emitted CO2. Carbon exchanges were active in spring and fall but contributed little to carbon sequestration on an annual scale. The summer is the most significant season as far as ecosystem carbon balance is concerned. The 90 days of summer contributed 66.9, 68.9% of F GPP, and 60.4, 62.1% of R E of the entire year.  相似文献   

16.
We used CHAMP satellite vector data and the latest IGRF12 model to investigate the regional magnetic anomalies over mainland China. We assumed satellite points on the same surface (307.69 km) and constructed a spherical cap harmonic model of the satellite magnetic anomalies for elements X, Y, Z, and F over Chinese mainland for 2010.0 (SCH2010) based on selected 498 points. We removed the external field by using the CM4 model. The pole of the spherical cap is 36N° and 104°E, and its half-angle is 30°. After checking and comparing the root mean square (RMS) error of ΔX, ΔY, and ΔZ and X, Y, and Z, we established the truncation level at K max = 9. The results suggest that the created China Geomagnetic Referenced Field at the satellite level (CGRF2010) is consistent with the CM4 model. We compared the SCH2010 with other models and found that the intensities and distributions are consistent. In view of the variation of F at different altitudes, the SCH2010 model results obey the basics of the geomagnetic field. Moreover, the change rate of X, Y, and Z for SCH2010 and CM4 are consistent. The proposed model can successfully reproduce the geomagnetic data, as other data-fitting models, but the inherent sources of error have to be considered as well.  相似文献   

17.
The observations of spread F during the nighttime hours (0000–0500 LT) have been statistically analyzed based on data of Tokyo, Akita, Wakkanai, and Yamagawa Japan vertical ionospheric sounding stations for the time intervals a month before and a month after an earthquake. The disturbances in the probability of spread F appearance before an earthquake are revealed against a background of the variations depending on season, solar activity cycle, geomagnetic and solar disturbances. The days with increased solar (Wolf number W > 100) and geomagnetic (ΣK > 30) activity are excluded from the analysis. The spread F effects are considered for more than a hundred earthquakes with magnitude M > 5 and epicenter depth h < 80 km at distances of R < 1000 km from epicenters to the vertical sounding station. An average decrease in the spread F occurrence probability one-two weeks before an earthquake has been revealed using the superposed epoch method (the probability was minimal approximately ten days before the event and then increased until the earthquake onset). Similar results are obtained for all four stations. The reliability of the effect has been estimated. The dependence of the detected effect on the magnitude and distance has been studied.  相似文献   

18.
The results of the observations of aperiodic and quasi-periodic disturbances in E and F1 ionospheric layers and air temperature variations in the surface atmosphere on the day of the solar eclipse and control days are presented. The ionospheric processes were monitored by vertical sounding Doppler radar. The measurements showed that, near the time of the maximum coverage of the solar disk, the greatest decrease in the density of electrons in the layers E and F1 was ~27%, which is close to the calculated value (25%). The solar eclipse was accompanied by the generation of traveling ionospheric disturbances with a period of 8–12 min and a relative amplitude of electron density variations of ~0.6–1.5%. Because of the haze in the surface atmosphere, its temperature, which was monitored at observation points at a distance of 50–60 km from each other did not exceed 1°C near the time of the maximum eclipse magnitude.  相似文献   

19.
The 40-year period of observations of short-term variations (with characteristic times of up to 1–2 days) in the critical frequency of the ionospheric F2 layer (foF2) is analyzed. The continuous (with a step of 1 h) series of fluctuations (F) of the foF2 critical frequency (with eliminated daily variations) has been calculated using the hourly variations in foF2 at Moscow stations. The fractal dimension (FRH) of the fluctuations, characterizing short-term variations in foF2, has been determined and analyzed on a 30-day interval, using the Higuchi method. It has been established that FRH estimates substantially change in time. The 11-year cycle, which is in antiphase with the solar cycle, and the total annual and semiannual variations, similar to the variations observed in the normalized critical frequency of the E region and in the electron density of the D region, are clearly defined in these changes. Thus, the parameters of fast variations in the ionospheric F2 layer are affected by the phase of the 11-year solar cycle and by the position of the Earth in the orbit or seasonal variations in the atmosphere.  相似文献   

20.
Equations of regression are derived for the intense magnetic storms of 1957?2016. They reflect the nonlinear relation between Dstmin and the effective index of geomagnetic activity Ap(τ) with a timeweighted factor τ. Based on this and on known estimations of the upper limit of the magnetic storm intensity (Dstmin =–2500 nT), the maximal possible value Ap(τ)max ~ 1000 nT is obtained. This makes it possible to obtain initial estimates of the upper limit of variations in some parameters of the thermosphere and ionosphere that are due to geomagnetic activity. It is found, in particular, that the upper limit of an increase in the thermospheric density is seven to eight times larger than for the storm in March 1989, which was the most intense for the entire space era. The maximum possible amplitude of the negative phase of the ionospheric storm in the number density of the F2-layer maximum at midlatitudes is nearly six times higher than for the March 1989 storm. The upper limit of the F2-layer rise in this phase of the ionospheric storm is also considerable. Based on qualitative analysis, it is found that the F2-layer maximum in daytime hours at midlatitudes for these limiting conditions is not pronounced and even may be unresolved in the experiment, i.e., above the F1-layer maximum, the electron number density may smoothly decrease with height up to the upper boundary of the plasmasphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号