首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The demise of the high-relief, steep-slope, prograding Ladinian-Early Carnian carbonate platforms of the Esino Limestone (Central Southern Alps of Italy) is marked by subaerial exposure of the platform top associated with different erosional (mainly karst-related), depositional and diagenetic processes (Calcare Rosso). The exposure-related deposits consist of three major facies associations: 1) residual soils with thin lenses of conglomerates with black pebbles, and, locally, weathered vulcanites; 2) chaotic breccia lenses irregularly distributed in the uppermost part of the Esino Limestone carbonate platform, interpreted as collapse breccias in karstic setting: 3) inter-supratidal carbonate cycles with dissolution and development of paleosols and tepee structures.Facies distribution follows the sub-environments of the underlying Esino Limestone. Facies 1 and 2 typically characterize the core of the platform, covering the underlying inner platform facies. Facies 3 instead develops toward the edge of the platform, above reef-upper slope facies of the prograding facies of the Esino Limestone. The thickness of facies 3 decreases toward the core of the platform. Facies distribution reflects differences in the accommodation space and sedimentary processes from the rim (highest accommodation, favouring the deposition of peritidal-supratidal carbonates) to the core (reduced accommodation, causing pedogenesis and karstification) of the carbonate system.The observed thickness changes may be controlled by different factors: 1) syndepositional tectonics, 2) subsidence induced by magmatic activity or 3) differential subsidence controlled by the stratigraphic architecture of the Esino Limestone platform and adjoining basins. As evidence of tectonics was not observed and the presence of volcanic bodies is only documented tens of km away from the study area, the scenario involving the creation of accommodation space by compaction of the basinal sediments (resedimented, fine-grained calciturbidites) during the progradation of the carbonate platform is here investigated. Numerical modelling was performed to verify the compatibility of compaction-induced subsidence with the observed depositional architecture. The models were built to simulate the architectural evolution of the platform by progressively adding layers from deepest to shallowest, while compacting the underlying sediments, in order to evaluate compaction-induced subsidence (and accommodation space for the Calcare Rosso) after the deposition of the youngest platform strata. Modelling results allow us to conclude that the wedge geometry of the Calcare Rosso, deposited on top of the extinct Esino carbonate platform, can be explained by subsidence controlled by compaction of the basinal sediments present below the early-cemented, fast prograding platform slope deposits.  相似文献   

2.
A multi-scale analysis of sedimentary carbonate facies and post-sedimentary diagenetic features of the Calcare di Base Formation, the precursor to evaporites in Upper Messinian successions of Northern Calabria and Central Sicily, has revealed their microbial bio-mediated origin. Massive to laminated microbial boundstones represent the most common sedimentary facies forming flat to low relief cm to m scale stromatolitic and thrombolitic bodies. The fabric of the micrite varies from peloidal to aphanitic, and almost always preserves filamentous bacteria which characterized the original microbial mat. The mat was dominated by sulphur-oxidizing bacteria belonging to the Thiotrichaceae, but there is evidence for a more complex community with sulphate- and/or nitrate-reducing bacteria, all being responsible for the mediation of the carbonate precipitation. Microbial boundstones are rich in pseudomorphs of Ca-sulphate and halite, which formed during the deposition of the microbial carbonate. Layers of primary gypsum are interbedded locally with carbonates suggesting the presence of restricted marine conditions. The stable O and C isotopic composition of the carbonates, that vary from dolomite to aragonite and calcite, suggests a complex interplay between arid to humid climatic changes, expressed cyclic interbedding of the carbonate with marl-marlstone. Later diagenetic events mainly consist of phreatic meteoric recrystallization and cementation. Although considered as diachronous, the microbial carbonates can be mapped out over a distance of more than 500 km across southern Italy; this indicates near-constant environmental conditions upon the central Mediterranean shelf at the beginning of the salinity crisis. Deposition of the extensive subaqueous microbial deposit that largely comprises the Calcare di Base is envisaged to have taken place across a shallow to moderate depth platform with local slopes into deeper water areas, where some resedimentation occurred.  相似文献   

3.
Eocene carbonate deposits of the Barru area, Sulawesi, Indonesia, provide a rare insight into sedimentation prior to and during propagation of normal faults to the surface. Three main successions; late prerift, latest prerift/earliest synrift and synrift, are characterised by distinctive facies associations and sequence development. Shallow water foraminiferal shoals and intervening lower energy depositional environments occurred during the late prerift in areas which latter formed footwall highs and hangingwall depocentres, respectively. During the latest prerift/earliest synrift, shallow water shelves deepened laterally into slope environments in developing hangingwall depocentres. In both these sequences, sections in developing hangingwall areas are thickest, deepen up-section and thin laterally towards growing footwall highs. Active faulting resulted in rapid drowning of hangingwall depocentres and massive reworking of material derived from collapse of the platform margin and adjacent shallow water/emergent footwall highs.Differential subsidence, controlling water depths and accommodation space, types of carbonate producers and active faulting were the main factors affecting depositional environments and facies distributions. Carbonate producers are extremely sensitive indicators of depositional water depth and energy, hence rapid lateral and vertical facies variations in the Barru area provide quantifiable insight into environmental changes prior to and during active faulting.  相似文献   

4.
We report the structural geometry and facies architecture of a small diapir-related carbonate-dominated basin from the Jurassic rift of the Moroccan High Atlas. The Azag minibasin is a lozenge-shaped depocenter completely enclosed by tectonic boundaries that we interpret as welds after former salt anticlines or salt walls. The exposed ca. 3000 m-thick infill of the Azag minibasin is asymmetric; layers are tilted to the W defining a rollover geometry. Areally-restricted sedimentary discontinuities and wedges of growth strata near the basin margins indicate sedimentation contemporaneous with diapiric rise of a Triassic ductile layer. Facies evolution through the basin reflects local accommodation by salt withdrawal and regional events in the High Atlas rift. The early basin infill in the Sinemurian and Pliensbachian shows thickness variations indicative of low-amplitude halokinetic movements, with reduced exposed thicknesses compared to surrounding areas. The exposed Toarcian and Aalenian deposits are also reduced in thickness compared to areas outside the basin. Subsidence increased dramatically in the Bajocian-early Bathonian (?), the main phase of downbuilding, when over 2600 m of carbonates and shales accumulated at a rate > 0.5 mm/a in the depocentral area of the minibasin governed by W-directed salt expulsion. The stratigraphic units distinguished often show maximum thicknesses and deeper facies in the depocentral area, and rapidly change to shallower facies at the basin margins. The Bajocian carbonate facies assemblage of the minibasin include: reservoir facies as microbialite-coral reefs in the basin margins (formed during periods of strong diapir inflation and bathymetric relief), basin-expansive oolite bars (formed during episodes of subdued relief), and organic-rich, dark lime mudstones and shales that show source-rock characteristics. The Azag basin is a good analog for the exploration of salt-related carbonate plays in rifts and continental margins where source-rock and reservoir can form in a same minibasin.  相似文献   

5.
It is usually very difficult to identify and quantify the relative influence of tectonics, eustasy and climate on carbonate system evolution from sedimentary records. In order to improve our understanding of these mechanisms, we have traced for the first time, the evolution of the eastern Paris Basin platform throughout the entire Jurassic period. This carbonate platform underwent eight successive growth and demise phases, with different depositional profiles ranging from ramps to flat-topped geometries. The eight carbonate growth periods are compared with the standard sea-level curves, local tectonic regimes and recently published oxygen-isotope and/or clay mineralogy databases. Prograding heterozoan facies along ramp profiles mark periods dominated by second-order eustatic sea-level rise, relatively cool sea surface temperatures, and mesotrophic and humid conditions (Hettangian, Pliensbachian, late Oxfordian, Tithonian). During these periods, variable detrital contents in the sedimentary succession hampered the efficiency of shallow-marine carbonate factories. Higher sea surface temperatures, oligotrophic and humid conditions associated with either eustatic sea-level rise or very high local subsidence occurred during the early Bajocian and the mid-Oxfordian. These seawater properties seem to have favoured the aggradation of scleractinian corals forming dome-shaped bioherm buildups. An oolitic and lime-mud carbonate system, deposited during the Bathonian second-order eustatic sea-level fall, is characterised by miliolid-rich micritic facies on a rimmed-ramp under stable, cooler and drier conditions. The second-order maximum flooding associated with a sea surface temperature decline and/or a seawater eutrophication caused at least five carbonate demise periods (i.e. Toarcian, earliest late Bajocian, Callovian/Oxfordian transition, earliest late Oxfordian and Kimmeridgian).  相似文献   

6.
The Early Miocene was a period of active rifting and carbonate platform development in the Midyan Peninsula, NW Saudi Arabia. However, there is no published literature available dealing with the detailed characterization of the different carbonate platforms in this study area. Therefore, this study aims to present new stratigraphic architectural models that illustrate the formation of different carbonate platforms in the region and the forcing mechanisms that likely drove their formation. This study identified the following features formed during active rifting: a) a Late Aquitanian (N4) fault-block hangingwall dipslope carbonate ramp, b) a Late Burdigalian (N7-N8) isolated normal fault-controlled carbonate platform with associated slope deposits, and c) a Late Burdigalian (N7-N8) attached fault-bounded platform with reef buildups, rimmed shelf developed on a footwall fault-tip within a basin margin structural relay zone that formed coinciding with the second stage of rifting. Variations in cyclicity have been observed within the internal stratigraphic architecture of each platform and also between platforms. High-resolution sequence stratigraphic analysis shows to be parasequences the smallest depositional packages (metre-scale cycles) within the platforms. The hangingwall dipslope carbonate ramp and the attached platform demonstrate aggradational-progradational parasequence stacking patterns. These locations appear to have been more sensitive to eustatic cyclicities, despite the active tectonic setting. The isolated, fault-controlled carbonate platform reveals disorganized stratal geometries in both platform-top and slope facies, suggesting a more complex interplay of rates of tectonic uplift and subsidence, variation in carbonate productivity, and resedimentation of carbonates, such that any sea-level cyclicity is obscure. This study explores the interplay between different forcing mechanisms in the evolution of carbonate platforms in active extensional tectonic regions. Characterization of detailed parasequence-scale internal architecture allows the spatial variation in syn-depositional relative base-level changes to be inferred and is critical for understanding the development of rift basin carbonate platforms. Such concepts may be useful for the prediction of subsurface facies relationships beyond interwell areas in hydrocarbon exploration and reservoir modeling activities.  相似文献   

7.
This work focuses on the 3D modeling and structural analysis of the Monte Testo syn-sedimentary structure, developed in the Early Jurassic Calcari Grigi Group of the Trento carbonate platform (Southern Alps, Italy). Significant changes in the facies architecture of the platform sedimentary units, occurred across a global perturbation of the Carbon cycle at the Sinemurian-Pliensbachian boundary, are associated with evidences of syn-sedimentary tectonics. In particular, an early cemented oolitic sedimentary body with a high initial porosity (Loppio Oolitic Limestone) was broken-up and tilted by a pulse of rifting and overlain by tight marls and marly limestones (lower Rotzo Formation) that display sharp changes in thickness across the syn-sedimentary faults. This complex setting creates conditions potentially favorable to hydrocarbon accumulation. In this work, the Monte Testo structure is presented as a conceptual analogue of a hydrocarbon reservoir that may develop thanks to the overlap of the effects of extensional tectonics and climate change-induced modifications in the carbonate platform facies. A 3D geo-model was realized to obtain information about the genesis and tectonic evolution of the structure. Hence, a potential porosity distribution in the 3D model was evaluated showing that such extensional structure, which has a vertical extent of 500 m and covers an area of 15 km2, could have been associated to a total pore volume of 2.24 × 107 m3 at the time of its formation. Results suggest that in rifting contexts the combined effect of syn-sedimentary faulting and facies variations related to perturbations in the global carbon cycle could generate potential reservoirs in carbonate platforms.  相似文献   

8.
科尔占地区位于滨里海盆地阿斯特拉罕-阿克纠宾斯克隆起带东南部的比伊克扎尔次级隆起上,该地区广泛发育下二叠统孔谷组盐岩,以盐岩沉积为界,它将整个剖面划分为盐上层系(以碎屑岩为主的含油气层系)和盐下层系(以碳酸盐岩为主的含油气层系)两个大的含油气层系,石炭系为盐下层系中主要的含油气层系之一。通过对研究区唯一的盐下井K井岩屑及其薄片的详细观察,并结合该井测井资料,分析了石炭系的沉积特征,并对其沉积相进行了划分与描述。K井石炭系主要发育3种类型沉积相,分别为深水浊积扇相、斜坡相和台地相,其中深水浊积扇相可进一步划分为内扇、中扇和外扇3个亚相,台地相划分为滩间洼地和台内滩2个亚相。利用K井钻探结果,结合区域资料,初步预测出科尔占地区早石炭世和中石炭世末期沉积相带的平面分布特征。  相似文献   

9.
西非下刚果盆地为一典型被动大陆边缘含盐盆地,下刚果盆地北部海域在白垩系海相碳酸盐岩层系获得丰富油气发现。研究区海相碳酸盐岩领域油气勘探面临的核心瓶颈问题,即白垩系碳酸盐岩的沉积模式、演化规律、储层特征以及沉积储层发育控制因素。综合钻井、地震、区域地质等资料,分析认为自下向上相对海平面的上升控制了沉积演化,沉积体系演化模式为浅海碳酸盐岩台地→浅海混积陆棚→半深海-海底扇。下刚果盆地碳酸盐岩储层展布在纵向及平面上均可以划分为内中外3个储层发育带,碳酸盐岩储层最主要发育于下白垩统Albian阶下Sendji组。该时期研究区整体发育浅海碳酸盐岩混积缓坡台地沉积体系,沉积亚相可进一步划分为混积滨岸、后缓坡、浅水缓坡以及深水缓坡4种类型,其中浅水缓坡亚相颗粒滩微相与后缓坡亚相台内浅滩、砂质浅滩微相储层最为发育。碳酸盐岩储层岩性组合主要包括颗粒灰岩、砂岩、砂质灰岩、白云岩4种类型;储层发育主要受沉积相带的控制,并受成岩作用的影响。  相似文献   

10.
An integrated petrologic-sedimentologic-stratigraphic-seismic study of the Lagoa Feia Group, rift section of the Campos Basin, has shown that rift sedimentation was dominantly intrabasinal (carbonate and stevensitic deposits), with siliciclastic deposits restricted to the proximity of graben border faults. The bivalve bioclastic rudstones (“coquinas”) that constitute the rift reservoirs show commonly limited abrasion of the bioclasts, and were deposited both on basement highs and lows throughout the rift section. Although in situ deposits of stevensite ooids and peloids occur dominantly at the base of the succession, these particles are ubiquitous to the entire rift section, mixed in variable proportion with siliciclastic and carbonate sediments. The environmental conditions required for the formation of stevensite and the growth of bivalves are mutually exclusive, as stevensite forms only at pH greater than 10, while bivalves cannot tolerate pH greater than 9. The common mixture of well-rounded basaltic rock fragments with angular, granitic-gneissic rock fragments and feldspars in the sandstones and conglomerates indicates recycling of epiclastic deposits from the early rift section, combined with first-cycle contribution from the plutonic basement. The studied cores show no evidence of subaerial exposure, and there is a lack of bioturbation, suggesting harsh environmental conditions. The rift deposits are dominantly massive or faintly-laminated, with diffuse facies boundaries. Structures indicative of unidirectional or oscillatory flow are subordinate. Integration of seismic, sedimentologic and petrographic evidence indicates that the Campos Basin rift section is formed mostly by re-sedimented gravitational deposits. The onset of the rift sedimentation occurred in synformal depressions, where bivalve banks or stevensite ooids were formed in shallow lacustrine environments under variable alkalinity conditions. With the development of half-grabens and concentration of the tectonic activity along the border faults, recurrent tectonic events promoted the mixing and gravitational re-deposition of stevensitic, clastic and bioclastic sediments in deeper, fault-bounded troughs. Large-scale units, hundreds of meters thick, were generated by major tectonic events, whereas compositional variations in the scale of meters were possibly a product of lake-level climatic fluctuations. Thus, due to syn-rift and mainly to post-rift erosion (the Neo-Aptian unconformity), the preserved rift section of the Lagoa Feia Group comprises mostly sediments deposited in the central troughs of the half-graben structures. Marginal sediments were extensively eroded and re-sedimented as gravity-driven mixed deposits. This new model, constructed form the integration of seismic, stratigraphic, sedimentologic and petrologic data, diverges substantially from the presently accepted model for the sedimentation of the rift section, opening new possibilities for the exploration of Campos Basin, as well as of similar settings, as in the adjacent Santos Basin.  相似文献   

11.
The conventional interpretation of the Jurassic–Lower Cretaceous succession in the Porcupine Basin suggests an extensional setting with progressive deepening of the basin. However, well data show a prominent gap of several million years between the Upper Jurassic and Lower Cretaceous. A data base of 15 key wells and approximately 5,000 km of seismic reflection data were examined in the northern Porcupine Basin, in order to understand the nature, controls and mechanisms of this unconformity. Seven seismic markers, constrained by well data, are mapped. It is shown that during the Late Jurassic (possibly the Oxfordian–Kimmeridgian), the basin experienced extension and synrift deposition. During the latest Jurassic–earliest Cretaceous (possibly the Tithonian–early Berriasian), a series of north-trending structural highs and lows developed and extensive areas in the northern Porcupine Basin experienced folding, uplift and erosion. Evidence from the study suggests that compression, uplift and erosion played an important role in the shaping of the depositional and structural architecture of the basin and caused formation of the regional Base Cretaceous Unconformity in the northern basin. It is suggested that the deformation in the northern Porcupine Basin during the latest Jurassic–earliest Cretaceous may be related to the initial closure of the Alpine Tethys during the late Tithonian. This tectonic event may also have resulted in compressional deformation and formation of the Base Cretaceous Unconformity elsewhere in Western Europe.  相似文献   

12.
The Loppio Oolitic Limestone is a lithostratigraphic unit of the Early Jurassic Trento Platform in the Southern Alps, Northern Italy, which deposited over an area of ca. 3500 km2. It appears as a roughly tabular or wedge-shaped sedimentary body with thickness gradually increasing from 0 to ca. 100 m toward the western platform margin. We investigated the sedimentology, petrography and bulk carbonate carbon isotope geochemistry of the Loppio Oolitic Limestone in order to shed light on its depositional setting and origin. The Loppio Oolitic Limestone is made almost exclusively of oolitic grainstone, and can be subdivided in two parts. In the lower part, ooids are poorly sorted and sedimentary structures are scarce or absent. In the upper part, sorting becomes good and sedimentary structures are common. The vertical succession of sedimentary structures and the upward increase in sorting suggest a shallowing upward trend within the oolite. A reddened surface, meteoric cements and dinosaur footprints occur at the top of the unit, testifying for a subaerial exposure which is also confirmed by carbon and oxygen stable isotopic data. In terms of sequence stratigraphy, the Loppio Oolitic Limestone represents a Highstand Systems Tract, bounded at the top by a subaerial exposure surface. Bulk carbonate stable carbon isotope curves across the Loppio Oolitic Limestone from 7 stratigraphic sections could be correlated over distances of tens of km on the whole Trento Platform. This correlation suggests that the deposition of ooids was nearly synchronous across the platform. A negative excursion of carbon isotopes with magnitude of ca. 1‰ VPDB was identified within a lime mudstone unit (“Nodular lithozone” of the Monte Zugna Formation) immediately below the Loppio Oolitic Limestone, which can be correlated to a global perturbation of the carbon cycle in the mid-Sinemurian. The flooding of a wide area of formerly peritidal carbonate platform below the wave base was interpreted as due to an ecological crisis that caused a drop of carbonate production. We suggest that the subsequent recovery of carbonate production is marked by the shallowing upward succession of the Loppio Oolitic Limestone, which quickly occupied the accommodation space formed in consequence of the crisis, thus preventing the platform drowning. The Loppio Oolitic Limestone deposited as an initially highly porous oolitic sand that was then topped by a clayey interval (base of the Rotzo Formation), giving origin to a structural and stratigraphic configuration that could be favourable for the accumulation of hydrocarbons in the subsurface. The recurrence of similar facies superpositions, formed in consequence of perturbations of the carbon cycle with documented climatic effects, is discussed with regard to the Tethysian record of Mesozoic carbonate platforms.  相似文献   

13.
The Callovian–Oxfordian carbonates in the northeastern Amu Darya Basin of southeastern Turkmenistan, are composed of medium-to thick-bedded, mostly grainy limestones with various skeletal (bivalves, brachiopods, echinoderms, foraminifera, corals, and sponge) and non-skeletal grains (intraclasts, ooids, and peloids). The 6 microfacies types recognized in the Callovianand and 18 microfacies types in Oxfordian carbonates are grouped into two depositional phases, ramp and platform. The Callovian carbonates were deposited on a carbonate ramp, which evolved into a depositional platform in the Oxfordian. The main components of the Oxfordian platform margin complex are reefs and shoals. The principal reef builders are corals, algae and sponges. Regional tectonic movements, eustatic sea-level changes and sedimentation rates were the primary controlling factors of facies evolution during the Callovian–Oxfordian time in the northeastern Amu Darya Basin.  相似文献   

14.
The Oligocene-Miocene is a key interval that was characterized by a cooling trend associated with a progressive decrease of atmospheric CO2 concentrations that ends in the Present days.In the Central Mediterranean area, during this interval, three main carbonate platform domains developed in the foreland zone of the Apennines: the Latium-Abruzzi-Campana and Apulia domain in the central and south-eastern sectors of the chain and the Hyblea and Pelagian carbonate platforms in the south and south-western sectors. This work analyzes the impact and interplay of global and regional factors controlling the development of different carbonate factories and facies associations over the Chattian and the early Messinian time interval. Three well-studied examples of the central Mediterranean will be used: the Chattian ramp of Malta, the Latium-Abruzzi ramp, and the Bolognano ramp within the northern portion of the Apulian carbonate platform (outcropping on Majella Mountain).The Malta ramp represents the reference model for the heterozoan Oligo-Miocene carbonate factory, since it developed far from terrigenous input, in persistent oligotrophic conditions, and within a tropical climate. In contrast, the evolution of the central Apennine ramps is strictly related to the geodynamic evolution of the Apennines and simultaneously to global oceanographic changes.The Chattian Apennine ramps are affected by a basin conformation that favored the development of dominant currents and related dune fields. Successively, these ramps were exposed to strong Aquitanian volcanism that induced a shift towards an aphotic-dominated carbonate factory. Since the Burdigalian the development of the Apennines has affected the evolution of the investigated ramps through the eastward migration of foredeep systems and related nutrient input. This influence becomes more evident between the Tortonian and Messinian, during which reef-rimmed platforms developed in the rest of the Mediterranean while red algae still dominated in the Apennine ramps. Amongst the global events, the C-cycle perturbation, occurring between the late Burdigalian and Serravallian (Monterey event), leaves a clear sign on the two Apennine ramps.  相似文献   

15.
厄瓜多尔Oriente盆地南部区块沉积特征   总被引:3,自引:0,他引:3  
通过构造演化和地层发育特征分析,将厄瓜多尔Oriente盆地南部区块Napo组划分为4个层序。根据岩心中的潮汐层理、羽状交错层理、冲洗交错层理、具有大量贝壳等特征,识别研究区具有潮坪沉积环境。针对其沉积坡度缓,碎屑岩和碳酸盐岩互层沉积的特点,建立了缓坡混积陆棚边缘的沉积相模式,认为Oriente盆地南部区块Napo组发育有海岸平原、潮坪、局限台地和混积陆棚相。相序的垂向组合和平面迁移受海平面升降的控制,指出潮坪砂岩主要出现在各层序的陆架边缘体系域,水下浅滩砂岩出现在海侵体系域。从沉积角度看,潮汐水道砂体是最好的储层砂体。  相似文献   

16.
The Fingerdjupet Subbasin in the southwestern Barents Sea sits in a key tectonic location between deep rifts in the west and more stable platform areas in the east. Its evolution is characterized by extensional reactivation of N-S and NNE-SSW faults with an older history of Late Permian and likely Carboniferous activity superimposed on Caledonian fabrics. Reactivations in the listric NNE-SSW Terningen Fault Complex accommodated a semi-regional rollover structure where the Fingerdjupet Subbasin developed in the hangingwall. In parallel, the Randi Fault Set developed from outer-arc extension and collapse of the rollover anticline.N-S to NNE-SSW faults and the presence of other fault trends indicate changes in the stress regime relating to tectonic activity in the North Atlantic and Arctic regions. A latest Triassic to Middle Jurassic extensional faulting event with E-W striking faults is linked to activity in the Hammerfest Basin. Cessation of extensional tectonics before the Late Jurassic in the Fingerdjupet Subbasin, however, suggests rifting became localized to the Hammerfest Basin. The Late Jurassic was a period of tectonic quiescence in the Fingerdjupet Subbasin before latest Jurassic to Hauterivian extensional faulting, which reactivated N-S and NNE-SSW faults. Barremian SE-prograding clinoforms filled the relief generated during this event before reaching the Bjarmeland Platform. High-angle NW-prograding clinoforms on the western Bjarmeland Platform are linked to Early Barremian uplift of the Loppa High. The Terningen Fault Complex and Randi Fault Set were again reactivated in the Aptian along with other major fault complexes in the SW Barents Sea, leading to subaerial exposure of local highs. This activity ceased by early Albian. Post-upper Albian strata were removed by late Cenozoic uplift and erosion, but later tectonic activity has both reactivated E-W and N-S/NNE-SSW faults and also established a NW-SE trend.  相似文献   

17.
Shallow marine carbonate sedimentation dominated during the Albian in the western part of the Basque Cantabrian Basin in Northern Spain, forming the large Ramales Platform. This platform originated on a less subsiding tectonic block facing deeper and more subsiding areas to the south and east, which were created by tectonic activity in the Basin. Fracture-related hydrothermal dolomites hosted in these Albian carbonates are well exposed in the Asón valley area. Mapping in the studied area revealed several dolomite bodies related to main faults that cut the stratification almost at right angles. The bodies show a vertical development along fault-strike up to 900 m thick from which kilometre-scale branches expand following the stratification. Dolomitization is pervasive and independent of the limestone facies. Main dolomite facies are fine replacive, sucrosic and saddle. Petrography, C, O and Sr isotopes and fluid-inclusion analysis support a polyphase hydrothermal dolomitization at fluid temperatures between 75 °C and 240 °C and highly variable salinity of up to 22 wt.% NaCl. Fine dolomite replaced limestone first and then, sucrosic and saddle dolomites replaced part of the first dolomite and cemented newly created fracture porosity together with different calcite cements. Zebra dolomites and hydroclastic breccias are products of this later stage. Burial analysis of the host rock supports maximum burial temperatures of 80 °C and intense tectonic activity from the Albian to Turonian with a latest Albian peak subsidence. Albian stretching of the crust and subsequent ascent of the isotherms in the area is suggested to have produced sufficient heat to the dolomitizing fluids. The structural analysis indicates a strong transtensional tectonic activity in the studied area during Albian to Turonian time with the creation of an overstep between W–E trending and N–S trending faults. Fluids moved from subsiding areas to fractured uplifted parts of the Ramales Platform, enhanced by diapiric activity.  相似文献   

18.
高雅  唐勇  解习农 《海洋科学》2020,44(1):157-164
在阅读相关文献资料的基础上,分析了莫桑比克盆地的区域性幕式构造演化,并进一步总结归纳了其沉积充填特征。研究显示该盆地为东非边缘陆内裂谷盆地,以晚侏罗世破裂不整合面为界划分为断陷期及坳陷期,断陷期为陆相湖盆沉积充填,进入坳陷期后逐渐从海陆过渡相向浅海相和深水相演变。晚白垩世末和渐新世末两次构造抬升,使得盆地沉积环境及物源供应发生明显改变,也逐渐从深水相向滨浅海相或三角洲相演变。  相似文献   

19.
南海北部陆坡的地貌形态及其控制因素   总被引:11,自引:3,他引:8  
利用精细地貌图、高分辨率多道地震剖面等资料研究南海北部大陆边缘深水陆坡的地貌形态及控制因素。莺琼陆坡具有不同于其他部分的特殊性,红河物源是造成它的地貌形态的主控因素,南海北部陆坡的其他部分的地貌形态依然受控于古新世—渐新世的断陷期所形成的凹凸格局,其空间分布状况决定了陆坡地貌的形态和演变;物源类型和供给数量是陆坡地貌形态的次级因素,决定着陆坡地貌在总体框架下的局部特征,地震和海流等外动力因素则在一定程度上决定了陆坡沉积类型和微地貌形态。南海北部的这种特点与大西洋两岸的大部地区有显著区别,后者在晚侏罗—早第三纪的断陷期所形成的构造格局对陆坡地貌的影响已次于物源状况和向深水的物质分散体系。南海北部陆坡可自西而东依次划分为五段:莺琼陆坡段、神狐陆坡段、珠江海谷段陆坡、东沙陆坡段和台湾浅滩陆坡段;各陆坡段的地貌形态和走向上的差异全面反映了以上三个因素,尤其反映了断陷期构造格局分布状况的效应。  相似文献   

20.
The marine fill of ancient foreland basins is primarily recorded by depositional systems consisting of facies and facies associations deposited by a variety of sediment gravity flows in shallow-marine, slope and basinal settings. Tectonism and climate were apparently the main factors controlling the sediment supply, accommodation and depositional style of these systems. In marginal deltaic systems, sedimentation is dominated by flood-generated hyperpycnal flows that build up impressive accumulations of graded sandstone beds in front of relatively small high-gradient fan-deltas and river deltas. During periods of tectonically forced lowstands of sealevel, these systems may commonly shift basinward to shelfal and slope regions. Instability along the edges of these lowstand deltas and sand-laden hyperpycnal flows generate immature and coarse-grained turbidite systems commonly confined within structural depressions and generally encased in distal delta-front and prodeltaic deposits. Because of the close vertical and lateral stratigraphic relations between deltaic and turbidite-like facies, these marginal systems are herein termed ‘mixed depositional systems’. They are very common in the fill of foreland basins and represent the natural link between deltaic and basinal turbidite sedimentation.Basinal turbidite systems form in deeper water elongate highly subsiding troughs (foredeeps) that developed in front of advancing thrust systems. The impressive volumes of sheet-sandstones that form the fill of these troughs suggest that basinal turbidite systems are likely to form following periods of dramatic tectonic uplift of adjacent orogenic wedges and related high-amplitude tectonically-forced sealevel lowstands. In such deep basinal settings, sediment flux to the sea is dramatically increased by newly formed sediment in fluvial drainage basins and the subaerial and submarine erosion of falling-sealevel deltaic deposits generated during the uplift. Turbidity currents are very likely to be mainly triggered by floods, via hyperpycnal flows and related sediment failures, but can fully develop only in large-scale erosional conduits after a phase of catastrophic acceleration and ensuing bulking produced by bed erosion. This process leads to deepening and widening of the conduits and the formation of large-volume highly efficient bipartite currents whose energy dissipation is substantially reduced by the narrow and elongate basin geometry. These currents can thus carry their sediment load over considerable distances down the basin axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号