首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Orange Basin records the development of the Late Jurassic to present day volcanic-rifted passive margin of Namibia. Regional extension is recorded by a Late Jurassic to Lower Cretaceous Syn-rift Megasequence, which is separated from a Cretaceous to present day post-rift Megasequence by the Late Hauterivian (ca. 130 Ma) break-up unconformity. The Late Cretaceous Post-rift evolution of the basin is characterized by episodic gravitational collapse of the margin. Gravitational collapse is recorded as a series of shale-detached gravity slide systems, consisting of an up-dip extensional domain that is linked to a down-dip zone of contraction domain along a thin basal detachment of Turonian age. The extensional domain is characterized by basinward-dipping listric faults that sole into the basal detachment. The contractional domain consists of landward-dipping listric faults and strongly asymmetric basinward-verging thrust-related folds. Growth stratal patterns suggest that the gravitational collapse of the margin was short-lived, spanning from the Coniacian (ca. 90 Ma) to the Santonian (ca. 83 Ma). Structural restorations of the main gravity-driven system show a lack of balance between up-dip extension (24 km) and down-dip shortening (16 km). Gravity sliding in the Namibian margin is interpreted to have occurred as a series of episodic short-lived gravity sliding between the Cenomanian (ca. 100 Ma) and the Campanian (ca. 80 Ma). Gravity sliding and spreading are interpreted to be the result of episodic cratonic uplift combined with differential thermal subsidence. Sliding may have also been favoured by the presence of an efficient detachment layer in Turonian source rocks.  相似文献   

2.
《Marine and Petroleum Geology》2012,29(10):1932-1942
A dense seismic reflection survey with up to 250-m line-spacing has been conducted in a 15 × 15 km wide area offshore southwestern Taiwan where Bottom Simulating Reflector is highly concentrated and geochemical signals for the presence of gas hydrate are strong. A complex interplay between north–south trending thrust faults and northwest–southeast oblique ramps exists in this region, leading to the formation of 3 plunging anticlines arranged in a relay pattern. Landward in the slope basin, a north–south trending diapiric fold, accompanied by bright reflections and numerous diffractions on the seismic profiles, extends across the entire survey area. This fold is bounded to the west by a minor east-verging back-thrust and assumes a symmetric shape, except at the northern and southern edges of this area, where it actively overrides the anticlines along a west-verging thrust, forming a duplex structure. A clear BSR is observed along 67% of the acquired profiles. The BSR is almost continuous in the slope basin but poorly imaged near the crest of the anticlines. Local geothermal gradient values estimated from BSR sub-bottom depths are low along the western limb and crest of the anticlines ranging from 40 to 50 °C/km, increase toward 50–60 °C/km in the slope basin and 55–65 °C/km along the diapiric fold, and reach maximum values of 70 °C/km at the southern tip of the Good Weather Ridge. Furthermore, the local dips of BSR and sedimentary strata that crosscut the BSR at intersections of any 2 seismic profiles have been computed. The stratigraphic dips indicated a dominant east–west shortening in the study area, but strata near the crest of the plunging anticlines generally strike to southwest almost perpendicular to the direction of plate convergence. The intensity of the estimated bedding-guided fluid and gas flux into the hydrate stability zone is weaker than 2 in the slope basin and the south-central half of the diapiric fold, increases to 7 in the northern half of the diapiric fold and plunging anticlines, and reaches a maximum of 16 at the western frontal thrust system. Rapid sedimentation, active tectonics and fluid migration paths with significant dissolved gas content impact on the mechanism for BSR formation and gas hydrate accumulation. As we begin to integrate the results from these studies, we are able to outline the regional variations, and discuss the importance of structural controls in the mechanisms leading to the gas hydrate emplacements.  相似文献   

3.
A dense seismic reflection survey with up to 250-m line-spacing has been conducted in a 15 × 15 km wide area offshore southwestern Taiwan where Bottom Simulating Reflector is highly concentrated and geochemical signals for the presence of gas hydrate are strong. A complex interplay between north–south trending thrust faults and northwest–southeast oblique ramps exists in this region, leading to the formation of 3 plunging anticlines arranged in a relay pattern. Landward in the slope basin, a north–south trending diapiric fold, accompanied by bright reflections and numerous diffractions on the seismic profiles, extends across the entire survey area. This fold is bounded to the west by a minor east-verging back-thrust and assumes a symmetric shape, except at the northern and southern edges of this area, where it actively overrides the anticlines along a west-verging thrust, forming a duplex structure. A clear BSR is observed along 67% of the acquired profiles. The BSR is almost continuous in the slope basin but poorly imaged near the crest of the anticlines. Local geothermal gradient values estimated from BSR sub-bottom depths are low along the western limb and crest of the anticlines ranging from 40 to 50 °C/km, increase toward 50–60 °C/km in the slope basin and 55–65 °C/km along the diapiric fold, and reach maximum values of 70 °C/km at the southern tip of the Good Weather Ridge. Furthermore, the local dips of BSR and sedimentary strata that crosscut the BSR at intersections of any 2 seismic profiles have been computed. The stratigraphic dips indicated a dominant east–west shortening in the study area, but strata near the crest of the plunging anticlines generally strike to southwest almost perpendicular to the direction of plate convergence. The intensity of the estimated bedding-guided fluid and gas flux into the hydrate stability zone is weaker than 2 in the slope basin and the south-central half of the diapiric fold, increases to 7 in the northern half of the diapiric fold and plunging anticlines, and reaches a maximum of 16 at the western frontal thrust system. Rapid sedimentation, active tectonics and fluid migration paths with significant dissolved gas content impact on the mechanism for BSR formation and gas hydrate accumulation. As we begin to integrate the results from these studies, we are able to outline the regional variations, and discuss the importance of structural controls in the mechanisms leading to the gas hydrate emplacements.  相似文献   

4.
Regional seismic reflection and potential field data document the South Atlantic's break-up history, between 39°S and 19°S, from the Early Cretaceous onwards. Previous maps of distribution of volcanics along the margin showed volcanics along the whole African margin based on extrapolation of data. Based on previously unpublished marine geophysical data, we found the southernmost 460 km long margin segment to be lacking huge volumes of break-up related volcanic effusives. Northwards, break-up was accompanied by the emplacement of huge volumes of volcanic material, prominently featured in seismic sections as huge wedge-shaped seaward dipping reflectors (SDRs). Detailed mapping of offsets (left- and right-stepping) and variations in structural character of the volcanics reveal the segmentation along and the break-up history of the margin. Several superimposed SDR sequences, suggesting episodicity of volcanic emplacement (divided by periods of erosion and sedimentation), are distinct along southerly lines, losing prominence northwards.A main outcome of our study is that this passive margin is not continuously of the volcanic type and that the change from a non-volcanic to a volcanic margin occurs abruptly.We define four distinct First-order Segments along the 2400 km section of the southwestern African margin covered by our seismic data. From south to north these First-order Segments are: Magma-poor Segment I; Segment II with enormous SDRs volumes; decreasing SDRs volumes in Segment III; Segment IV again with enormous volcanic output, likely influenced by Walvis Ridge volcanism.Most important is that there is no systematic increase in the volumes of the effusives towards the Tristan da Cunha hot-spot. Rather there is an alternating pattern in the SDRs' volumes and widths.The boundary between the volcanic and magma-poor margin segments in the southernmost study area is sharp (10s of km), which we propose is reflected in magnetic anomaly data as well. We suggest that this variability along the margin is mainly due to a change in stretching/rifting character from oblique during the early stages of breakup to conventional seafloor spreading from Chron M4 (∼130 Ma) onwards.  相似文献   

5.
In 2001 and 2002, Australia acquired an integrated geophysical data set over the deep-water continental margin of East Antarctica from west of Enderby Land to offshore from Prydz Bay. The data include approximately 7700 km of high-quality, deep-seismic data with coincident gravity, magnetic and bathymetry data, and 37 non-reversed refraction stations using expendable sonobuoys. Integration of these data with similar quality data recorded by Japan in 1999 allows a new regional interpretation of this sector of the Antarctic margin. This part of the Antarctic continental margin formed during the breakup of the eastern margin of India and East Antarctica, which culminated with the onset of seafloor spreading in the Valanginian. The geology of the Antarctic margin and the adjacent oceanic crust can be divided into distinct east and west sectors by an interpreted crustal boundary at approximately 58° E. Across this boundary, the continent–ocean boundary (COB), defined as the inboard edge of unequivocal oceanic crust, steps outboard from west to east by about 100 km. Structure in the sector west of 58° E is largely controlled by the mixed rift-transform setting. The edge of the onshore Archaean–Proterozoic Napier Complex is downfaulted oceanwards near the shelf edge by at least 6 km and these rocks are interpreted to underlie a rift basin beneath the continental slope. The thickness of rift and pre-rift rocks cannot be accurately determined with the available data, but they appear to be relatively thin. The margin is overlain by a blanket of post-rift sedimentary rocks that are up to 6 km thick beneath the lower continental slope. The COB in this sector is interpreted from the seismic reflection data and potential field modelling to coincide with the base of a basement depression at 8.0–8.5 s two-way time, approximately 170 km oceanwards of the shelf-edge bounding fault system. Oceanic crust in this sector is highly variable in character, from rugged with a relief of more than 1 km over distances of 10–20 km, to rugose with low-amplitude relief set on a long-wavelength undulating basement. The crustal velocity profile appears unusual, with velocities of 7.6–7.95 km s−1 being recorded at several stations at a depth that gives a thickness of crust of only 4 km. If these velocities are from mantle, then the thin crust may be due to the presence of fracture zones. Alternatively, the velocities may be coming from a lower crust that has been heavily altered by the intrusion of mantle rocks. The sector east of 58° E has formed in a normal rifted margin setting, with complexities in the east from the underlying structure of the N–S trending Palaeozoic Lambert Graben. The Napier Complex is downfaulted to depths of 8–10 km beneath the upper continental slope, and the margin rift basin is more than 300 km wide. As in the western sector, the rift-stage rocks are probably relatively thin. This part of the margin is blanketed by post-rift sediments that are up to about 8 km thick. The interpreted COB in the eastern sector is the most prominent boundary in deep water, and typically coincides with a prominent oceanwards step-up in the basement level of up to 1 km. As in the west, the interpretation of this boundary is supported by potential field modelling. The oceanic crust adjacent to the COB in this sector has a highly distinctive character, commonly with (1) a smooth upper surface underlain by short, seaward-dipping flows; (2) a transparent upper crustal layer; (3) a lower crust dominated by dipping high-amplitude reflections that probably reflect intruded or altered shears; (4) a strong reflection Moho, confirmed by seismic refraction modelling; and (5) prominent landward-dipping upper mantle reflections on several adjacent lines. A similar style of oceanic crust is also found in contemporaneous ocean basins that developed between Greater India and Australia–Antarctica west of Bruce Rise on the Antarctic margin, and along the Cuvier margin of northwest Australia.  相似文献   

6.
About 16,000 km of multichannel seismic (MCS), gravity and magnetic data and 28 sonobuoys were acquired in the Riiser-Larsen Sea Basin and across the Gunnerus and Astrid Ridges, to study their crustal structure. The study area has contrasting basement morphologies and crustal thicknesses. The crust ranges in thickness from about 35 km under the Riiser-Larsen Sea shelf, 26–28 km under the Gunnerus Ridge, 12–17 km under the Astrid Ridge, and 9.5–10 km under the deep-water basin. A 50-km-wide block with increased density and magnetization is modeled from potential field data in the upper crust of the inshore zone and is interpreted as associated with emplacement of mafic intrusions into the continental margin of the southern Riiser-Larsen Sea. In addition to previously mapped seafloor spreading magnetic anomalies in the western Riiser-Larsen Sea, a linear succession from M2 to M16 is identified in the eastern Riiser-Larsen Sea. In the southwestern Riiser-Larsen Sea, a symmetric succession from M24B to 24n with the central anomaly M23 is recognized. This succession is obliquely truncated by younger lineation M22–M22n. It is proposed that seafloor spreading stopped at about M23 time and reoriented to the M22 opening direction. The seismic stratigraphy model of the Riiser-Larsen Sea includes five reflecting horizons that bound six seismic units. Ages of seismic units are determined from onlap geometry to magnetically dated oceanic basement and from tracing horizons to other parts of the southern Indian Ocean. The seaward edge of stretched and attenuated continental crust in the southern Riiser-Larsen Sea and the landward edge of unequivocal oceanic crust are mapped based on structural and geophysical characteristics. In the eastern Riiser-Larsen Sea the boundary between oceanic and stretched continental crust is better defined and is interpreted as a strike-slip fault lying along a sheared margin.  相似文献   

7.
A regional correlation of Neogene stratigraphy has been attempted along and across the NW European Atlantic continental margin, between Mid-Norway and SW Ireland. Two unconformity-bounded successions are recognised. These are referred to as the lower and upper Neogene successions, and have been dated as Miocene–early Pliocene and early Pliocene–Holocene, respectively, in age. Their development is interpreted to reflect plate-wide, tectonically driven changes in the sedimentary, oceanographic and latterly climatic evolution of the NE Atlantic region. The lower Neogene succession mainly preserves a record of deep-water sedimentation that indicates an expansion of contourite sediment drifts above submarine unconformities, within this succession, on both sides of the eastern Greenland–Scotland Ridge from the mid-Miocene. This is interpreted to record enhanced deep-water exchange through the Faroe Conduit (deepest part of the Southern Gateway), and can be linked to compressive inversion of the Wyville–Thomson Ridge Complex. Thus, a pervasive, interconnected Arctic–North Atlantic deep-water circulation system is a Neogene phenomenon. The upper Neogene succession records a regional change, at about 4 Ma, in the patterns of contourite sedimentation (submarine erosion, new depocentres) coeval with the onset of rapid seaward-progradation of the continental margin by up to 100 km. This build-out of the shelf and slope is inferred to record a marked increase in sediment supply in response to uplift and tilting of the continental margin. Associated changes in deep-water circulation may be part of an Atlantic-wide reorganisation of ocean bottom currents. Glacial sediments form a major component of the prograding shelf margin (shelf-slope) sediment wedges, but stratigraphic data indicate that the onset of progradation pre-dates significant high-latitude glaciation by at least 1 Ma, and expansive Northern Hemisphere glaciation by at least 3 Ma.  相似文献   

8.
We analyse tectonic and sedimentary field and subsurface data for the Angola onshore margin together with free-air gravity anomaly data for the offshore margin. This enables us to characterize the mode of syn-rift tectonism inherited from the Precambrian and its impact on the segmentation of the Angola margin. We illustrate that segmentation by the progressive transition from the Benguela transform-rifted margin segment to the oblique-rifted South Kwanza and orthogonal-rifted North Kwanza margin segments. The spatial variation in the intensity of post-rift uplift is demonstrated by the study of a set of geomorphic markers detected in the post-rift succession of the coastal Benguela and Kwanza Basins: Upper Cretaceous to Cenozoic uplifted palaeodeltas, erosional unconformities, palaeovalleys, Quaternary marine terraces and perched Gilbert deltas. The onshore Benguela transform margin has a distinctive, mainly progradational stratigraphic architecture with long-term sedimentary gaps and high-elevation marine terraces resulting from moderate Upper Cretaceous–Cenozoic to major Quaternary uplifting (i.e. 775–1775 mm/ky or m/Ma). By contrast, repeated synchronous episodes of minor Cenozoic to Quaternary uplift occurred along the orthogonal-rifted North Kwanza segment with its Cenozoic aggradational architecture, short-term sedimentary gaps and low-elevation Pleistocene terraces. Margin style likewise governs spatial variations in the volume of offshore sediment dispersed in the associated deep-sea fans. Along the low-lying North Kwanza margin, sedimentation of the broad Cenozoic to Pleistocene Kwanza submarine fan was probably governed by the width of the Kwanza interior palaeodrainage basin combined with the wet tropical Neogene climate. Along the high-rising Benguela margin, the small size of the Benguela deep-sea fan is related to the interplay between moderate continental sediment dispersal from long-lived small catchments and a warm, very arid Neogene climate. However, the driving forces behind the epeirogenic post-rift uplift of the Angola coastal bulge remain a matter of speculation.  相似文献   

9.
Contraction induced by block rotation above salt (Angolan margin)   总被引:1,自引:0,他引:1  
Gravity spreading above salt at passive margins is the major mode of deformation of post-salt sediments. Whereas this process generally creates a structural zoning, extensional upslope and contractional downslope, discrepancies can however arise. For example, evidence of contractional deformation occurs in the extensional domain of the Angolan margin, to the south of the Congo delta fan. Slope-parallel seismic lines show grabens, rollover and extensional diapirs. Conversely, strike-parallel seismic lines present inversion of early grabens, apparently related to a regional-scale decrease in sedimentary thickness away from the Congo delta. As the spreading rate and the characteristic spacing of structures are direct functions of sedimentary loading, one can expect structural changes along strike due to sedimentary thickness variations. This hypothesis was tested using spreading-type experiments of brittle-ductile models lying on top of an inclined rigid substratum. The experiments simulate the progradation of a synkinematic sedimentary cover above salt, with a lateral variation of sedimentation rate. The models show that the spreading rate was higher in the thicker part. Early grabens initiated perpendicular to the slope direction. Where sedimentation rate was high, they kept their orientation during spreading and formed purely extensional synsedimentary structures: Grabens, rollovers and diapirs. Where sedimentation rate was low, blocks separated by grabens rotated in a domino-type fashion but this domain continued to extend in a slope-parallel direction. Strike slip between blocks was entirely localised within the early grabens, which inverted and formed anticlines. Structures obtained in experiments are directly comparable to those in seismic lines of the Angolan margin. In both the Angolan margin examples and the laboratory experiments, block rotation is interpreted as slope-parallel strike-slip shear zones due to lateral variations in spreading rate.  相似文献   

10.
In recent years, exploration of the Lower Congo Basin in Angola has focused on the Neogene turbidite sand play of the Malembo Formation. Gravity tectonics has played an important role during deposition of the Malembo Formation and has imparted a well-documented structural style to the post-rift sediments. An oceanward transition from thin-skinned extension through mobile salt and eventually to thin-skinned compressional structures characterises the post-rift sediments. There has been little discussion, however, regarding the influence of these structures on the deposition of the Malembo Formation turbidite sands. Block 4 lies at the southern margin of the Lower Congo Basin and is dominated by the thin-skinned extensional structural style. Using a multidisciplinary approach we trace the post-rift structural and stratigraphic evolution of this block to study the structural controls on Neogene turbidite sand deposition.In the Lower Congo Basin the transition from terrestrial rift basin to fully marine passive margin is recorded by late Aptian evaporites of the Loeme Formation. Extension of the overlying post-rift sequences has occurred where the Loeme Formation has been utilised as a detachment surface for extensional faults. Since the late Cretaceous, the passive margin sediments have moved down-slope on the Loeme detachment. This history of gravity-driven extension is recorded in the post-rift sediments of Block 4. Extension commenced in the Albian in the east of the block and migrated westwards with time. In the west, the extension occurred mainly in the Miocene and generated allochthonous fault blocks or “rafts”, separated by deep grabens. The Miocene extension occurred in two main phases with contrasting slip vectors; in the early Miocene the extension vector was to the west, switching to southwest-directed extension in the late Miocene. Early Miocene faults and half-grabens trend north–south whereas late Miocene structures trend northwest–southeast. The contrast in slip vectors between these two phases emphasises the differences in driving mechanisms: the early Miocene faulting was driven by basinward tilting of the passive margin, but gravity loading due to sedimentary progradation is considered the main driver for the late Miocene extension. The geological evolution of the late Miocene grabens is consistent with southwest-directed extension due to southwest progradation of the Congo fan.High-resolution biostratigraphic data identifies the turbidite sands in Block 4 as early Miocene (17.5–15.5 Ma) and late Miocene (10.5–5.5 Ma) in age. Deposition of these sands occurred during the two main phases of gravity-driven extension. Conditions of low sedimentation rates relative to high fault displacement rates were prevalent in the early Miocene. Seafloor depressions were generated in the hangingwalls of the main extensional faults, ultimately leading to capture of the turbidity currents. Lower Miocene turbidite sand bodies therefore trend north–south, parallel to the active faults. Cross-faults and relay ramps created local topographic highs capable of deflecting turbidite flows within the half grabens. Flow-stripping of turbidity currents across these features caused preferential deposition of sands across, and adjacent to, the highs. Turbidite sands deposited in the early part of the late Miocene were influenced by both the old north–south fault trends and by the new northwest–southeast fault trends. By latest Miocene times turbidite channels crosscut the active northwest–southeast-trending faults. These latest Miocene faults had limited potential to capture turbidity currents because the associated hangingwall grabens were rapidly filled as pro-delta sediments of the Congo fan prograded across the area from the northeast.  相似文献   

11.
A set of multi-channel seismic profiles (∼15,000 km) is used to study the depositional evolution of the Cosmonaut Sea margin of East Antarctica. We recognize a regional sediment wedge, below the upper parts of the continental rise, herein termed the Cosmonaut Sea Wedge. The wedge is situated stratigraphically below the inferred glaciomarine section and extends for at least 1,200 km along the continental margin with a width that ranges from 80 to about 250 km. The morphology of the wedge and its associated depositional features indicate a complex depositional history, where the deep marine depositional sites were influenced by both downslope and alongslope processes. This interaction resulted in the formation of several proximal depocentres, which at their distal northern end are flanked by elongated mounded drifts and contourite sheets. The internal stratification of the mounded drift deposits indicates that westward flowing bottom currents reworked the marginal deposits. The action of these currents together with sea-level changes is considered to have controlled the growth of the wedge. We interpret the Cosmonaut Sea Wedge as a composite feature comprising several bottom current reworked fan systems. The wide spectrum of depositional geometries in the stratigraphic column reflects dramatic variations in sediment supply from the continental margin as well as varying interaction between downslope and alongslope processes.  相似文献   

12.
The structural evolution of the Messinian evaporites in the Levantine Basin   总被引:2,自引:0,他引:2  
The Levantine Basin in the South-eastern Mediterranean Sea is a world class site for studying the initial stages of salt tectonics driven by differential sediment load, because the Messinian evaporites are comparatively young, the sediment load varies along the basin margin, they are hardly tectonically overprinted, and the geometry of the basin and the overburden is well-defined. In this study we analyse depositional phases of the evaporites and their structural evolution by means of high-resolution multi-channel seismic data. The basinal evaporites have a maximum thickness of about 2 km, precipitated during the Messinian Salinity Crisis, 5.3–5.9 Ma ago. The evaporite body is characterized by 5 transparent layers sequenced by four internal reflections. We suggest that each of the internal reflection bands indicate a change of evaporite facies, possibly interbedded clastic sediments, which were deposited during temporal sea level rises. All of these internal reflections are differently folded and distorted, proving that the deformation was syn-depositional. Thrust angles up to 14° are observed. Backstripping of the Pliocene–Quaternary reveals that salt tectonic is mainly driven by the sediment load of the Nile Cone. The direction of lateral salt displacement is mainly SSW–NNE and parallel to the bathymetric trend. Apparent rollback anticlines off Israel result rather from differential subsidence than from lateral salt displacement. In the south-eastern basin margin the deposition of the Isreali Slump Complex (ISC) is coeval with the onset of salt tectonic faulting, suggesting a causal link between slumping processes and salt tectonics.

The superposition of ‘thin-skinned’ tectonics and ‘thick-skinned’ tectonics becomes apparent in several locations: The fold belt off the Israeli Mediterranean slope mainly results from active strike-slip tectonics, which becomes evident in faults which reach from the seafloor well below the base of the evaporites. Owing to the wrenching of the crustal segments which are bounded by deep-rooted fault lines like the Damietta–Latakia, Pelusium and Shelf Edge Hinge line the setting is transpressional south of 32°N, where the fault lines bend further towards the west. This adds a component of ‘thick-skinned’ transpression to the generally ‘thin-skinned’ compressional regime in the basin. Above 1.5 km of evaporites, a mud volcano is observed with the mud source seemingly within the evaporite layer. At the eastern Cyprus Arc, the convergence zone of the African and the Anatolian plates, deep-rooted compression heavily deformed the base of the evaporites, whereas at the Eratosthenes Seamount mainly superficial compression affecting the Post-Messinian sediments and the top of the evaporites is observed.  相似文献   


13.
The South China Sea is the largest marginal basin of SE Asia, yet its mechanism of formation is still debated. A 1000-km long wide-angle refraction seismic profile was recently acquired along the conjugate margins of the SW sub-basin of the South China Sea, over the longest extended continental crust. A joint reflection and refraction seismic travel time inversion is performed to derive a 2-D velocity model of the crustal structure and upper mantle. Based on this new tomographic model, northern and southern margins are genetically linked since they share common structural characteristics. Most of the continental crust deforms in a brittle manner. Two scales of deformation are imaged and correlate well with seismic reflection observations. Small-scale normal faults (grabens, horsts and rotated faults blocks) are often associated with a tilt of the velocity isocontours affecting the upper crust. The mid-crust shows high lateral velocity variation defining low velocity bodies bounded by large-scale normal faults recognized in seismic reflection profiles. Major sedimentary basins are located above low velocity bodies interpreted as hanging-wall blocks. Along the northern margin, spacing between these velocity bodies decreases from 90 to 45 km as the total crust thins toward the Continent–Ocean Transition. The Continent–Ocean Transitions are narrow and slightly asymmetric – 60 km on the northern side and no more than 30 km on the southern side – indicating little space for significant hyper-stretched crust. Although we have no direct indication for mantle exhumation, shallow high velocities are observed at the Continent–Ocean Transition. The Moho interface remains rather flat over the extended domain, and remains undisturbed by the large-scale normal faults. The main décollement is thus within the ductile lower crust.  相似文献   

14.
珠江口盆地白云凹陷裂后异常沉降研究及成因分析   总被引:1,自引:0,他引:1  
南海北部大陆边缘的许多盆地都发现了裂后沉降异常,位于深水陆坡区的白云凹陷是其中的典型代表。本文采用盆模软件Temis Suite 2007对穿过白云凹陷的3条地震剖面进行回剥分析,观测其不同时间基底的垂向运动特征,并将其与MCKENZIE经典拉张模型计算的理论裂后沉降值进行对比,发现白云主凹中心的裂后异常沉降量最大超过2.6 km,白云南凹最大异常沉降量接近2 km,高于白云凹陷北部边缘的异常沉降。凹陷东部的裂后沉降作用强于凹陷西部。对沉降曲线的研究发现,白云凹陷在中中新世(16.5~10.5 Ma)期间有一段沉降明显加速的过程,白云南凹尤为明显,可能与南海扩张停止事件有关。白云凹陷发育了巨厚的沉积,并且呈韧性伸展状态,本文认为下地壳流可能是导致白云凹陷裂后异常沉降最主要的因素。  相似文献   

15.
16.
The SW Iberian margin developed as a passive margin during Mesozoic times and was later inverted during the mainly Cenozoic Alpine orogeny. The initial syn-rift deposits include a Lower Jurassic evaporite unit of variable thickness. In the onshore, this unit is observed to thicken basinward (i.e., southward), in fault-controlled depocenters, and salt-related structures are only present in areas of thick initial evaporites. In the offshore, multiple salt-structures cored by the Lower Jurassic evaporites are interpreted on seismic reflection data and from exploratory drilling. Offshore salt structures include the allochthonous Esperança Salt Nappe, which extends over an area roughly 40 × 60 km. The abundance of salt-related structures and their geometry is observed to be controlled by the distribution of evaporite facies, which is in turn controlled by the structure of rift-related faulting. This paper presents a comprehensive study of salt tectonics over the entire onshore and offshore SW Iberian passive margin (southern Portugal and Gulf of Cadiz), covering all aspects from initial evaporite composition and thickness to the evolution of salt-related structures through Mesozoic extension and Cenozoic basin inversion.  相似文献   

17.
Salt tectonics at passive margins is currently interpreted as a gravity-driven process but according to two different types of models: i) pure spreading only driven by differential sedimentary loading and ii) dominant gliding primarily due to margin tilt (slope instability). A comparative analysis of pure spreading and pure spreading is made using simple mechanics as well as available laboratory experiments and numerical models that consider salt tectonic processes at the whole basin scale. To be effective, pure spreading driven by sedimentary loading requires large differential overburden thicknesses and therefore significant water depths, high sediment density, low frictional angles of the sediments (high fluid pore pressure) and a seaward free boundary of the salt basin (salt not covered by sediments). Dominant gliding does not require any specific condition to be effective apart from the dip on the upper surface of the salt. It can occur for margin tilt angles lower than 1° for basin widths in the range of 200-600 km and initial sedimentary cover thickness up to 1 km, even in the absence of abnormal fluid pressure. In pure spreading, salt resists and sediments drive whereas in dominant gliding both salt and sediments drive. In pure spreading, extension is located inside the prograding sedimentary wedge and contraction at the tip. Both extension and contraction migrate seaward with the sedimentary progradation. Migration of the deformation can create an extensional inversion of previously contractional structures. In pure spreading, extension is located updip and contraction downdip. Extension migrates downdip and contraction updip. Migration of the deformation leads to a contractional inversion of previously extensional structures (e.g. squeezed diapirs). Mechanical analysis and modelling, either analogue or numerical, and comparison with margin-scale examples, such as the south Atlantic margins or northern Gulf of Mexico, indicate that salt tectonics at passive margins is dominated by dominant gliding down the margin dip. On the contrary, salt tectonics driven only by differential sedimentary loading is a process difficult to reconcile with geological evidence.  相似文献   

18.
The diagenetic transformation of biogenic silica from opal-A to opal-CT was recognised on seismic reflection data over an area of 78 × 103 km2 on the mid-Norwegian margin. The opal-A/CT diagenetic boundary appears as a positive, high amplitude reflection that generally cross-cuts the hosting stratigraphy. We demonstrate that it is not a sea bottom simulating reflection (BSR) and also that is not in thermal equilibrium with the present day isotherms. We present arguments that three styles of deformation associated with the opal-A/CT reflection – polygonal faulting, regional anticlines and synclines and differential compaction folding – indicate that the silica diagenesis reaction front is fossilised at a regional scale. Isochore maps demonstrate the degree of conformity between the opal-A/CT reflection and three seismic horizons of Late Miocene to Early Pliocene age that potentially represent the paleo-seabed when ‘fossilisation’ of the reaction front took place. The seismic interpretational criteria for recognition of a fossilised diagenetic front are evaluated and the results of our study are integrated with previous studies from other basins of the NE Atlantic in order to determine if the arrest of silica diagenesis was diachronous along this continental margin.  相似文献   

19.
Xu  Junjie  Ren  Jianye  Luo  Pan 《Marine Geophysical Researches》2019,40(2):199-221

Gravitational collapse structures are commonly observed in shelf-margin deltas underlain by mobile shales. However, these structures are rarely accompanied by mud diapirs. This paper presents an updated study of the gravity-driven system in the West Luconia Deltas, a shelf-margin delta system, in the Kangxi Depression, southern South China Sea. Compared to the classical shale-detachment model, the syn-collapse deformation in the contractional domain in this study is accommodated mainly by thrust faults combined with mud diapirs rather than simply imbricated thrusts. Based on seismic interpretation and structural analysis, this gravity-driven system is divided into three domains, the extensional domain, the contractional domain and the transitional domain. All of these domains are intruded by mud diapirs. The quantitative analysis of the amounts of extension and contraction suggests that these structures mainly resulted from gravitational collapse rather than the tectonic compression. Quantification of the relative contributions of gravity spreading and gliding indicates that the gravitational collapse was mainly driven by gravity spreading. Two episodes of collapse are suggested by the analysis of the progradation of the West Luconia Deltas and the features of the syn-collapse structures. The first episode was minor and not accompanied by diapirism, whereas the second episode was major and accompanied by diapirism. The entire evolution of the GDS is divided into five stages: (1) the first episode of the gravitational collapse, lasted from the earliest Middle Miocene to the earliest Pliocene; (2) the deposition of an interval between the syn-collapse strata and the mobile shale, occurred in the Early Pliocene.; (3) the initiation of the second episode of the gravitational collapse, lasted from the Early Pliocene to the Late Pliocene; (4) the attenuation and basinward migration of the gravity-driven deformation, lasted from the Late Pliocene to the Early Pleistocene; and (5) the ending of the gravitational collapse, lasted from the Early Pleistocene to the present. The last four stages were accompanied by intensive diapirs which pierced the overlying strata and became targets for the hydrocarbon exploration.

  相似文献   

20.
The northwest African margin has been affected by numerous large-scale landslides during the late Quaternary. This study focuses on a recent collapse of the Sahara Slide headwall and characterises the resulting flow deposit. Core and seismic data from the base of the upper headwall reveal the presence of blocky slide debris, comprising heavily deformed hemipelagic slope sediments. The blocky slide debris spilled over a lower headwall 60 km downslope and formed a thick transparent debris flow unit. Cores recovered 200–250 km farther downslope contain a surficial turbidite that is interpreted to be linked to the headwall collapse event based on timing and composition. One core located approximately 200 km from the headwall scar (C13) contains debrite encased in turbidite. The debrite comprises sheared and contorted hemipelagic mudstone clasts similar as those seen in the vicinity of the Sahara Slide headwall, and lacks matrix. This debrite pinches out laterally within 25 km of C13, whereas the accompanying turbidite can be correlated across 700 km of the northwest African margin. The linked turbidite–debrite bed is interpreted to have formed through recent failure of the steep Sahara Slide headwall that either 1) generated both a debris flow and a turbidity current almost simultaneously, or 2) generated a debris flow which with entrainment of water and progressive dilution led to formation of an accompanying turbidity current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号