首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
<正>Hg同位素技术被越来越多地应用于示踪大气Hg的来源及其迁移转化途径。中国被认为是全球最大的大气Hg排放国,但关于我国大气降水的Hg同位素组成鲜有报道。我们于2012年9月到2013年8月共收集了贵阳的雨水样品15个进行汞同位素分析,所有样品具有明显偏负的质量分馏(MDF,δ202Hg)以及明显偏正的奇数汞同位素非质量分馏(odd-MIF,Δ199Hg),δ202Hg值变化范围为-4.27‰~-0.44‰,平均为-1.11‰,而Δ199Hg变化范围为+0.19‰~+1.16‰,均值为+0.62‰。同时,在部分样品中也观察到轻微偏正  相似文献   

2.
汞同位素是一个新兴的地球化学示踪手段。过去十多年来,随着质谱技术的飞跃发展,汞同位素地球化学研究取得了引人注目的进展,主要体现在如下两个方面。(1)实验及理论地球化学研究表明,汞生物地球化学循环的一系列过程都能导致显著的汞同位素质量分馏。此外,汞还是自然界少数存在同位素非质量分馏的金属元素之一。汞同位素非质量分馏对识别某些特殊地球化学过程(如光还原作用、挥发作用等)具有重要指示意义。(2)自然样品的汞同位素测试表明,自然界汞同位素组成(δ202 Hg和Δ199 Hg)变化可达10‰。目前,汞同位素地球化学已被应用于汞污染源示踪、汞生物地球化学过程判别等领域,并有望在不久的将来在汞的大气化学、生物地球化学等领域得到更为广泛的应用。  相似文献   

3.
<正>研究表明,大气汞同位素不仅具有质量分馏(MDF,δ202Hg),还具有偶数(200Hg)和奇数(199 or 201Hg)汞的非质量分馏(MIF,Δ199Hg)。汞同位素可为大气颗粒汞及其载体颗粒提供源解析信息。然而,分离和浓缩颗粒中的微量汞并准确分析其同位素比值是一个技术挑战。本研究通过优化热解-吸收法,富集纯化石英纤维膜负载颗粒汞,建立了颗粒汞的高精度同位素分析方法,并利用该方法对北京市区PM2.5中的汞同位素进行了初步研究。  相似文献   

4.
<正>近年来,同位素方法已经成为研究全球汞(Hg)生物地球化学循环的新途径。现有研究已经报道了自然界样品中Hg同位素的质量分馏(MDF,δ~(202)Hg)和非质量分馏(MIF),其中发现的主要是奇数Hg的非质量分馏(Odd-MIF,Δ~(199)Hg和Δ~(201)Hg)  相似文献   

5.
《岩矿测试》2021,(2):I0001-I0004
173汞同位素地球化学研究及其在矿床学中的应用进展汞是毒性最强的重金属元素之一,且容易在环境中迁移,已经备受国内外环境学家的关注。汞是唯一存在质量分馏和非质量分馏的金属元素,在地球化学示踪过程中其二维体系表现出明显的优势。  相似文献   

6.
矿冶影响区重金属的迁移和富集造成了严重的土壤重金属污染问题。深入了解矿冶影响区土壤中重金属的来源和迁移途径是开展土壤重金属污染高效治理的科学基础。近年来飞速发展的金属稳定同位素在识别土壤重金属污染来源和明确重金属迁移过程等方面有较大的应用优势。对金属稳定同位素分析技术、示踪原理及溯源模型进行系统分析,综述了矿产开采及冶炼过程(高温冶炼、电化学工艺和尾矿风化)导致的金属稳定同位素分馏研究进展,并总结了金属稳定同位素在矿冶影响区土壤重金属污染源解析的代表性应用成果。V同位素体系处于初期研究阶段,土壤重金属源解析应用研究相对缺乏;Zn、Cd和Hg同位素在识别高温冶炼过程相关的重金属污染源时有较大优势;Cu、Tl和Ni同位素可直接指示土壤中矿石的输入。但是,目前还存在部分金属稳定同位素分析难度大、溯源模型应用限制多、金属同位素易发生分馏导致源不确定等问题。在未来的工作中,需进一步探索和优化金属同位素分析方法,建立更多金属稳定同位素指纹图谱,开发适用性更强、结果更精确的溯源模型,明确复杂界面过程和反应中的金属稳定同位素分馏特征及机理,加强金属稳定同位素在追溯土壤重金属污染形成的时间尺度等方面的实...  相似文献   

7.
汞作为一种重要的成矿元素,广泛分布于不同地质体中,并参与成岩成矿作用。随着质谱技术的飞跃发展,汞同位素地球化学研究取得引人瞩目的进展。汞同位素被广泛地应用于示踪地球表生生物地球化学过程及汞污染等。近年来,汞同位素又被应用于揭示行星的演化过程、识别地质历史时期大火成岩省及示踪矿床成矿物质来源等方面。本文在前人研究的基础上,对不同地质储库汞同位素组成进行了系统总结。陨石、岩浆岩、变质岩、沉积岩、火山气体等地质储库汞同位素组成变化较大,部分样品还显示非质量分馏信息。本文着重阐述了低温热液矿床(现代热泉、汞矿床、铅锌矿床、锑矿床、金矿床)汞的赋存状态及同位素组成特征,构筑了汞同位素体系的基本格架。结合最新的研究成果,较全面地总结了矿床成矿过程中可能会发生的汞同位素分馏机制。热液矿床中汞同位素的质量分馏可能由流体挥发或者沸腾作用、冷凝作用、氧化还原反应、硫化物沉淀等引起。岩矿石中汞同位素的非质量分馏信息可能是地质历史时期汞光化学作用的产物,或者是继承某一特定的源岩信息所致。因此,未来汞同位素在示踪低温热液矿床的成矿物质来源、刻画成矿流体演化过程方面具有较大的应用潜力。  相似文献   

8.
海洋作为地球上最重要的汞储库之一,在调节全球汞循环中起着关键作用.近年来,汞同位素在研究海洋汞生物地球化学循环方面展现出明显优势,不但能示踪现代海洋汞污染来源及转化过程,还可重建古环境、古气候.总结了不同类型海洋样品汞同位素检测方法,系统归纳了其汞同位素数据,并重点阐述了海洋汞同位素分馏机制.总体上,目前海洋汞同位素数据还很有限,海洋汞循环关键过程的同位素分馏效应及潜在机理研究相对缺乏,精确源解析困难,难以对全球汞关键过程和循环通量进行准确验证和制约.未来还需要深入研究汞同位素分馏机理,进一步明确海洋中汞的来源、迁移及转化,为完善全球汞循环及精准防控海洋汞污染提供基础数据和理论支持.  相似文献   

9.
地表硅酸盐岩矿物风化通常是水体中钙、镁、钠、钾等元素的重要来源,然而相比于水体中的钙、镁和钠,目前对钾的水文地球化学行为的认识仍十分有限。表生地球化学领域最新研究证明风化、吸附等多种水岩反应伴随着较大的钾同位素分馏,表明钾同位素技术可以用于示踪地下水中钾的来源及迁移转化。文章通过系统总结上地壳、水圈和其他地表储库(植物、肥料)的钾同位素组成,发现水圈普遍比大陆上地壳富集41K,为识别地下水的钾来源提供了基础;通过总结钾同位素在常见的水岩作用过程(硅酸盐岩矿物溶解、次生黏土形成、吸附作用、离子交换反应)中的分馏行为,发现硅酸盐岩矿物溶解分馏有限,次生黏土矿物形成引起水体富集41K,表面吸附和离子交换使水体富集39K,不同水岩反应中K同位素行为差异为示踪地下水中钾的迁移转化过程提供了基础;列举了应用钾同位素示踪硅酸盐岩风化和水体污染的最新研究成果。由于钾同位素是硅酸盐岩风化的良好示踪剂,可以利用钾同位素揭示CO2较充足含水层中钾元素释放及迁移转化机理;由于表面吸附和离子交换控制的钾同位素分馏方向与风化控制的钾同位素分馏方向不同,可以利用钾同位素识别出地下水循环过程中多种水岩反应对钾迁移转化...  相似文献   

10.
黄土中硼的同位素组成变化及其气候示踪意义研究   总被引:1,自引:0,他引:1  
自然界中硼的同位素组成变化很大(δ11B=-30‰~+40‰),但在不问类型地质体中的分布或一定地质地球化学过程造成的分馏却有特定的范围。硼同位素分馏的主要原因是流体—固体反应体系的pH条件和水-岩比值变化。硼的这些特殊地球化学性质在不同地质地球化学作用示踪,特别是与流体作用有关的地球化学过程的研究中得到了广泛的应用。近年来有学者利用硼同位素组成示踪古海水的pH变化,但利用硼同位素示踪其它古环境或气候变化的研究却相当少。本文试图通过研究黄土中不同相态硼的同位素组成变化来识别黄土化学风化过程中流体介质的pH条件以及其它与风化作用强度有关的各种信息,并进一步发掘硼同位素组成变化在反映古气候、古环境  相似文献   

11.
Controlling bioaccumulation of toxic monomethylmercury (MMHg) in aquatic food chains requires differentiation between biotic and abiotic pathways that lead to its production and degradation. Recent mercury (Hg) stable isotope measurements of natural samples suggest that Hg isotope ratios can be a powerful proxy for tracing dominant Hg transforming pathways in aquatic ecosystems. Specifically, it has been shown that photo-degradation of MMHg causes both mass dependent (MDF) and mass independent fractionation (MIF) of Hg isotopes. Because the extent of MDF and MIF observed in natural samples (e.g., fish, soil and sediments) can potentially be used to determine the relative importance of pathways leading to MMHg accumulation, it is important to determine the potential role of microbial pathways in contributing to the fractionation, especially MIF, observed in these samples. This study reports the extent of fractionation of Hg stable isotopes during degradation of MMHg to volatile elemental Hg and methane via the microbial Hg resistance (mer) pathway in Escherichia coli carrying a mercury resistance (mer) genetic system on a multi-copy plasmid. During experimental microbial degradation of MMHg, MMHg remaining in reactors became progressively heavier (increasing δ202Hg) with time and underwent mass dependent Rayleigh fractionation with a fractionation factor α202/198 = 1.0004 ± 0.0002 (2SD). However, MIF was not observed in any of the microbial MMHg degradation experiments indicating that the isotopic signature left by mer mediated MMHg degradation is significantly different from fractionation observed during DOC mediated photo-degradation of MMHg. Additionally, a clear suppression of Hg isotope fractionation, both during reduction of Hg(II) and degradation of MMHg, was observed when the cell densities increased, possibly due to a reduction in substrate bioavailability. We propose a multi-step framework for understanding the extent of fractionation seen in our MMHg degradation experiments and, based on estimates of the rates of the various steps involved in this mer mediated pathway, suggest which steps in the process could contribute towards the observed extent of fractionation. This framework suggests that at lower cell densities catalysis by MerB was the rate limiting step while at higher cell densities transport into the cell, which does not cause fractionation, became the rate limiting step. In addition to presenting evidence for absence of MIF during mer mediated Hg transformations, based on the nature of Hg compounds and microbe-Hg interactions, we suggest that the nuclear spin dependent MIF (i.e., the magnetic isotope effect) is also unlikely to occur during other non mer mediated ‘dark’ microbial Hg transformations (e.g., formation of MMHg and oxidative degradation of MMHg). Because of the important implications of the absence of MIF during biological processes on Hg isotope systematics, we discuss theoretical considerations and experimental strategies that could be used to confirm this suggestion.  相似文献   

12.
Mass independent fractionation (MIF) of stable isotopes associated with terrestrial geochemical processes was first observed in the 1980s for oxygen and in the 1990s for sulfur isotopes. Recently mercury (Hg) was added to this shortlist when positive odd Hg isotope anomalies were observed in biological tissues. Experimental work identified photoreduction of aquatic inorganic divalent HgII and photodegradation of monomethylmercury species as plausible MIF inducing reactions. Observations of continental receptors of atmospheric Hg deposition such as peat, lichens, soils and, indirectly, coal have shown predominantly negative MIF. This has led to the suggestion that atmospheric Hg has negative MIF signatures and that these are the compliment of positive Hg MIF in the aquatic environment. Recent observations on atmospheric vapor phase Hg0 and HgII in wet precipitation reveal zero and positive Hg MIF respectively and are in contradiction with a simple aquatic HgII photoreduction scenario as the origin for global Hg MIF observations.This study presents a synthesis of all terrestrial Hg MIF observations, and these are integrated in a one-dimensional coupled continent-ocean-atmosphere model of the global Hg cycle. The model illustrates how Hg MIF signatures propagate through the various Earth surface reservoirs. The scenario in which marine photoreduction is the main MIF inducing process results in negative atmospheric Δ199Hg and positive ocean Δ199Hg of −0.5‰ and +0.25‰, yet does not explain atmospheric Hg0 and HgII wet precipitation observations. Alternative model scenarios that presume in-cloud aerosol HgII photoreduction and continental HgII photoreduction at soil, snow and vegetation surfaces to display MIF are necessary to explain the ensemble of natural observations. The model based approach is a first step in understanding Hg MIF at a global scale and the eventual incorporation of Hg stable isotope information in detailed global mercury chemistry and transport models.  相似文献   

13.
Photoreduction of Hg in natural water plays a crucial role in the production of elemental Hg and its biogeochemical cycle. Solar irradiation and dissolved organic carbon (DOC) in water are considered to be the major factors inducing Hg photoreduction. We investigated Hg isotope fractionation during photoreduction and its relationship with Hg/DOC ratios. Both mass dependent (MDF) and mass independent fractionation (MIF) was observed. MIF enriched 199Hg and 201Hg in the reactant Hg(II) and thus, significantly enhanced the fractionation between odd and even isotopes. This direction of MIF is consistent with magnetic isotope effect as the underlying cause for the odd isotope enrichment in reactants. MIF also occurred in dark controls. But in the absence of light, 199Hg and 201Hg were enriched in the product Hg(0), which is not explained by magnetic isotope effects. We propose that nuclear volume effect dominated Hg isotope fractionation under these conditions. The reduction kinetics and isotope fractionation during photoreduction strongly correlated to Hg/DOC concentration ratios. Although different reduction kinetics and fractionation factors were measured at different Hg/DOC ratios, the same Hg/DOC ratios led to almost identical results. The degree of MIF for the two odd isotopes was also affected by Hg/DOC ratios. For this reason, it is critical to study Hg photoreduction at a near-natural Hg/DOC ratio in order to better simulate natural conditions. We suggest that differences in Hg-DOC binding, which varies with Hg/DOC ratios, may be responsible for the relationship between Hg/DOC ratios and Hg photoreduction.  相似文献   

14.
The Wabigoon River (Ontario, Canada) was affected by dams starting in 1898 and was polluted with pulp and paper mill wastes starting in 1913 and mercury from a chlor-alkali plant from 1962 to 1975. A dated sediment core from a riverine lake was analysed to investigate resultant changes in the biogeochemistry of mercury as revealed by variations in mercury isotope ratios and sediment chemistry. A total mercury maximum formed by the mercury pollution coincided with minimums in the δ-values of the 198Hg/202Hg, 199Hg/202Hg, 200Hg/202Hg, and 201Hg/202Hg ratios, and the δ-values decreased in the order δ201Hg > δ200Hg > δ199Hg > δ198Hg. Thus, mass-dependent fractionation caused depletion in lighter isotopes, implying evaporation of Hg(0) and pollution of the atmosphere as well as the river-lake system. Concurrently, mass-independent fractionation caused 199Hg enrichment, possibly reflecting an independently documented upsurge in methylmercury production, and 201Hg depletion, suggesting removal of methylmercury with anomalously high 201Hg/199Hg ratios by aquatic organisms and accumulation of 201Hg-depleted inorganic Hg(II) in sediments. The δ201Hg/δ199Hg ratio rose abruptly when mercury pollution began, reflecting the resultant increase in methylmercury production, and remained high but gradually declined as the pollution abated, paralleling trends shown by methylmercury in aquatic organisms. The δ201Hg/δ199Hg ratio of pre-1962 background mercury increased ca. 1898 and ca. 1913–1929, suggesting accelerated methylmercury production due to stimulation of microbial activities by the damming of the river and the input of pulp and paper mill wastes, respectively. Other variations were linked to economic and technological factors that affected pulp and paper manufacture.  相似文献   

15.
With the improvement of analytical methods and the development of multiple-collector inductively coupled plasma-mass spectrometry (MC-ICP/MS), research on non-traditional stable isotope (Cu, Zn, Fe, Se, Mo, Cr, Hg) in geochemistry has made tremendous progress in the past decade. Recent studies have demonstrated that both organic and inorganic reactions may cause Hg isotope fractionation, and variations of Hg isotopic composition in the environment have been successfully employed to explain Hg pollution history, Hg sources and tracking Hg pathways in nature. Furthermore, Hg isotopic fractionation studies can be a powerful tool in the calibration of global Hg cycling models. Stable isotope geochemistry of Hg is therefore becoming a new frontier subject in earth sciences. Based on summarizing previous research, this paper outlines the main advances in the study of Hg stable isotopes with particular emphasis placed on a brief explanation of Hg isotope analytical techniques, possible Hg isotope fractionation mechanisms observed in both natural and experimental processes, Hg isotope composition variations in different environmental matrices, and the application prospects of the Hg stable isotopes in environmental geosciences.  相似文献   

16.
印度尼西亚是我国最大的煤炭进口国,本文应用电感耦合等离子体质谱、原子荧光光谱、直接测汞仪等技术分析了上海口岸31批进口印度尼西亚煤炭中的12种微量元素,结合数理统计方法研究该类煤炭中微量元素的赋存形态。结果表明,进口印尼煤炭中含有高汞煤、三级含砷煤,As、Hg的平均富集系数大于1,其迁移风险值得关注;Be、Cu、Mo、Cd、Sn、Pb含量均低于中国煤和世界煤炭的平均水平,体现出印尼煤炭低灰分的品质特征。12种微量元素和相关项目(灰分和全硫)可划分为3类:第一类归纳为黏土矿物吸附类,包括As、Be、Cr、Co、Ni、Cu、Mo、Cd、Sn、Pb、灰分;第二类归纳为硫铁矿类,包括Hg、全硫;第三类归纳为碳酸盐矿物类,包括Ba。本文研究结果对于指导进口煤炭开发、利用过程中的环境评价和洁净化处理具有一定的参考价值。  相似文献   

17.
选取松辽盆地内泥岩样品和煤样进行热模拟实验,建屯了两个样品成甲烷的氢、碳同位素分馏动力学模型并标定了动力学参数.分别以徐深1井区、沉降中心地质资料为例进行研究,表明两处源岩均有短期内大量生气的特点,气源岩生气期分别为距今95.5~73 Ma和距今0~73 Ma.计算得到两处源岩沙河子组暗色泥岩和煤、火石岭组暗色泥岩和煤所生天然气单独运聚成藏(自开始生烃到现今累积成藏)所对应的δDCH4 和δ13C1,进而定量计算出徐深1井区源岩所生甲烷的δDCH4 为-237.3‰,δ13C1为-28.8‰,沉降中心气源岩所生甲烷的δDCH4 为-2.5‰,δ13C1为-24.8‰.以各区域天然气混合后的δDCH4 作为来源气体的端元同位素值,根据物质平衡原理计算得到:徐深1井区源岩对该区气藏的贡献比例约占72%,沉降中心源岩的贡献比例约为28%.同理以δ13C1.方法得到徐深1井区源岩对该区气藏的贡献比例约占66%,沉降中心源岩的贡献比例约为34%.氢、碳同位素分馏的化学动力学地质应用结果存在的差异与同位素分馏模型标定所用热模拟实验为不加水实验有关.  相似文献   

18.
Twenty-nine low sulfur coal samples were selected to determine the magnitude and variability of mercury (Hg) content in a well-documented stratigraphy system including ten continuous coal seams in Zhuji Coal Mine, Huainan Coalfield, Anhui Province, North China. Mercury content of samples was measured on a direct mercury analyzer and confident results were obtained as evaluated by standard references, sample replicates and procedural blanks. The calculated overall mine average Hg content is 71.19?±?9.28 ng/g based on seam averages and weighting by the estimated reserve of each coal seam. The estimated Hg emission potential for Huainan coalfield is obviously lower than that calculated from coal emission factor in industrial use. An increasing trend of Hg content with the evolution of depositional environment was observed from Nos. 3 to 11-2 coal seams. Combining the evidence of sedimentology and paleontology, a better understanding was gained of the mechanism of Hg sequestration in specific coal benches. A large portion of Hg residing in the low sulfur coals presumably integrated to the functional groups of organic constitution, whereas pyrite was generally abundant in the high sulfur coals.  相似文献   

19.
With pending regulation of mercury emissions in United States power plants, its control at every step of the combustion process is important. An understanding of the amount of mercury in coal at the mine is the first step in this process. The Springfield coal (Middle Pennsylvanian) is one of the most important coal resources in the Illinois Basin. In Indiana and western Kentucky, Hg contents range from 0.02 to 0.55 ppm. The variation within small areas is comparable to the variation on a basin basis. Considerable variation also exists within the coal column, ranging from 0.04 to 0.224 ppm at one Kentucky site. Larger variations likely exist, since that site does not represent the highest whole-seam Hg nor was the collection of samples done with optimization of trace element variations in mind. Estimates of Hg capture by currently installed pollution control equipment range from 9–53% capture by cold-side electrostatic precipitators (ESP) and 47–81% Hg capture for ESP + flue-gas desulfurization (FGD). The high Cl content of many Illinois basin coals and the installation of Selective Catalytic Reduction of NOx enhances the oxidation of Hg species, improving the ability of ESPs and FGDs to capture Hg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号