首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A tractable method for investigating the linear stability of line-tied 2-D coronal magnetic fields is introduced. It is based on the Bernstein et al. (1958) energy principle and can be applied to non-isothermal equilibria with gravity, having a translational invariance. The perturbed potential energy integral is manipulated to produce either necessary conditions for stability to localized modes or sufficient conditions for stability to global modes. Each condition only requires the solution of a set of ordinary differential equations, integrated along the magnetic field lines. The tests are employed to two different classes of equilibria. A linear force-free field is shown to be completely stable, regardless of the shear. The role of pressure gradients, footpoint displacements, line-tying and stratification on an isothermal magneto-hydrostatic equilibrium is assessed.  相似文献   

2.
Velli  M.  Lionello  R.  Einaudi  G. 《Solar physics》1997,172(1-2):257-266
We present simulations of the non-linear evolution of the m=1 kink mode in line-tied coronal loops. We focus on the structure of the current concentrations which develop as a consequence of the instability in two different types of magnetic field configuration, one containing a net axial current and the other with a vanishing total axial current. In the first case, current sheets develop one third of the way from footpoint to loop apex (where the non-linear kink mode folds on itself) within the body of the current channel, while in the second case the current sheet develops at the loop apex at the interface between the current containing channel and the outer axial potential field. In both cases line-tying, while playing a stabilizing role in the linear theory, acts as a destabilizing agent for the non-linear resistive evolution. The unwrapping of magnetic field lines in the vanishing axial current model appears to be consistent with the geometry of compact recurrent loop flares.  相似文献   

3.
Methods for investigating the stability of line-tied, cylindrically-symmetric magnetic fields are presented. The energy method is used and the perturbed potential energy integral is manipulated to produce simple tests that predict either stability to general coronal disturbances or instability to localized modes, both satisfying photospheric line-tying. Using these tests the maximum amount of magnetic energy, that can be stored in the coronal magnetic field prior to an instability, can be estimated. The tests are applied to four different classes of equilibria and results are obtained for both arcade and loop geometries.  相似文献   

4.
The stability of coronal magnetic loops is investigated with the influence of the dense photosphere (line-tying) included. The stability method, based on the Finite Fourier Series method developed by Einaudi and Van Hoven (1981, 1983), is applied to two different equilibria and the approximate critical conditions for the onset of different azimuthal instabilities are investigated. It is shown that, for nearly force-free loops, the extended Suydam criterion, obtained by De Bruyne and Hood (1989) for localized modes, predicts the existence of a global kink instability when a localized mode is just destabilized. For loops with substantial gas pressure gradients it is the localized modes that are destabilized first of all and the extended Suydam criterion gives the necessary and sufficient conditions for an instability. In this latter case, the instability threshold for the kink mode is quite close to the localized mode threshold. Finally, it is shown that the growth times of the instabilities are comparable to the Aflvén travel times along the loop when the extended Suydam criterion is violated.  相似文献   

5.
The stability equations for localized (or ballooning) modes in the solar atmosphere are formulated. Dissipation due to viscosity, resistivity, and thermal conduction are included using the general forms due to Braginskii (1965). In addition, the effect of gravity, plasma radiation, and coronal heating are included. The resulting equations are one-dimensional and only involve derivatives along the equilibrium magnetic field. Thus, the stabilising influence of photospheric line-tying, which is normally neglected in most numerical simulations, can be studied in a simple manner. Two applications to sound wave propagation and thermal instabilities in a low-beta plasma are considered with a view to determining realistic coronal boundary conditions that model the lower, denser levels of the solar atmosphere in a simple manner.Research Assistant of the Belgian National Fund for Scientific Research.  相似文献   

6.
This paper treats the prominence model of Low (1993) to examine more complicated sheet currents than those used in the original model. Nonlinear force-free field solutions, in Cartesian coordinates, invariant in a given direction, are presented to show the possibility of an inverse-polarity prominence embedded in a large twisted flux tube. The force-free solution is matched to an external, unsheared, potential coronal magnetic field. These new solutions are mathematically interesting and allow an investigation of different profiles of the current intensity, magnetic field vector and mass density in the sheet. These prominence models show a general increase in magnetic field strength with height in agreement with observations. Other prominence properties are shown to match the observed values.  相似文献   

7.
The ideal MHD stability of the 2D twisted magnetic flux tube prominence model of Cartledge and Hood (1993) is investigated. The model includes a temperature profile that varies from realistic prominence values up to typical coronal values. The prominence is considered to be of finite-width and finite height. The stability properties of the prominence models are studied by using a method that generates a separate necessary condition and a sufficient condition. These conditions give bounds on the parameters that define marginal stability. In many cases these bounds are quite close so that further, more detailed, stability calculations are not necessary. A number of parameter regimes are examined, corresponding to different profiles of the prominence temperatures, densities, and magnetic field shear. It is found that the model admits realistic stable and unstable loop lengths for observed prominence parameters when the axial magnetic field component does not vanish.  相似文献   

8.
A model is presented for the penetration into the corona of a new magnetic field of a developing bipolar region and for its interaction with an old large-scale coronal field. An important feature of the model is a reconnection of the old and new fields inside the current sheet arising along the zero line of the total magnetic field calculated in the potential approximation. The magnetic reconnection and accumulation of plasma inside the current sheet can explain the appearance of dense coronal loops and the energy source at their tops. The plasma together with the magnetic lines is flowed into the sheet from both its sides. This fact explains the appearance of coronal cavities above the loops. If the large-scale field gradually decreases with the height, the loop motion is slowed down. The account of the dipolar structure of the magnetic field at large heights explains the possibility of a rapid break of the new field through the corona and the appearance of transients and open field regions - the coronal holes. In this case a fast rising current sheet can be a source of accelerated particles and of type II radio burst, instead of the shock wave considered usually.  相似文献   

9.
We show that the non-radial field-boundary condition (or the line-of-sight boundary condition) for the Laplacian-like equation developed by Bogdan and Low (1986) is sufficient to uniquely determine the model coronal magnetic field provided the electric currents are horizontal (or zero, the current-free case) at the solar surface as well as in the solar atmosphere between the photosphere and the source surface. The derived recursion formulae for the spherical harmonic coefficients can be used to determine the spherical harmonic coefficients in the solutions of the horizontal current models very efficiently.  相似文献   

10.
In this article, we investigate the possibility of transient growth in the linear perturbation of current sheets. The resistive magnetohydrodynamics operator for a background field consisting of a current sheet is non-normal, meaning that associated eigenvalues and eigenmodes can be very sensitive to perturbation. In a linear stability analysis of a tearing current sheet, we show that modes that are damped as \(t\rightarrow \infty \) can produce transient energy growth, contributing faster growth rates and higher energy attainment (within a fixed finite time) than the unstable tearing mode found from normal-mode analysis. We determine the transient growth for tearing-stable and tearing-unstable regimes and discuss the consequences of our results for processes in the solar atmosphere, such as flares and coronal heating. Our results have significant potential impact on how fast current sheets can be disrupted. In particular, transient energy growth due to (asymptotically) damped modes may lead to accelerated current sheet thinning and, hence, a faster onset of the plasmoid instability, compared to the rate determined by the tearing mode alone.  相似文献   

11.
We consider an approximation sometimes used for current sheets in flux-rope models of eruptive flares. This approximation is based on a linear expansion of the background field in the vicinity of the current sheet, and it is valid when the length of the current sheet is small compared to the scale length of the coronal magnetic field. However, we find that flux-rope models which use this approximation predict the occurrence of an eruption due to a loss of ideal-MHD equilibrium even when the corresponding exact solution shows that no such eruption occurs. Determination of whether a loss of equilibrium exists can only be obtained by including higher order terms in the expansion of the field or by using the exact solution.  相似文献   

12.
The high degree of symmetry often assumed in studies of the structure and stability of coronal magnetic field configurations is restrictive and can yield misleading results. We have therefore developed fully three-dimensional numerical methods for constructing force-free equilibria and for examining their stability properties, which make no assumptions about symmetry. A test of the stability analysis has been performed by applying it to the Gold-Hoyle twisted flux tube, which is known to be kink-unstable if the helical field makes more than about one turn between the line-tying end-plates. Our preliminary result is that the critical number of turns is about 1.1, in good agreement with the previous best estimate. However, we find that the growth rate, which has not been discussed previously, is orders of magnitude smaller than expected, even when the flux tube is twisted far beyond the stability limit.  相似文献   

13.
It is suggested that the solar current sheet, extending from a coronal streamer, develops a large-scale radial deformation, at times with a very steep gradient at the Earth's distance. The associated magnetic field lines (namely, the interplanetary magnetic field (IMF) lines) are expected to have also a large gradient in the vicinity of the current sheet. It is also suggested that some of the major geomagnetic storms occur when the Earth is located in the region where IMF field lines have a large dip angle with respect to the ecliptic plane for an extended period (6–48 h), as a result of a steep radial deformation of the current sheet.  相似文献   

14.
A circuit model for filament eruptions and two-ribbon flares   总被引:2,自引:0,他引:2  
We derive a circuit model for solar filament eruptions and two-ribbon flares which reproduces the slow energy build up and eruption of the filament, and the energy dissipation in a current sheet at the top of post-flare loops during the two-ribbon flare. In our model the free magnetic energy is concentrated in a current through the filament, another current through an underlying current sheet, and surface return currents. The magnetic field configuration, generated by these currents and a general photospheric background field, has a topology similar to the field topology derived from observations.We consider two circuits, that of the filament and its return current, and that of the current sheet and its return current. These circuits are inductively coupled and free energy stored in the filament in the pre-flare phase is found to be transferred to the sheet during the impulsive phase, and rapidly dissipated there. A comparable amount of magnetic energy is converted into kinetic energy of the ejected filament. The basic equations of the model are the momentum equations for the filament and the current sheet, and the induction equations for the filament and sheet circuits. The derivation of the equations is an extension of previous models by Kuperus and Raadu, Van Tend and Kuperus, Syrovatskii, and Kaastra. The set of equations is closed in the sense that only the initial conditions and a number of parameters, all related to pre-flare observables, are needed to calculate the evolution of the system. The pre-flare observations we need to determine these parameters, are: (1) a magnetogram, (2) an picture, (3) a measurement of the coronal density in the region, and (4) estimates of the photospheric velocity fields in the region.In the solutions for the evolution of the filament current sheet system we distinghuish 4 phases: (1) a slow energy build up, lasting for almost two days, during which the filament evolves quasi-statically, (2) a metastable state, lasting for about three hours, during which the filament is susceptible to flare triggers, and during which a current sheet emerges, (3) the eruptive phase, with strong acceleration of the filament, during which a large current is induced and dissipated in the current sheet, and energy is injected in the post-flare loops, and finally (4) a post-flare phase, in which the filament acceleration declines and the current sheet vanishes.From further numerical work we derive the following conclusions: (1) The magnetic flux input into the filament circuit has to surpass a certain threshold for an eruption to occur. Below that threshold we find solutions representing quiescent filaments. (2)Flare triggers are neither necessary nor sufficient for an eruption, but may set off the eruption during the metastable state. (3) The model reproduces the increase in shear in the filament prior to the eruption, through adecline of the filament current, in contrast to most models for filament eruptions. (4) The ratio of energy lost as kinetic energy of ejecta to the energy radiated away in the post-flare loops is sensitively dependent on the resistance of the current sheet. (5) Flare prediction is possible with this model, but the potential for triggering during the metastable state complicates the prediction of the exact moment of eruption.Former NAS/NRC Resident Research Associate.ST Systems Corporation.  相似文献   

15.
We present a simplified analytic model of a quadrupolar magnetic field and flux rope to model coronal mass ejections. The model magnetic field is two-dimensional, force-free and has current only on the axis of the flux rope and within two current sheets. It is a generalization of previous models containing a single current sheet anchored to a bipolar flux distribution. Our new model can undergo quasi-static evolution either due to changes at the boundary or due to magnetic reconnection at either current sheet. We find that all three kinds of evolution can lead to a catastrophe, known as loss of equilibrium. Some equilibria can be driven to catastrophic instability either through reconnection at the lower current sheet, known as tether cutting, or through reconnection at the upper current sheet, known as breakout. Other equilibria can be destabilized through only one and not the other. Still others undergo no instability, but they evolve increasingly rapidly in response to slow steady driving (ideal or reconnective). One key feature of every case is a response to reconnection different from that found in simpler systems. In our two-current-sheet model a reconnection electric field in one current sheet causes the current in that sheet to increase rather than decrease. This suggests the possibility for the microscopic reconnection mechanism to run away.  相似文献   

16.
A necessary and a sufficient condition are derived for the ideal magnetohydrodynamic stability of any 3D magnetohydrostatic equilibrium using the energy method and incorporating photospheric line-tying. The theory is demonstrated by application to a simple class of theoretical 3D equilibria. The main thrust of the method is the formulation of the stability conditions as two sets of ordinary differential equations together with appropriate boundary conditions which may be numerically integrated along tied field lines one at a time. In the case of the shearless fields with non-negligible plasma pressure treated here the conditions for stability arenecessary and sufficient. The method employs as a trial function a destabilizing ballooning mode, of large wave number vector perpendicular to the equilibrium field lines. These modes may not be picked up in a solution of the full partial differential equations which arise from a direct treatment of the problem.  相似文献   

17.
A simple model current sheet is studied numerically. Consistent fields and particle trajectories, and their dependence on electron and proton temperature, convection velocity and normal field, Bz, linking through the current sheet, are presented and discussed. It is shown that the protons, which are the major current carriers, largely retain the decoupling of the motion in the x-y plane from the normal oscillations as in the ‘cold’ current sheet. The positive potential of the current sheet is shown to be sufficient to trap some energetic electrons, the motion of which enables the predominance of energetic electrons towards the dawn side of the tail to be understood. Semi-empirical relationships for the thickness and the potential of the current sheet are obtained.

The consequences of such a current sheet on the behaviour of the geomagnetic tail are investigated. Using Faraday's law and the consistent cross tail electric field it is shown that the effect of a southward turning of the interplanetary field is to lead to a decrease in Bz,an increase of the current sheet conductivity, and a growth of stored field energy, i.e. the current sheet blocks merging. The decrease of the resistance of the current sheet is limited by the finite width of the tail. Finally, it is pointed out that if the conditions which bring about the growth of field energy persist, then the collapse of the field lines characteristic of substorms may occur.  相似文献   


18.
当背景磁场在日冕中存在零磁场线时,反向新磁通量的喷发将会产生双重电流片,包括零场区附近的磁场受到挤压而形成的横向电流片和新喷发场、原背景场之间形成的拱形电流片、本文用一对线偶极子来模拟背景场,用一对线磁荷来模拟反向喷发场,讨论了上述双重电流片的形成和演变过程。在电流片形成过程中,物质将向电流片集中。拱形电流片物质主要来自过渡层和光球层,并通过辐射损失进一步冷却,形成低温日珥环;横向电流片的物质则全部来自日冕,从而形成高温日冕环。以上结果可用来解释1984年4月14日观测到的日冕瞬变。  相似文献   

19.
On the maximum energy release in flux-rope models of Eruptive Flares   总被引:1,自引:0,他引:1  
We determine the photospheric boundary conditions which maximize the magnetic energy released by a loss of ideal-MHD equilibrium in two-dimensional flux-rope models. In these models a loss of equilibrium causes a transition of the flux rope to a lower magnetic energy state at a higher altitude. During the transition a vertical current sheet forms below the flux rope, and reconnection in this current sheet releases additional energy. Here we compute how much energy is released by the loss of equilibrium relative to the total energy release. When the flux-rope radius is small compared to its height, it is possible to obtain general solutions of the Grad-Shafranov equation for a wide range of boundary conditions. Variational principles can then be used to find the particular boundary condition which maximizes the magnetic energy released for a given class of conditions. We apply this procedure to a class of models known as cusp-type catastrophes, and we find that the maximum energy released by the loss of equilibrium is 20.8% of the total energy release for any model in this class. If the additional restriction is imposed that the photospheric magnetic field forms a simple arcade in the absence of coronal currents, then the maximum energy release reduces to 8.6%.  相似文献   

20.
A double current sheet forms when an opposite magnetic flux emerges into a background magnetic field which has a zero field-line in the corona. It consists of an upper sheet, resulting from the squeezing of field lines near the original zero field region and a lower sheet formed in the region between the new and old fields. We use a pair of linear dipoles to model the background and a pair of line charges to model the emerging field and discuss the formation and evolution of the double current sheet. Matter will condense onto the sheets during their formation. The matter in the lower sheet comes mainly from the transition region and the photosphere; it is further cooled by radiation, giving rise to a low-temperature prominence loop. The matter in the upper sheet comes from the corona and forms a high-temperature coronal loop.This scenario seems to be realized in the coronal transient of 1984 April 14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号