首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A new model for unsaturated flow in porous media, including capillary hysteresis and dynamic capillary effects, is analyzed. Existence and uniqueness of solutions are established and qualitative and quantitative properties of (particular) solutions are analyzed. Some results of numerical computations are given. The model under consideration incorporates simple play-type hysteresis and a dynamic term (time-derivative with respect to water content) in the capillary relation. Given an initial water content distribution, the model determines which parts of the flow domain are in drainage and which parts are in imbibition. The governing equations can be recast into an elliptic problem for fluid pressure and an evolution equation for water content. Standard methods are used to obtain numerical results. A comparison is given between J.R. Philip's semi-explicit similarity solution for horizontal redistribution in an infinite one-dimensional domain and solutions of the new model.  相似文献   

2.
In the present study, the use of one of the recent dependent domain models of capillary hysteresis in the numerical analysis of intermittent infiltration and redistribution of water in two types of soils (a sand and Rubicon Sandy Loam) has been shown. The numerical results for both the soils have been presented in terms of pressure head depth, moisture content depth and the pressure head-moisture content relationships. The capillary hysteresis model has been found to be very useful for the prediction of both wetting and drying scanning curves of various orders.  相似文献   

3.
陈盼  韦昌富  李幻  陈辉  魏厚振 《岩土力学》2010,31(Z2):383-389
多孔介质中的流动问题,与孔隙介质的特性,含水量状态以及含水量的变化历史密切相关。基于毛细循环滞回理论模型,考虑含水量变化历史对土水特征关系的影响,在开发的U-DYSAC2有限元程序中进行了相应的数值实施。在试验给定的初边值条件下进行了非饱和渗流模拟分析,并将模拟结果与实测数据比较,表明在压力边界条件反复变化下,考虑滞回效应能获得更接近实测的结果,证实该模型在模拟各种循环变化条件下非饱和土渗流初边值问题的适用性与必要性。对入渗重分布反复变化条件下非饱和土柱流动的数值模拟表明,考虑滞回与不考虑滞回条件下,含水量、孔隙水压力和湿峰的迁移的预测在入渗后的重分布过程差异较大。考虑滞回效应时,土柱上部的脱湿速率、下部的吸湿速率比不考虑滞回时要低。从而证实了非饱和多孔介质中的土水状态依赖于含水量变化,而且强烈依赖于土体的水力路径变化。因此,循环边界条件变化下,毛细滞回效应在非饱和渗流模拟中的影响显著,必须加以考虑。  相似文献   

4.
非饱和土毛细滞回内变量模型的修正   总被引:1,自引:1,他引:0  
李幻  韦昌富  颜荣涛  曹华峰 《岩土力学》2010,31(12):3721-3726
土-水特征关系是基质吸力和含水率之间关系。在反复干湿循环路径下土-水特征曲线呈现出毛细滞回特性。基于毛细滞回内变量理论和传统的土-水特征关系经验模型,提出了能模拟在任意干湿循环路径下土-水特征关系的修正模型。该模型比原模型增加了一个可逆参数,考虑了含水率的可逆变化,使扫描线在靠近边界线的时候斜率不会无限大,同时保留了原模型精度。通过与文献中的试验结果进行比较,修正模型可以更好地模拟非饱和土的土-水特征关系的循环滞回特性,并讨论了可逆参数的确定方法。  相似文献   

5.
A numerical model based on the theory of mixtures is proposed for the nonlinear dynamic analysis of flow and deformation in unsaturated porous media. Starting from the conservation laws, the governing differential equations and the finite element incremental approximations suitable for nonlinear large deformation static and dynamic analyses are derived within the updated Lagrangian framework. The coupling between solid and fluid phases is enforced according to the effective stress principle taking suction dependency of the effective stress parameter into account. The effect of hydraulic hysteresis on the effective stress parameter and soil water characteristic curve is also taken into account. The application of the approach is demonstrated through numerical analyses of several fundamental nonlinear problems and the results are compared to the relevant analytical solutions. The effects of suction, large deformations and hydraulic hysteresis on static and dynamic response of unsaturated soils are particularly emphasized.  相似文献   

6.
Water flow is greatly influenced by the characteristics of the domain through which the process occurs. It is generally accepted that earth materials have extreme variations from point to point in space. Consequently, this heterogeneity results in high variation in hydraulic properties of soil. In order to develop an accurate predictive model for transport processes in soil, the effects of this variability should be considered. In this study a two‐dimensional stochastic finite element flow model was developed for simulation of water flow through unsaturated soils. In this model, the stochastic partial differential governing equation of water flow, obtained from implementation of the perturbation‐spectral stochastic method on classical Richard's equation, was solved using a finite element method in the space domain and a finite difference scheme in the time domain. The effective hydrological parameters embedded in the mathematical model depend on time derivatives of capillary tension head; this makes possible to consider the hysteresis due to large‐scale variability of soil hydrological properties. The model is also capable of simulating infiltration and evaporation events and rapid change in the land surface boundary condition from one type event to another, based on a scheme used in the model for implementation of land surface boundary condition. The model was validated with the data obtained from a layered lysimeter test. The model was also used to simulate water flow under a long irrigation furrow. The results obtained with this model show better agreement with experimental measurements in comparison with a deterministic model. The possible reason for this agreement is that in the developed model, the influence of the variability of the properties of soil and effects of parameter hysteresis on water flow and water content redistribution are considered. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
非饱和介质中热能传输及水分迁移的数值积分解   总被引:1,自引:0,他引:1  
白冰  刘大鹏 《岩土力学》2006,27(12):2085-2089
在给出非饱和介质热能-水分传输的耦合质量控制方程和基于Fourier热传导定律的热能平衡方程的基础上,对热能传输及水分迁移的基本特征和机理进行了分析。其中,考虑了温度势、吸力势和重力势的耦合作用影响。给出有热源时控制方程的简化形式,并对半无限体自由表面作用平面热源条件下介质内非稳态温度场、体积含水率分布场进行数值积分求解。利用这些解答给出常热源强度和变热源强度两种情况下,温度场随时间的变化特征以及水分迁移的演化过程,并分析了重力项对计算结果的影响。  相似文献   

8.
In this paper, we present a numerical model for simulating two-phase (oil–water and air–water) incompressible and immiscible flow in porous media. The mathematical model which is based on a fractional flow formulation is formed of two nonlinear partial differential equations: a mean pressure equation and a water saturation equation. These two equations can be solved in a sequential manner. Two numerical methods are used to discretize the equations of the two-phase flow model: mixed hybrid finite elements are used to treat the pressure equation, h-based Richards' equation and the diffusion term in the saturation equation, the advection term in the saturation equation is treated with the discontinuous finite elements. We propose a better way to calculate the nonlinear coefficients contained in our equations on each element of the discretized domain. In heterogeneous porous media, the saturation becomes discontinuous at the interface between two porous media. We show in this paper how to use the capillary pressure–saturation relationship in order to handle the saturation jump in the mixed hybrid finite element method. The two-phase flow simulator is verified against analytical solutions for some flow problems treated by other authors.  相似文献   

9.
10.
黄启迪  赵成刚  蔡国庆 《岩土力学》2016,37(7):1857-1867
基于热力学内变量理论,提出能综合考虑毛细滞回效应和非饱和土体积变形影响的土-水特征曲线模型。热力学第二定律推导结果表明:毛细滞回现象和塑性变形本质上是一种耗散行为;吸力和饱和度的变化不仅与流相变化直接相关,而且也受到固相体积变化的约束与影响;土-水特征曲线的流相体积变化与固相变形之间存在相互耦合作用。从微观上阐明滞回现象产生的机制以及变形对吸力的影响,建立了考虑体变及滞回效应的土-水特征曲线一般性模型。然后采用边界面塑性理论,在只增加两个新参数的情况下,建立了一个简化的能描述毛细滞回及塑性孔隙比变化影响的新模型。最后,利用已有试验数据对这一模型进行了验证,结果表明,新模型能考虑土体变形的影响,并能较为准确地描述毛细滞回现象,模型预测结果与已有的试验数据吻合较好。  相似文献   

11.
One of the driving forces in porous media flow is the capillary pressure. In standard models, it is given depending on the saturation. However, recent experiments have shown disagreement between measurements and numerical solutions using such simple models. Hence, we consider in this paper two extensions to standard capillary pressure relationships. Firstly, to correct the nonphysical behavior, we use a recently established saturation-dependent retardation term. Secondly, in the case of heterogeneous porous media, we apply a model with a capillary threshold pressure that controls the penetration process. Mathematically, we rewrite this model as inequality constraint at the interfaces, which allows discontinuities in the saturation and pressure. For the standard model, often finite-volume schemes resulting in a nonlinear system for the saturation are applied. To handle the enhanced model at the interfaces correctly, we apply a mortar discretization method on nonmatching meshes. Introducing the flux as a new variable allows us to solve the inequality constraint efficiently. This method can be applied to both the standard and the enhanced capillary model. As nonlinear solver, we use an active set strategy combined with a Newton method. Several numerical examples demonstrate the efficiency and flexibility of the new algorithm in 2D and 3D and show the influence of the retardation term. This work was supported in part by IRTG NUPUS.  相似文献   

12.
地下水开采—地面沉降模型研究   总被引:27,自引:5,他引:22  
本文建立三维流支--一维非线性固结地面沉降模型,在混合井流,降雨滞后补给,初始水头形成,人为边界刻画,水流-固结耦合及软土层固结滞后于地下水开采层水头变化等方面有所改进,所建模型用于苏州市,模拟出若干地面沉降重要特征,地面沉降中心偏离地下水漏斗中心,地面沉降动态滞后于地下水的水头动态,软土层渗透系数随固结过程的变化及头在软土层中的传递特征。  相似文献   

13.
A new three-dimensional numerical model of coupled heat, moisture and air transfer in unsaturated soil is presented. In particular, the model accommodates moisture transfer in the form of liquid and vapour flow and heat transfer arising from conduction, convection and latent heat of vaporization. The bulk flow of dry air and the movement of air in a dissolved state are also included. The theoretical basis of the model, the finite element solution of the spatial terms and finite difference solution of the temporal terms are briefly presented. Attention is focused on the verification of the new numerical solution. This is achieved via comparisons with independent solutions of heat, moisture and air transfer in an unsaturated soil. The physical problem considered includes the highly non-linear hydraulic properties of sand. Thermal conductivity is also included as a function of soil moisture content. Excellent correlation of results is shown thus providing confidence in the new model. The new model is also applied to a number of test cases which illustrate the need for the development of a model which can fully include three-dimensional behaviour. In particular, three applications are presented each increasing in complexity. The first application illustrates three-dimensional heat transfer. This particular application is verified against existing commercial finite element software. Subsequent applications serve to illustrate how the coupled processes of heat moisture and air transfer combine to yield three-dimensional problems even within a simple geometric domain. Visualization of three-dimensional results is also addressed. © 1998 by John Wiley & Sons, Ltd.  相似文献   

14.
The unsaturated zone (UZ) retains aqueous solutions against gravity by capillary forces. This suction state corresponds to a decreasing internal pressure of the water, which modifies its thermodynamic properties. Accordingly, the speciation of solutes and the solubility of solids and gases in such capillary solutions change. The volumetric capillary water content of the soil at high suction can be calculated extrapolating the water retention curves (WRC) with the Rossi–Nimmo model. Interestingly, several tens of liters per cubic meter of soil can be thus suctioned, a sufficiently large volume to support that: (1) capillary water is not restricted to nanosized pores, which means it disobeys the Young–Laplace law and is metastable with respect to vapor (superheating); and (2) the geochemistry of capillary solutions might significantly influence the subsurface mass transfer. Two field situations are here interpreted using the capillary thermodynamic properties: (1) the trapping of sand grains during the growth of desert roses (gypsum), and (2) the development of abnormal paragenetic sequences in some saprolites.The capillary approach is extended to the soil solids, so that the micro-mineralogy can be explicitly (though sketchily) integrated in the calculations. The key conclusion is that capillarity changes the saturation indexes (and so the reaction rates) at given solution composition, in a way consistent with the field observations. This perspective amounts to geochemically distinguishing the capillary and percolating solutions, which is interestingly analogous to the immobile and mobile water distinction already often integrated in UZ flow models.  相似文献   

15.
基于均匀网格,建立了沿水深积分的非静压波浪传播数值模型,模型的求解分静压步和动压步两部分。静压步的控制方程为全非线性浅水方程,采用有限体积格式求解,通过采用线性重构技术和全隐式离散底摩阻项,保证了格式的和谐性、守恒性和水深非负性,有效处理了海岸动边界问题。动压步通过应用有限差分方法求解泊松方程考虑动压力,使得模型具备模拟色散性波浪传播的能力。引入波浪破碎指标,波浪破碎后模型退化为静压模型,破碎波自动捕捉为间断。通过算例对所建立模型进行了验证。  相似文献   

16.
Realistic models for saturation, capillary pressure and relative permeability s-pc-kr relations are essential for accurate predictions in multiphase flow simulations. The primary object of this work is to investigate their influence on geological CO2 sequestration processes. In this work, the hysteresis effects on simulation results predicting geological CO2 storage are investigated on a synthetic 2D model and a geological setting built according to Aneth demonstration site. Simulation results showed that hysteretic relative permeability model should be included while the residual trapping mechanism is under investigation. The effects of hysteresis and WAG schemes were studied with a series of numerical simulations on a geological setting based on Aneth site. Our simulations demonstrate that the hysteresis effect is strong on residual trapping mechanisms and there is no significant effects of alternative WAG schemes for long term residual trapping in our conceptual model. The effects of WAG schemes and hysteresis are weak on dissolution trapping mechanisms.  相似文献   

17.
姜啸  张虎元  严耿升 《岩土力学》2014,299(2):459-465
盐溶液在地仗中毛细迁移引起的盐分迁移、富集已成为壁画病害发生的重要原因。研究不同湿度条件下盐溶液在模拟地仗中的毛细迁移过程对可溶盐再分布的影响。分析不同湿度条件下毛细上升高度随时间的变化关系,含水率和电导率随高度变化关系,毛细饱和后试样表面变化情况及可溶盐含量随试样高度的分布。试验结果表明,空气相对湿度越低,毛细上升过程中水分向空气中迁移越多,水分难以向上迁移。试样的含水率随高度呈递减趋势,而电导率随试样高度增加而增大。可溶盐在毛细水上升过程中发生结晶分异,毛细前锋以NaCl结晶富集为主,亚前锋以Na2SO4结晶富集为主。其研究结果可以为壁画盐害的防治提供基础科学依据。  相似文献   

18.
马田田  韦昌富  李幻  陈盼  魏厚振 《岩土力学》2011,32(Z1):198-204
在Wheeler本构模型框架的基础上,提出了一个水力与力学耦合的本构模型。该模型中的土-水特征曲线采用毛细滞回内变量模型,能够更好地描述水力历史变化下毛细滞回现象对非饱和多孔介质变形的影响,同时也可描述非饱和多孔介质变形对渗流的影响。非饱和土的强度不仅与吸力有关,而且受到饱和度的影响。相同的吸力下,土样经过吸湿和脱湿路径的饱和度不同,因此,非饱和土的强度也不同。此模型以体积含水率的塑性变化和体变的塑性变化为硬化参数,不仅能描述基质吸力对非饱和土的强化作用,而且考虑了饱和度对强度及变形的影响。试验结果与模型预测基本吻合,证明该模型能够模拟非饱和土的主要特性。为了简化,此模型是在各向同性荷载下推得的,有待于推广到一般的应力状态  相似文献   

19.
This paper investigates the pipe–soil interaction for pipes buried in expansive soil when subjected to swelling soil movement due to increase in moisture content. A laboratory experiment has been undertaken on a plastic pipe in a large-scale pipe box. A three dimensional numerical model is developed to analyse the pipe response, using FLAC3D computer program. The pipe is assumed to behave as a linearly elastic material, while the soil is modelled as a nonlinear material with Mohr–Coulomb failure criterion. The water flow and soil/pipe deformations are decoupled, where water flow is calculated using simplified capillary rise theory on the basis of measurements made. A reasonably good agreement between the experimental results and model predictions is reported.  相似文献   

20.
Air sparging (AS) is an in situ soil/groundwater remediation technology, which involves the injection of pressurized air/oxygen through an air sparging well below the zone of contamination. Characterizing the mechanisms governing movement of air through saturated porous media is critical for the design of an effective cleanup treatment system. In this research, micromechanical investigation was performed to understand the physics of air migration and subsequent spatial distribution of air at pore scale during air sparging. The void space in the porous medium was first characterized by pore network consisting of connected pore bodies and bonds. The biconical abscissa asymmetric concentric bond was used to describe the connection between two adjacent pore bodies. Then a rule‐based dynamic two‐phase flow model was developed and applied to the pore network model. A forward integration of time was performed using the Euler scheme. For each time step, the effective viscosity of the fluid was calculated based on fractions of two phases in each bond, and capillary pressures across the menisci was considered to compute the pressure field. The developed dynamic model was used to study the rate‐dependent drainage during air sparging. The effect of the capillary number and geometrical properties of the network on the dynamic flow properties of two‐phase flow including residual saturation, spatial distribution of air and water, dynamic phase transitions, and relative permeability‐capillary pressure curves were systematically investigated. Results showed that all the above information for describing the air water two‐phase flow are not intrinsic properties of the porous medium but are affected by the two‐phase flow dynamics and spatial distribution of each phase, providing new insight to air sparging. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号