首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The planktic foraminifera of the Chuangde Formation (Upper Cretaceous Oceanic Red Beds, CORBs) as exposed at Tianbadong section, Kangmar, southern Tibet has been firstly studied for a detailed for a detailed biostratigraphy elaboration. A rich and well-preserved planktic foraminifera were recovered from the Chuangde Formation of the Tianbadong section and the Globotruncanita elevata, Globotruncana ventricosa, Radotruncana calcarata, Globotruncanella havanensis, Globotruncana aegyptiaca, Gansserina gansseri and Abathomphalus mayaroensis zones have been recognized. The planktic foraminiferal assemblage points to an early Campanian to Maastrichitian age for the CORBs of the eastern North Tethyan Himalayan sub-belt, which also provides a better understanding of the shifting progress of the Indian Plate to the north and the evolution of the Neotethyan ocean. The lithostratigraphy of the Chuangde Formation of the Tianbadong section comprises two lithological sequences observed in ascending succession: a lower unit (the Shale Member) mainly composed of purple (cherry-red, violet-red) shales with interbedded siltstones and siliceous rocks; and an upper unit (the Limestone Member) of variegated limestones. The strata of the Chuangde Formation in the Tianbadong section are similar to CORBs in other parts of the northern Tethyan Himalaya area of Asia (Gyangze, Sa’gya, Sangdanlin, northern Zanskar, etc.). The fossil contents of the Chuangde Formation in the sections (CORBs) studied provide a means of correlation with the zonation schemes for those of the northern Tethyan Himalayan sub-belt and the Upper Cretaceous of the southern Tethyan Himalayan sub-belt. Paleogeographic reconstruction for the Late Cretaceous indicates that the Upper Cretaceous Chuangde Formation (CORBs) and correlatable strata in northern Zanskar were representative of slope to basinal deposits, which were situated in the northern Tethyan Belt. Correlatable Cretaceous strata in Spiti and Gamba situated in the southern Tethyan Belt in contrast were deposited in shelf environments along the Tethyan Himalayan passive margin. CORBs are most likely formed by the oxidation of Fe(II)-enriched, anoxic deep ocean water near the chemocline that separated the oxic oceanic surface from the anoxic.  相似文献   

2.
The Lower Cretaceous series, in the Western Saharan Atlas, shows important detritic deposits, particularly continental to nearshore red sandstones. Lithologically, it is an alternation of red clay and sandstone intercalated with some carbonate levels at the lower part of the series. These series can be subdivided into three lithostratigraphic units corresponding to Valanginian-Hauterivian, Barremian, and Aptian-Lower Albian. The lithostratigraphic analysis used to reconstitute the important subsidence in the Lower Cretaceous period, particularly in the Lower Albian. The Lower Cretaceous series could be considered as a geodynamic model characterized by individualization of independent depocenter filled with different detritic material and separated by Jurassic structures. This new situation appeared in the beginning of Lower Cretaceous (Valanginian-Hauterivian), following the Neocimmeriean tectonic phase, and it is increasing in the Early Albian, where differences of thicknesses are more important and allow the distinction of the depocenter. The biostratigraphic analysis of the clay samples yielded some foraminifera and palynomorphs. Benthic and planktonic foraminifera confirmed the Hauterivian age of the basal formation, also, two dominant forms of palynomorphs were recognized; according to the large stratigraphic distribution of the identified forms, it can be attributed to the Lower Cretaceous.  相似文献   

3.
The Cretaceous sedimentary rocks of the Pindos Zone in western Greece document the evolution of a Tethyan deep-water basin. New sedimentological and micropalaeontological studies reveal a complex basin history. Siliceous sediments with abundant radiolaria and organic-rich facies prevailed up to the early Late Cretaceous. Within the sediment-starved pre-Middle Cenomanian, marked black shale levels appear that are probably linked to oceanic anoxic events. At the change from the late Early to the early Middle Cenomanian, the sedimentary regime altered abruptly. The early Late Cretaceous is characterized by major calcareous redepositional events (orbitoline horizons) and often associated siliciclastic turbidite deposition (submarine-fan environments). In the late Late Cretaceous, carbonate supply increased rapidly, resulting in the evolution of a carbonate slope and basin-plain setting. Pelagic and allodapic limestones recorded basinwide blooms in planktonic foraminifera (elevata event) and a polyphase redepositional history that is interpreted to reflect the sensitivity of the basin to the tectonic evolution of Apulia.  相似文献   

4.
Biostratigraphic analysis is an essential element for understanding global tectonics and the evolution of life on Earth. Quantitative analysis of sedimentary sequences provides the precise age constraints on timing of significant events in Earth’s history. This paper presents results from quantitative stratigraphic analysis of Upper Cretaceous Tethyan Himalayan sequences. This analysis resulted in a new composite stratigraphic section for the Cretaceous strata of Tibet (TIBETKCS). The eight Upper Cretaceous sections were analyzed in this study and 12 planktonic foraminifera zones were recognized based on available data. Quantitative measurements were made using a Graphic Correlation with Graphcor 3.0 software and correlated to the world standard Cretaceous Composite Section (MIDKCS). The sections were also examined using Constrained Optimization software by CONOP9. Level Penalty was applied as the rule to measure misfit among automatically correlated sections. The new TIBETKCS correlates well with planktonic foraminifera ages from previous work in southern Tibet. A fitting equation of y=?0.19x+305 with a correlation coefficient of 0.94 was obtained from this work. The ages of the first and last appearances of 64 planktonic foraminifera can be calculated with this equation with ± 0.3 Ma precision. This level of precision is approximately 10 times higher than age determinations with traditional methods. Two extinction events were resolved within this analysis at ~93.5 Ma and ~85.5 Ma corresponding to the Ocean Anoxic Events at Cenomanian–Turonian and Coniacian–Santonian boundaries respectively.  相似文献   

5.
《Cretaceous Research》1995,16(5):539-558
The Cretaceous sedimentary successions of the Ionian Zone, Hellenides, western Greece, are composed of pelagic limestones intercalated with cherty layers. The micritic and biomicritic beds with abundant chert nodules and cherty horizons, which were deposited during late Tithonian to early Santonian times, belong to the Vigla Limestone Formation, while the sediments deposited during the late Santonian to Maastrichtian, formed clastic limestone beds in which chert nodules also occur sparsely.In the Cretaceous beds calpionellids, planktonic and benthonic foraminifera characteristics of the Tethyan realm, and radiolaria have been recorded. The calpionellids, together with radiolaria, colonized the entire basin during the Berriasian to early Valanginian, the latter becoming dominant during the Hauterivian to early Albian as a result of anoxia. Planktonic foraminifera first appeared in the basin during the late Albian and persisted until the Maastrichtian. The numbers decreased, however, during the Cenomanian-early Turonian interval, when radiolaria increased owing to anoxic conditions, and during the Campanian-Maastrichtian interval because the basin became shallow. During this interval larger benthonic foraminifera colonized the basin. Zonal markers have been recognized in calpionellid and planktonic foraminiferal assemblages on the basis of which two calpionellid zones are distinguished, viz. the Calpionella alpina and Calpionellopsis Zones (Berriasian-early Valanginian) along with seven planktonic foraminiferal zones, viz. the Rotalipora ticinensis, Rotalipora appenninica (late Albian), Rotalipora brotzeni (early Cenomanian), Helvetoglobotruncana helvetica (early to middle Turonian), Marginotruncana sigali(late Turonian to early Coniacian), Dicarinella concavata (late Coniacian to early Santonian) and Dicarinella asymetrica (late early-late Santonian) Zones.The anoxic conditions that prevailed in the Ionian basin during the Barremian-early Albian, Cenomanian-early Turonian and Coniacian-Santonian intervals probably arose as a result of (a) the accumulation of large amounts of organic matter because the palaeotopography of the basin periodically hindered the circulation of water from the ocean and (b) the oxygen content of the intruding oceanic waters was low.  相似文献   

6.
Nineteen benthonic and planktonic foraminiferal zones and their subzones have been recognized in the Tethyan cretaceous successions along the four sections analyzed in the northwestern Zagros fold–thrust belt within the preforeland–foreland basin. A detailed micropaleontological investigation revealed eight benthonic zones from the Qamchuqa Formation (Barremian to Lower Early Cenomanian) including: the Choffatella decipiens interval zone, C. decipiens/Palorbitolina lenticularis total range zone, C. decipiens/Salpingoporella dinarica interval zone, Mesorbitolina texana total range zone, Mesorbitolina subconcava total range zone, Orbitolina qatarica total range zone, Orbitolina sefini total range zone, and the Orbitolina concava partial range zone. The Rotalipora cushmani total range zone was recorded in the Dokan Formation that overlies the Qamchuqa Formation of the Late Cenomanian age. The Gulneri Formation is represented only by the Whitnella archaeocretacea partial range zone/Heterohelix moremani total range subzone and indicates the Late Cenomanian/Early Turonian age. Six planktonic foraminiferal zones were recorded from the Kometan Formation, indicating the Late Cenomanian to Early Campanian age, and are represented by the R. cushmani/H. moremani subzone, Helvetotruncana helvetica total range zone, Marginotruncana sigali partial range zone, Dicarinella primitiva interval range zone, Dicarinella concavata interval zone, Dicarinella assymetrica total range zone, and Globotruncanita elevata partial range zone. Two planktonic foraminferal zones were recorded also and these are related to the Globotruncana (fornicata, stuartiformis, elevata, and ventricosa) assemblage zone, Globotruncana calcarata total range subzone, from the Shiranish Formation, Lower Late Campanian, while the second zone is nominated as the Globotruncana (arca, tricarinata, esnehensis, and bahijae) assemblage zone, Globotruncana gansseri interval subzone, and Globotruncana contusa total range zone of the Late Campanian to basal middle Maastrichtian age. The last zone is related to the Abathomphalus mayaroensis partial range zone (of Late Maastrichtian age) and occasionally intercalated with the OrbitoidesLoftusia benthic zones. An important hiatus, between the Qamchuqa and Kometan formations was proved and manifests Pre-Aruma unconformity, and is occasionally associated with the global Cenomanian–Turonian Oceanic Anoxic Euxinic Event, while the Maastrichtian red bed of the Shiranish Formations mostly points to Tethyan upper Cretaceous Oceanic Red Bed.  相似文献   

7.
Planktonic foraminifer distributions in seventeen stratigraphic sections of Upper Cretaceous hemipelagic and pelagic sequences of northern Bey Da?lar? Autochthon (western Taurides) yield six biozones such as, Dicarinella concavata Interval Zone, Dicarinella asymetrica Range Zone, Radotruncana calcarata Range Zone, Globotruncana falsostuarti Partial Range Zone, Gansserina gansseri Interval Zone, and Abathomphalus mayaroensis Concurrent Range Zone. Two of the zones, Dicarinella concavata Zone and Dicarinella asymetrica Zone, are identified in the massive hemipelagic limestones of the Bey Da?lar? Formation, of Coniacian-Santonian age. They are characterized by scarce planktonic foraminifera and abundant calcisphaerulids. The other four biozones are determined from the cherty pelagic limestones of the Akda? Formation and indicate a late Campanian-late Maastrichtian time interval. The planktonic foraminifera observed in these four biozones are diverse, complex morphotypes (K-selection), suggesting open oceans. The assemblage of the Abathomphalus mayaroensis Zone shows that the latest Maastrichtian record is absent throughout the northern part of the autochthon. Two main sedimentary hiatuses are recognized within the Upper Cretaceous pelagic sequence. Early to middle Campanian and latest Maastrichtian-middle Paleocene planktonic foraminifera are absent in all measured stratigraphic sections. Hiatus durations differ between sections as a result of diachronism of onset of the hemipelagic and pelagic deposition and the post-Santonian and post-Maastrichtian erosional phases. Drowning event and the early-middle Campanian and latest Maastrichtian-middle Paleocene hiatuses in the pelagic sequence are attributed to regional tectonics during the Late Cretaceous.  相似文献   

8.
An integrated study of the ammonites, inoceramid bivalves, planktonic foraminifera, calcareous nannofossils, geochemistry, stable carbon isotopes, and cyclostratigraphy is provided for the upper Middle to upper Upper Albian sucession exposed in the Col de Palluel section east of Rosans in Hautes-Alpes, France. The Albian-Cenomanian boundary interval described by Gale et al. at Mont Risou is re-examined, a total thickness of 370 m of the Marnes Bleues Formation. Zonal schemes based on ammonites, inoceramid bivalves, planktonic foraminifera, and calcareous nannofossils are integrated with the stable carbon isotope curve and key lithostratigraphic markers to provide a sequence of more than 70 events in the uppermost Middle Albian to basal Cenomanian interval. Time series analysis of the Al2O3 content of the 500 m Albian sequence present in the Col de Palluel and Risou sections reveals the presence of the 20 kyr precession, 40 kyr tilt, 100 kyr short eccentricity, and 406 kyr long eccentricity cycles. Correlation using planktonic foraminiferan and nannofossil data provide a link between the Col de Palluel and Risou sections and the Italian sequence at Gubbio, and in the Piobbico core. This provides a basis for the extension of the orbital time scale of Grippo et al. to the sequence. It reveals a major break in the Col de Palluel succession at the top of the distinctive marker bed known as the Petite Vérole that may represent as much as 2 Ma. It also provides a basis for the estimation of the length of the Albian Stage at 4.12 Ma, 0.8 Ma for the early Albian, 2.84 Ma for the Middle Albian, and 3.68 Ma for the late Albian substages.  相似文献   

9.
The sedimentary record of the Arabian Shelf offers a unique opportunity to study the Cretaceous (Albian–Turonian) greenhouse climate from a palaeoequatorial perspective. In particular, hemipelagic to pelagic carbonate successions from the extensive Shilaif intra‐shelf basin have the potential to produce an excellent record of carbon cycle perturbations during this interval. This study presents a 269 m thick chemostratigraphic (carbonate δ13C and δ18O) record from the Middle Albian to Early Turonian of central Abu Dhabi (United Arab Emirates), representing over 14 Myr of uninterrupted carbonate sedimentation. The Mauddud to Shilaif formations represent outer ramp to basinal intra‐shelf carbonates with variations from laminated organic‐rich to clean bioturbated intervals. Isotopic evidence of the latest Albian Anoxic Event (Oceanic Anoxic Event 1d), Middle Cenomanian Event I and the Cenomanian–Turonian Anoxic Event (Oceanic Anoxic Event 2) are confirmed and biostratigraphically calibrated by means of calcareous nannofossils. The carbon isotope record allows correlation with other regional records and well‐calibrated records across the Tethyan Ocean and represents a significant improvement of the chronostratigraphic framework of the United Arab Emirates (Shilaif) and Oman (Natih) intra‐shelf basins. The study further confirms that low carbon isotope values corresponding to the two source rock intervals in the Shilaif Formation clearly precede the isotopic expressions of Oceanic Anoxic Event 1d and Oceanic Anoxic Event 2.  相似文献   

10.
At Montagna della Maiella and at Gola del Furlo (central Apennines) two discrete layers of bentonic clay are intercalated within the pelagic (Furlo) and turbiditic/pelagic limestones (Maiella) of the Upper Cretaceous basinal succession of the Umbrian basin (Scaglia facies). The bentonite layers are dated by planktonic foraminifera to the Globotruncanita elevata zone, early Campanian, and by calcareous nannofossils to the Aspidolithus parcus zone (CC 18); they fall into the reversed interval of chron 33. Detailed correlation shows the layers to be of exactly the same age. The upper layer is dated by U/Pb on magmatic zircons to 81.67±0.21 Ma, an age compatible with the Cretaceous time-scale of Obradovich. The mineralogy of the bentonitic clays is almost pure montmorillonite and contrasts sharply with the clay mineral assemblage of the enclosing pelagic and turbiditic limestones, which is dominated by soil-derived smectite and illite in different proportions. The bentonite seams are interpreted as the submarine alteration products of wind-borne volcanic ashes. They can be followed with only minor changes in thickness over 200 km and must be derived from distant volcanic sources and related to extreme volcanic events. A possible source area is present in the Dinarides where Upper Cretaceous subduction-related magmatic rocks are widespread.  相似文献   

11.
《Cretaceous Research》2008,29(1):65-77
The faunas of three previously poorly known and highly fossiliferous limestones from the upper Lower Cretaceous of Texas are dominated by turritelline gastropods. These faunas consist of turritelline-dominated assemblages in the Whitestone Limestone Member of the Walnut Formation in Travis County (middle Albian), the Keys Valley Marl Member of the Walnut Formation in Coryell County (middle Albian), and the Fort Terrett Formation in Kimble County (middle Albian). A fourth high-spired gastropod assemblage in the Segovia Formation in Pecos County (upper Albian) is not dominated by turritellines. Two other turritelline-dominated assemblages in non-carbonate rocks from the Albian and Cenomanian of Texas and Oklahoma are also described. These turritelline-dominated assemblage occurrences add considerably to our knowledge of the facies occurrence of Cretaceous turritelline-dominated assemblages, and they are consistent with the global facies distribution of these assemblages: i.e., although they are widespread in siliciclastic facies from Cretaceous to Recent, turritelline-dominated assemblages in carbonate facies occur almost exclusively in the Cretaceous and Paleogene.  相似文献   

12.
H.G. Owen   《Cretaceous Research》2007,28(6):921-938
The ammonite biostratigraphy of the 279.35 m of sediments of mid-Late Albian–Early Albian age traversed by the Kirchrode II (1/94) boring is described. The borehole was drilled in the Hermann-Löns Park, Kirchrode (Hannover), northwest Germany, in the central region of the Lower Saxony sedimentary basin. The core commenced within the Kirchrode Mergel Member of the Gault Formation in sediments of Callihoplites auritus Subzone age and showed a Late Albian ammonite zonal succession similar to that previously described by Wiedmann and Owen from the lower part of the nearby Kirchrode I (1/91) core, with which it is correlated. The thick underlying clay sediments of the Minimus Ton Member (Middle Albian–late Early Albian) provided a relatively sparse ammonite fauna. In the Middle Albian part of the sediment succession, several hiatuses are present and only sediments of the lower Euhoplites loricatus Zone (Anahoplites intermedius Subzone) and the Hoplites dentatus Zone (Hoplites spathi Subzone) have been identified. This is followed downward by a thick sedimentary succession through the upper part of the Early Albian Douvilleiceras mammillatum Superzone (Otohoplites auritiformis Zone). Earlier mammillatum and perhaps latest Leymeriella tardefurcata Zone portions of the core straddling the Minimus Ton/Schwicheldt Ton boundary, did not yield ammonites. The underlying sediments at the top of the Schwicheldt Ton Member, consist of dark clays and mudstones with a good representation of the Leymeriella (Neoleymeriella) regularis Subzone and the uppermost part of the Leymeriella acuticostata Subzone (Leymeriella tardefurcata Zone). Of particular importance is the succession through the sediments of the L. (N.) regularis Subzone, hitherto poorly known in north Germany. A brief comparison and correlation is made with other surface and borehole sections in northern Germany and elsewhere. The Boreal and more cosmopolitan Tethyan elements of the fauna are indicated and discussed. An appendix of ammonites obtained from the Mittellandkanal section at Misburg of latest Albian, Arraphoceras (Praeschloenbachia) briacensis Subzone age, completes the study.  相似文献   

13.
The platform limestones of Apulia (Italy) outcropping in the Gargano peninsula have been restudied. Paleomagnetic research has been carried out on Upper Cretaceous, Lower Cretaceous and Jurassic rocks. Despite the low intensities of the NRM (10–100 μA/m), all samples (268) could be cleaned by stepwise A.F. and/or thermal demagnetization treatments. NRM directions could be determined accurately and reproducibly for 85% of the samples, using a ScT cryogenic magnetometer and double precision measuring procedures. NRM of the Jurassic limestone is carried by secondary haematite and the results are therefore rejected from further consideration. The Upper and Lower Cretaceous limestones have an NRM carried by magnetite. Minor bedding tilt corrections improve the grouping of the site-mean results. The Upper Cretaceous “Scaglia” limestone (Turonian-Senonian) reveals a characteristic mean direction of decl. = 327.7°, incl. = 38.2°, α95 = 4.3° (21 sites), while the Lower Cretaceous “Maiolica” limestone (Neocomian-Aptian/Albian) reveals a characteristic mean direction of decl. = 303.1°, incl. = 35.1°, α95 = 8.7° (8 sites). The Cretaceous results show a post-Aptian/Albian counterclockwise rotation of about 25°, which is expressed by the smeared distribution of the Late Cretaceous site-mean results and a post-Senonian (i.e. Tertiary) counterclockwise rotation of the same amount with respect to the pole. These results are in excellent agreement with contemporaneous paleomagnetic results from other peri-Adriatic regions. A Tertiary counterclockwise rotation of all the stable Adriatic block is strongly supported by the new results.  相似文献   

14.
Near Karnezeika a roughly 140 m thick Upper Cretaceous section consists of interbedded pelagic limestones, cherts and coarse polymict breccias including ophiolites and shallow water limestones. At the base, pink pelagic limestones rest on deeply altered and fractured Lower Jurassic Pantokrator Limestone. This first pelagic facies is dated as middle Turonian, based on planktonic Foraminifera. Over 100 m of coarse ophiolite-carbonate breccias, interpreted as a channel or canyon fill in a pelagic environment, document the erosion of the Late Jurassic nappe edifice along the Cretaceous Pelagonian margin. Above these breccias, we mesured 16 m of principally pink and red pelagic limestones and radiolarian cherts, in which we recovered well-preserved radiolarians discussed here. In this interval, the presence of planktonic Foraminfera allows to state a late Turonian to Coniacian age. More than 40 radiolarian species are described and figured in this work. The radiolarian chronostratigraphy established by 10 different authors in 11 publications was compared for this study and used to establish radiolarian ranges. This exercise shows major discrepancies between authors for the radiolarian ranges of the studied assemblage. Nevertheless, a Turonian age can be stated based on a synthesis of cited radiolarian ranges. This age is consistent with the age based on planktonic foraminifera. In combining the ages of both Radiolaria and planktonic Foraminifera, the studied samples can be restricted to the late Turonian. However, the discrepancies of published radiolarian ranges call for an urgent, major revision of the Late Cretaceous radiolarian biochronology. The integration of planktonic foraminifera with radiolarians may greatly enhance biochronologic resolution in sections where both groups occur.  相似文献   

15.
Abstract The age of the Longzhaogou and Jixi Groups of coal measures in eastern Heilongjiang were previously considered to be Jurassic or mainly Jurassic. But there occur Middle Barremian- Early Albian Aucellina ( bivalvia) fossils in the Upper Yunshan Formation of the Longzhaogou Group and the Lower Chengzihe Formation of the Jixi Group, and the Qihulin Formation of the Longzhaogou Group yields Early Cretaceous bivalve and ammonite fossils. Consequently, the geological ages of the two groups are mainly, or even all, Early Cretaceous.  相似文献   

16.
The Upper Barremian to Aptian Almadich Formation (Inner Prebetic Domain of the Betic Cordillera) is composed of hemipelagic sediments deposited on a distal carbonate ramp in the southern Iberian Palaeomargin. Within this facies we have found a thick interval of blue to black shales and marls that is interpreted as deposited under oxygen-depleted conditions. We think that this interval, dated as early Aptian, represents the local record of Ocean Anoxic Event 1a. The integrated biostratigraphic analysis of a section in the Almadich Formation, by means of planktonic foraminifera, calcareous nannofossils and ammonites, enables us to recognize most of the biostratigraphic units based on these three fossil groups and to correlate between them. The Sartousiana, Sarasini, Weissi, Deshayesi and Furcata (ammonite) Zones were identified for the Upper Barremian–Lower Aptian interval. By means of calcareous nannofossil biostratigraphy the Micrantholithus hoschulzii, Hayesites irregularis and Rhagodiscus angustus Zones, plus several additional biohorizons, were identified. A quantitative study performed on a set of 27 Lower Aptian samples has enabled the precise identification of the ‘nannoconid crisis’, the lower limit of which clearly precedes the main anoxic event, and its correlation with other bioevents. Planktonic foraminifera occur consistently throughout the Lower to Upper Aptian of the Cau section and are moderately well preserved. This fact allows us to use the most recent taxonomic framework, based on wall texture, to identify the Blowiella blowi, Schackoina cabri, Globigerinelloides ferreolensis, Globigerinelloides algerianus, Hedbergella trocoidea andTicinella bejaouaensis Zones. Coincident with the anoxic episode, the planktonic foraminiferal assemblages are composed of a significant number of forms with elongated chambers and/or tubulospines assigned to the genera Claviblowiella,Lilliputianella , Leupoldina and Schackoina. Most of the planktonic foraminiferal and nannofossil taxa are illustrated.  相似文献   

17.
The 1500-m-thick marine strata of the Tethys Himalaya of the Zhepure Mountain (Tingri, Tibet) comprise the Upper Albian to Eocene and represent the sedimentary development of the passive northern continental margin of the Indian plate. Investigations of foraminifera have led to a detailed biozonation which is compared with the west Tethyan record. Five stratigraphic units can be distinguished: The Gamba group (Upper Albian - Lower Santonian) represents the development from a basin and slope to an outer-shelf environment. In the following Zhepure Shanbei formation (Lower Santonian - Middle Maastrichtian), outer-shelf deposits continue. Pebbles in the top layers point to beginning redeposition on a continental slope. Intensified redeposition continues within the Zhepure Shanpo formation (Middle Maastrichtian - Lower Paleocene). The series is capped by sandstones of the Jidula formation (Danian) deposited from a seaward prograding delta plain. The overall succession of these units represents a sea-level high at the Cenomanian/Turonian boundary followed, from the Turonian to Danian, by an overall shallowing-upward megasequence. This is followed by a final transgression — regression cycle during the Paleocene and Eocene, documented in the Zhepure Shan formation (?Upper Danian - Lutetian) and by Upper Eocene continental deposits. The section represents the narrowing and closure of the Tethys as a result of the convergence between northward-drifting India and Eurasia. The plate collision started in the Lower Maastrichtian and caused rapid changes in sedimentation patterns affected by tectonic subsidence and uplift. Stronger subsidence and deposition took place from the Middle Maastrichtian to the Lower Paleocene. The final closure of remnant Tethys in the Tingri area took place in the Lutetian.  相似文献   

18.
Planktonic foraminiferal fossil assemblages identified from the Bolinxiala Formation in Bolin, Zanda, southwestern Tibet of China, determine its age from latest Albian to Maastrichtian. The fossil contents of the Bolinxiala Formation allow its correlation with successions across a platform-to-basin transect of the Late Cretaceous Tethyan Himalaya passive margin. The ocean anoxic event at the Cenomanian–Turonian transition (OAE2) is located at the Whiteinella archaeocretacaea biozone in Zanda, but lithologically it is characterized by grey and bioturbated limestone, implying that during the OAE2 the shallow-water environments of the Tethyan Himalayan carbonate platform remained oxic. Paleogeographic reconstruction indicates that the Upper Cretaceous Oceanic Red Beds (CORBs) in southern Tibet are restricted to the slope and basinal environments but they are entirely missing in the shelf environments. This phenomenon suggests the formation of CORBs by oxidation of Fe(II)-enriched anoxic deep ocean seawater at the chemocline that separated the oxic surface ocean from anoxic deep ocean. For depositional environments above the chemocline, no CORBs would be expected. Because of the chemocline instability across different sedimentary basins, CORBs may be significantly diachronous, consistent with the occurrence of CORBs documented from global sedimentary basins.  相似文献   

19.
The Upper Cretaceous La Cova limestones (southern Pyrenees, Spain) host a rich and diverse larger foraminiferal fauna, which represents the first diversification of K-strategists after the mass extinction at the Cenomanian–Turonian boundary.The stratigraphic distribution of the main taxa of larger foraminifera defines two assemblages. The first assemblage is characterised by the first appearance of lacazinids (Pseudolacazina loeblichi) and meandropsinids (Eofallotia simplex), by the large agglutinated Montsechiana montsechiensis, and by several species of complex rotalids (Rotorbinella campaniola, Iberorotalia reicheli, Orbitokhatina wondersmitti and Calcarinella schaubi). The second assemblage is defined by the appearance of Lacazina pyrenaica, Palandrosina taxyae and Martiguesia cyclamminiformis.A late Coniacian-early Santonian age was so far accepted for the La Cova limestones, based on indirect correlation with deep-water facies bearing planktic foraminifers of the Dicarinella concavata zone. Strontium isotope stratigraphy, based on many samples of pristine biotic calcite of rudists and ostreids, indicates that the La Cova limestones span from the early Coniacian to the early-middle Santonian boundary. The first assemblage of larger foraminifera appears very close to the early-middle Coniacian boundary and reaches its full diversity by the middle Coniacian. The originations defining the second assemblage are dated as earliest Santonian: they represent important bioevents to define the Coniacian-Santonian boundary in the shallow-water facies of the South Pyrenean province.By means of the calibration of strontium isotope stratigraphy to the Geological Time Scale, the larger foraminiferal assemblages of the La Cova limestones can be correlated to the standard biozonal scheme of ammonites, planktonic foraminifers and calcareous nannoplankton. This correlation is a first step toward a larger foraminifera standard biozonation for Upper Cretaceous carbonate platform facies.  相似文献   

20.
Radiolaria from chert in the Indarung Area belong to the Transhsuum hisuikyoense Zone, indicating an Aalenian, lower Middle Jurassic, age. Carbonate in the area has been dated as Upper Jurassic to Lower Cretaceous from the occurrence of Lovcenipora, and overlying tuff has given a radiometric K/Ar age of 105±3 (Albian, uppermost Lower Cretaceous). The chert and carbonate are probably in tectonic contact, with the chert faulted into the limestone during ENE-directed compression. This comprises one of the best dated occurrences of allochthonous material in Sumatra and confirms the accretion of oceanic material along the Sunda margin during Mid- to Late-Cretaceous times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号