首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
 To investigate the influence of microlites on lava flow rheology, the viscosity of natural microlite-bearing rhyolitic obsidians of calc-alkaline and peralkaline compositions containing 0.1–0.4 wt.% water was measured at volcanologically relevant temperatures (650–950  °C), stresses (103–105 Pa) and strain rates (10–5 to 10–7 s–1). The glass transition temperatures (T g ) were determined from scanning calorimetric measurements on the melts for a range of cooling/heating rates. Based on the equivalence of enthalpic (calorimetric) and shear (viscosity) relaxation, we calculated the viscosity of the melt in crystal-bearing samples from the T g data. The difference between the calculated viscosity of the melt phase and the measured viscosity for the crystal-bearing samples is interpreted to be the physical effect of microlites on the measured viscosity. The effect of <5 vol.% rod-like microlites on the melt rheology is negligible. Microlite-rich and microlite-poor samples from the same lava flow and with identical bulk chemistry show a difference of 0.6 log10 units viscosity (Pa s), interpreted to be due to differences in melt chemistry caused by the presence of microlites. The only major differences between measured and calculated viscosities were for two samples: a calc-alkaline rhyolite with 1 vol.% branching crystals, and a peralkaline rhyolite containing crystal-rich bands with >45 vol.% crystals. For both of these samples a connectivity factor is apparent, with, for the latter, a close packing framework of crystals which is interpreted to influence the apparent viscosity. Received: 14 March 1996 / Accepted: 30 May 1996  相似文献   

2.
We examine the physics of growth of water bubbles in highly viscous melts. During the initial stages, diffusive mass transfer of water into the bubble keeps the internal pressure in the bubbles close to the initial pressure at nucleation. Growth is controlled by melt viscosity and supersaturation pressure and radial growth under constant pressure is approximately exponential. At later stages, internal pressure falls, radial growth decelerates and follows the square-root of time. At this stage it is controlled by diffusion. The time of transition between the two stages is controlled by the decompression, melt viscosity and the Peclet number of the system. The model closely fit experimental data of bubble growth in viscous melts with low water content. Close fit is also obtained for new experiments at high supersaturation, high Peclet numbers, and high, variable viscosity. Near surface, degassed, silicic melts are viscous enough, so that viscosity-controlled growth may last for very long times. Using the model, we demonstrate that bubbles which nucleate shortly before fragmentation cannot grow fast enough to be important during fragmentation. We suggest that tiny bubbles observed in melt pockets between large bubbles in pumice represent a second nucleation event shortly before or after fragmentation. The presence of such bubbles is an indicator of the conditions at fragmentation. The water content of lavas extruded at lava domes is a key factor in their evolution. Melts of low water content (<0.2 wt%) are too viscid and bubbles nucleated in them will not grow to an appreciable size. Bubbles may grow in melts with 0.4 wt% water. The internal pressure in such bubbles may be preserved for days and the energy stored in the bubbles may be important during the disintegration of dome rocks and the formation of pyroclastic flows.  相似文献   

3.
The vesiculation of magma during the 1983 eruption of Miyakejima Volcano, Japan, is discussed based on systematic investigations of water content, vesicularity, and bubble size distribution for the products. The eruption is characterized by simultaneous lava effusion and explosive sub-plinian (‘dry’) eruptions with phreatomagmatic (‘wet’) explosions. The magmas are homogeneous in composition (basaltic andesite) and in initial water content (H2O = 3.9±0.9 wt%), and residual groundmass water contents for all eruption styles are low (H2O <0.4 wt%) suggestive of extensive dehydration of magma. For the scoria erupted during simultaneous ‘dry’ and ‘wet’ explosive eruptions, inverse correlation was observed between vesicularity and residual water content. This relation can be explained by equilibrium exsolution and expansion of ca. 0.3 wt% H2O at shallow level with different times of quenching, and suggests that each scoria with different vesicularity, which was quenched at a different time, provides a snapshot of the vesiculation process near the point of fragmentation. The bubble size distribution (BSD) varies systematically with vesicularity, and total bubble number density reaches a maximum value at vesicularity Φ ∼ 0.5. At Φ  ∼ 0.5, a large number of bubbles are connected with each other, and the average thickness of bubble walls reaches the minimum value below which they would rupture. These facts suggest that vesiculation advanced by nucleation and growth of bubbles when Φ < 0.5, and then by expansion of large bubbles with coalescence of small ones for Φ > 0.5, when bubble connection becomes effective. Low vesicularity and low residual water content of lava and spatter (Φ  < 0.1, H2O  < 0.1 wt%), and systematic decrease in bubble number density from scoria through spatter to lava with decrease in vesicularity suggest that effusive eruption is a consequence of complete degassing by bubble coalescence and separation from magma at shallow levels when magma ascent rate is slow.
T. ShimanoEmail:
  相似文献   

4.
 Physical properties of cryptodome and remelted samples of the Mount St. Helens grey dacite have been measured in the laboratory. The viscosity of cryptodome dacite measured by parallel–plate viscometry ranges from 10.82 to 9.94 log10 η (Pa s) (T=900–982  °C), and shrinkage effects were dilatometrically observed at T>900  °C. The viscosity of remelted dacite samples measured by the micropenetration method is 10.60–9.25 log10 η (Pa s) (T=736–802  °C) and viscosities measured by rotational viscometry are 3.22–1.66 log10 η (Pa s) (T=1298–1594  °C). Comparison of the measured viscosity of cryptodome dacitic samples with the calculated viscosity of corresponding water-bearing melt demonstrates significant deviations between measured and calculated values. This difference reflects a combination of the effect of crystals and vesicles on the viscosity of dacite as well as the insufficient experimental basis for the calculation of crystal-bearing vesicular melt viscosities at low temperature. Assuming that the cryptodome magma of the 18 May 1980 Mount St. Helens eruption was residing at 900  °C with a phenocryst content of 30 vol.%, a vesicularity of 36 vol.% and a bulk water content of 0.6 wt.%, we estimate the magma viscosity to be 1010.8 Pa s. Received: 25 August 1996 / Accepted: 19 July 1997  相似文献   

5.
The viscosity of a natural phonolitic composition with variable amounts of H2O has been experimentally determined. The starting materials were crystal-free phonolitic glasses from Montaña Blanca, situated within the Las Cañadas caldera of Teide. Dry phonolitic melt viscosities were determined using concentric cylinder viscometry in the low viscosity range. The glassy quench products of these runs were then hydrated by high pressure synthesis in a piston–cylinder apparatus to generate a suite of samples with water contents ranging from 0.02 to 3.75 wt%. Samples thus hydrated were quenched rapidly and prepared (cut and polished) for the determination of water contents by infrared spectroscopy before and after experimental viscometry. The viscosities of the melts (dry and hydrated) were determined at 1 bar using a micropenetration technique. Samples were stable under the measurement conditions up to 3.75 wt% H2O. Homogeneity of water content was confirmed by infrared spectroscopy and total water contents were calculated using absorptivity coefficients for compositions extremely close to that investigated here. The variation of viscosity as a function of water content and temperature can be described in the high viscosity interval of relevance to many welding processes by the non-Arrhenian expression:
(1)
log10 η=−5.900−0.286 ln (H2O)+(10775.4−394.8(H2O))/(T−148.7+21.65 ln (H2O))
whereas the high viscosity range alone is adequately described by the Arrhenian expression
(2)
log10 η=−10.622−0.738 ln (H2O)+(17114.3−590.4(H2O))×1/T
where η is the viscosity in Pa s, H2O is the water content in wt% and T is the temperature in K.These results are particularly useful for the scaling of conditions extant during the welding of phonolitic products of Montaña Blanca. The welding of glassy phonolitic rocks is enhanced by the lower viscosity of these melts with respect to calcalkaline rhyolites. The ratio of viscosities of phonolitic to calcalkaline rhyolitic melts is a complex function of temperature and water content and reaches up to 104.5 at 0.1 wt% H2O and 500°C. Abundant evidence of welding and remobilisation of pyroclastic and spatter products of Teide system volcanism are consistent with these experimental observations.  相似文献   

6.
Analytical models for decompressional bubble growth in a viscous magma are developed to establish the influence of high magma viscosity on vesiculation and to assess the time-scales on which bubbles respond to decompression. Instantaneous decompression of individual bubbles, analogous to a sudden release of pressure (e.g. sector collapse), is considered for two end-member cases. The infinite melt model considers the growth of an isolated bubble before significant bubble interaction occurs. The shell model considers the growth of a bubble surrounded by a thin shell and is analogous to bubble growth in a highly vesicular magmatic foam. Results from the shell model show that magmas less viscous than 109 Pa s can freely expand without developing strong overpressures. The timescales for pressure re-equilibration are shortened by increased ratios of bubble radius to shell thickness and by larger decompression. Time-scales for isolated bubbles in rhyolitic melts (infinite melt model) are significantly longer, implying that such bubbles could experience internal pressures greater than the ambient pressure for at least a few hours following a sudden release of pressure. The shell model is developed to assess bubble growth during the linear decompression of a magma body of constant viscosity. For the range of decompression rates and viscosities associated with actual volcanic eruptions, bubble growth continues at approximately the equilibrium rate, with no attendant excess of internal pressure. The results imply that viscosity does not have any significant role in preventing the explosive expansion of high viscosity foams. However, for viscosities of >109 Pa s there is the potential for a viscosity quench under the extreme decompression rates of an explosive eruption. It is proposed that the typical vesicularities of pumice of 0.7–0.8 are a consequence of the viscosity of the degassing magmas becoming sufficiently high to inhibit bubble expansion over the characteristic time-scale of eruption. For fully degassed silicic lavas with viscosities in the range 1010 to 1012 Pa s time-scales for decompression of isolated bubbles can be hours to many months.  相似文献   

7.
 The vesiculation of a peralkaline rhyolite melt (initially containing ∼0.14 wt.% H2O) has been investigated at temperatures above the rheological glass transition (T g≈530  °C) by (a) in situ optical observation of individual bubble growth or dissolution and (b) dilatometric measurements of the volume expansion due to vesiculation. The activation energy of the timescale for bubble growth equals the activation energy of viscous flow at relatively low temperatures (650–790  °C), but decreases and tends towards the value for water diffusion at high temperatures (790–925  °C). The time dependence of volume expansion follows the Avrami equation ΔV (t)∼{1–exp [–(tav) n ]} with the exponent n=2–2.5. The induction time of nucleation and the characteristic timescale (τav) in the Avrami equation have the same activation energy, again equal to the activation energy of viscous flow, which means that in viscous melts (Peclet number <1) the vesiculation (volume expansion), the bubble growth process, and, possibly, the nucleation of vesicles, are controlled by the relaxation of viscous stresses. One of the potential volcanological consequences of such behavior is the existence of a significant time lag between the attainment of a super-saturated state in volatile-bearing rhyolitic magmas and the onset of their expansion. Received: March 20, 1995 / Accepted: October 24, 1995  相似文献   

8.
Fragmentation of magma during Plinian volcanic eruptions   总被引:2,自引:0,他引:2  
 The ratio of the volume of vesicles (gas) to that of glass (liquid) in pumice clasts (V G /V L ) reflects the degassing and dynamic history experienced by a magma during an explosive eruption. V G /V L in pumices from a large number of Plinian eruption deposits is shown here to vary by two orders of magnitude, even between pumices at a given level in a deposit. These variations in V G /V L do not correlate with crystallinity or initial water content of the magmas or their eruptive intensities, despite large ranges in these variables. Gas volume ratios of pumices do, however, vary systematically with magma viscosity estimated at the point of fragmentation, and we infer that pumices do not quench at the level of fragmentation but undergo some post-fragmentary evolution. On the timescale of Plinian eruptions, pumices with viscosities <109 Pa s can expand after fragmentation, as long as their bubbles retain gas, at a rate inversely proportional to their viscosity. Once the bubbles connect to form a permeable network and lose their gas, expansion halts and pumices with viscosities <105 Pa s can collapse under the action of surface tension. Textural evidence from bubble sizes and shapes in pumices indicates that both expansion and collapse have taken place. The magnitudes of expansion and collapse, therefore, depend critically on the timing of bubble connectivity relative to the final moment of quenching. We propose that bubbles in different pumices become connected at different times throughout the time span between fragmentation and quenching. After accounting for these effects, we derive new information on the fragmentation process from two characteristics of pumices. The most important is a relatively constant minimum value of V G /V L of ∼1.78 (64 vol.% vesicularity) in all samples with viscosities >105 Pa s. This value is independent of magma composition and thus reflects a property of the eruptive mechanism. The other characteristic is that highly expanded pumices (>85 vol.% vesicularities) are common, which argues against overpressure in bubbles as a mechanism for fragmenting magma. We suggest that magma fragments when it reaches a vesicularity of ∼64 vol.%, but only if sheared sufficiently strongly. The intensity of shear varies as a function of velocity in the conduit, which is related to overpressure in the chamber, so that changes in overpressure with time are important in controlling the common progression from explosive to effusive activity at volcanoes. Received: 19 April 1995 / Accepted: 3 April 1996  相似文献   

9.
Decompression experiments of a crystal-free rhyolitic liquid with ≈ 6.6 wt. % H2O were carried out at a pressure range from 250 MPa to 30–75 MPa in order to characterize effects of magma ascent rate and temperature on bubble nucleation kinetics, especially on the bubble number density (BND, the number of bubbles produced per unit volume of liquid). A first series of experiments at 800°C and fast decompression rates (10–90 MPa/s) produced huge BNDs (≈ 2 × 1014 m−3 at 10 MPa/s ; ≈ 2 × 1015 m−3 at 90 MPa/s), comparable to those in natural silicic pumices from Plinian eruptions (1015–1016 m−3). A second series of experiments at 700°C and 1 MPa/s produced BNDs (≈ 9×1012 m−3) close to those observed at 800°C and 1 MPa/s (≈ 6 × 1012 m−3), showing that temperature has an insignificant effect on BNDs at a given decompression rate. Our study strengthens the theory that the BNDs are good markers of the decompression rate of magmas in volcanic conduits, irrespective of temperature. Huge number densities of small bubbles in natural silicic pumices from Plinian eruptions imply that a major nucleation event occurs just below the fragmentation level, at which the decompression rate of ascending magmas is a maximum (≥ 1 MPa/s).  相似文献   

10.
Plinian/ignimbrite activity stopped briefly and abruptly 16 and 45 h after commencement of the 1912 Novarupta eruption defining three episodes of explosive volcanism before finally giving way after 60 h to effusion of lava domes. We focus here on the processes leading to the termination of the second and third of these three episodes. Early erupted pumice from both episodes show a very similar range in bulk vesicularity, but the modal values markedly decrease and the vesicularity range widens toward the end of Episode III. Clasts erupted at the end of each episode represent textural extremes; at the end of Episode II, clasts have very thin glass walls and a predominance of large bubbles, whereas at the end of Episode III, clasts have thick interstices and more small bubbles. Quantitatively, all clasts have very similar vesicle size distributions which show a division in the bubble population at 30 μm vesicle diameter and cumulative number densities ranging from 107–109 cm–3. Patterns seen in histograms of volume fraction and the trends in the vesicle size data can be explained by coalescence signatures superimposed on an interval of prolonged nucleation and free growth of bubbles. Compared to experimental data for bubble growth in silicic melts, the high 1912 number densities suggest homogeneous nucleation was a significant if not dominant mechanism of bubble nucleation in the dacitic magma. The most distinct clast populations occurred toward the end of Plinian activity preceding effusive dome growth. Distributions skewed toward small sizes, thick walls, and teardrop vesicle shapes are indicative of bubble wall collapse marking maturation of the melt and onset of processes of outgassing. The data suggest that the superficially similar pauses in the 1912 eruption which marked the ends of episodes II and III had very different causes. Through Episode III, the trend in vesicle size data reflects a progressive shift in the degassing process from rapid magma ascent and coupled gas exsolution to slower ascent with partial open-system outgassing as a precursor to effusive dome growth. No such trend is visible in the Episode II clast assemblages; we suggest that external changes involving failure of the conduit/vent walls are more likely to have effected the break in explosive activity at 45 h.  相似文献   

11.
This study focuses on constraining bubble nucleation and H2O exsolution processes in alkalic K-phonolite melts, using “white pumice” of the 79 AD eruption of Vesuvius as starting material. The first set of experiments consisted of H2O solubility runs at 1153 to 1250 K and pressures between 50 and 200 MPa, to constrain equilibrium water concentrations along the decompression pathways. The decompression experiments were equilibrated with H2O at 150 MPa and 1173 and 1223 K, and then decompressed at 3 to 17 MPa/s before rapid quenching. Experiments nucleated bubbles within the first 50 MPa pressure drop, producing maximum bubble number densities (NV), corrected to melt volume, of 3.8 × 1014 m− 3 at 1173 K and 4.3 × 1013 m− 3 at 1223 K. Most bubbles were not visibly attached to crystals, except for a subset attached to pyroxenes primarily in the 1173 K experiments. When compared with prior bubble nucleation studies, the reduced nucleation ΔP and relatively low NV observed indicate predominantly a heterogeneous nucleation mechanism. Melt–vapor–crystal wetting angles measured in 1173 K experiments from bubbles attached to pyroxene crystals are 36 to 69°, which are similar to those measured on titanomagnetite crystals in calc-alkaline dacite melts. The 1223 K experiments have porosities and water concentrations that largely track equilibrium, despite the rapid decompression rate. The 1173 K experiments deviate strongly from equilibrium trends in both porosity and water concentration, and slower H2O diffusion rates are likely the cause of the inhibited bubble growth. Bubble number densities from 79 AD Vesuvius natural EU2 pumice are relatively high (2 to 4 × 1015 m− 3; [Gurioli, L., Houghton, B.F., Cashman, K.V., Cioni, R., 2005. Complex changes in eruption dynamics during the 79 AD eruption of Vesuvius. Bull. Volcanol. 67: 144–159.]) when corrected to vesicularity. In comparison, corrected NV's from homogeneous and heterogeneous bubble nucleation experiments from this study and prior work are at least factor of 5 lower, indicating perhaps that the natural magmas initially nucleated bubbles in the presence of CO2. The disequilibrium H2O exsolution seen in the 1173 K experiments indicates that inhibited bubble growth could lead to delayed exsolution in the conduit in cooler K-phonolite magmas.  相似文献   

12.
 The rates of passive degassing from volcanoes are investigated by modelling the convective overturn of dense degassed and less dense gas-rich magmas in a vertical conduit linking a shallow degassing zone with a deep magma chamber. Laboratory experiments are used to constrain our theoretical model of the overturn rate and to elaborate on the model of this process presented by Kazahaya et al. (1994). We also introduce the effects of a CO2–saturated deep chamber and adiabatic cooling of ascending magma. We find that overturn occurs by concentric flow of the magmas along the conduit, although the details of the flow depend on the magmas' viscosity ratio. Where convective overturn limits the supply of gas-rich magma, then the gas emission rate is proportional to the flow rate of the overturning magmas (proportional to the density difference driving convection, the conduit radius to the fourth power, and inversely proportional to the degassed magma viscosity) and the mass fraction of water that is degassed. Efficient degassing enhances the density difference but increases the magma viscosity, and this dampens convection. Two degassing volcanoes were modelled. At Stromboli, assuming a 2 km deep, 30% crystalline basaltic chamber, containing 0.5 wt.% dissolved water, the ∼700 kg s–1 magmatic water flux can be modelled with a 4–10 m radius conduit, degassing 20–100% of the available water and all of the 1 to 4 vol.% CO2 chamber gas. At Mount St. Helens in June 1980, assuming a 7 km deep, 39% crystalline dacitic chamber, containing 4.6 wt.% dissolved water, the ∼500 kg s–1 magmatic water flux can be modelled with a 22–60 m radius conduit, degassing ∼2–90% of the available water and all of the 0.1 to 3 vol.% CO2 chamber gas. The range of these results is consistent with previous models and observations. Convection driven by degassing provides a plausible mechanism for transferring volatiles from deep magma chambers to the atmosphere, and it can explain the gas fluxes measured at many persistently active volcanoes. Received: 26 September 1997 / Accepted: 11 July 1998  相似文献   

13.
Bubble and crystal textures provide information with regard to the kinetics of the vesiculation and crystallization processes. They also provide insights into the fluid mechanical behavior of magma in a conduit. We performed textural (bubble and crystal) and compositional analyses of pyroclasts that were obtained from the Tenjo pyroclastic flow, which resulted on account of the eruption in 838 A.D. on Kozu Island, about 200 km south of Tokyo, Japan. Pyroclasts in one flow unit (300∼2,060 kg/m3; average density 1330 kg/m3) can be classified into three types on the basis of vesicle textures. Type I pyroclasts have small isolated spherical bubbles with higher vesicularities (67–77 vol.%) and number density (10.8–11.7 log m−3). Type II pyroclasts have vesicularities similar to type I (61–69 vol.%), but most bubbles exhibit evidences of bubble coalescence, and lower number densities than type I (8.9–9.5 log m−3). Type III pyroclasts contain highly deformed bubbles with lower vesicularities (16–34 vol.%) and number densities (8.2–9.0 log m−3). The microlite volume fraction (DRE converted) also changes consistently across type I, type II, and type III as 0.06, 0.08, and 0.10–0.15, respectively. However, the number density of the microlites remains nearly invariant in all the pyroclast types. These facts indicate that the variation in the microlite volume fraction is controlled not by the number density (i.e., nucleation process), but by the size (i.e., growth process); the growth history of each type of microlite was different. Water content determinations show that the three types of pumices have similar H2O contents (2.6±0.2 wt%). This fact implies that all three types were quenched at nearly the same depth (35±5 MPa, assuming that the magma was water-saturated) in the conduit. If the crystal sizes are limited only by growth time, a variation in this parameter can be related to the residence time, which is attributed to the flow heterogeneity in the conduit. By assuming a laminar Poiseuille-type flow, these textural observations can be explained by the difference in ascent velocity and shearing motion across the conduit, which in turn results in the differences in growth times of crystals, degrees of deformation, and bubble coalescence. Consequently, for crystals in the inner part of the conduit, the crystal growth time from nucleation to quenching is shorter than that near the conduit wall. The vesicle texture variation of bubbles in types I, II, and III results from the difference in the deformation history, implying that the effect of degassing occurred primarily towards the conduit wall.  相似文献   

14.
The previously poorly documented 26–16.6 ka interval of pyroclastic volcanism from Tongariro Volcano is marked by three distal lapilli fall units (Rt1-3) exposed in ring-plain deposits. The distal Rt1-3 units are tentatively correlated to proximal scoria deposits on the upper slopes of North Crater based on their dispersal patterns, petrography and geochemistry. Lapilli in each of the Rt1-3 deposits are characterised by variable groundmass crystallinity, vesicularity and colour within individual clasts. Matrix glasses are mostly microlite-free, and compositionally diverse across the deposits (SiO2 = 62–75 wt%), with wide composition ranges occurring within single clasts. The glasses represent different melts that were mingled and mixed shortly before eruption; a finding supported by widely variable Fe–Ti oxide equilibrium temperature estimates (∼830–1,200°C). Ranges of 30–160°C (typically 70°C) occur within individual clasts. Some clinopyroxene crystals display Mg-rich (∼Mg #88) rim zones around homogeneous low-Mg (∼Mg #68) cores, with abrupt transition zones. This zoning is interpreted as resulting from the injection of a more mafic melt into a stagnating, resident magma. Crystal-melt equilibria indicate that several episodes of mafic intrusion occurred, to produce hybrid melts with zoned crystals forming isolated ponds within the resident magma. Variable mixing from the percolation of melts and the coalescence of melt ponds would explain the wide range of melt compositions and equilibrium temperatures observed in the ejecta. The magma heterogeneity was preserved by quenching on prompt eruption, with much of the short-duration chaotic mixing of melts and crystals occurring in the conduit. The Rt1-3 eruptions were from an open magmatic system consisting of one or more long-lived stagnant crystal mush zones, from which eruptions were rapidly triggered by new injections of mafic magmas from greater depths. A similar pattern of magmatic dynamics was observed in the much smaller 1995 eruptions of the neighbouring Ruapehu Volcano.  相似文献   

15.
 Experiments on degassing of water-saturated granite melts with a pressure drop from 100 and 450 MPa to 40 and 120 MPa, respectively, at temperatures close to feldspar liquidus (750–700  °C), were carried out to determine the modality of water exsolution and vesicle formation at the liquidus temperature. Pressure-drop rates as small as approximately 100 bar/day were used. Uniform space distributions of bubbles of exsolved water were obtained with starting glass containing a small fraction (≈0.5 vol.%) of trapped air bubbles. Volume crystallization of feldspar was observed in degassed melts supplied with seeds. Bubble size distributions (BSD) measured in granite glasses after degassing are presented. Data on vesicle characteristics (number, radius, area, elongation) were acquired on images digitized with standard software, while the reconstruction of size distributions was performed with the Schwartz-Saltikov "unfolding" procedure. Bubble size distributions of size classes in the range 5–1000 μm were acquired with proper magnification and satisfactory statistical reliability of determined number densities. The BSDs of the experimental samples are compared with the results of measurements of rapidly degassed products of Mt. Etna and Vulcano Island. Many particular features of the bubble nucleation and growth can be distinguished in an individual BSD. However, the general BSD of the whole data set, including natural ones, can be relatively well described with linear regression in bilogarithmic coordinates. The slope of this regression is approximately 2.8±0.1. This dependence is in striking contrast with distributions theoretically predicted with classical nucleation models based on homogeneous nucleation of vesicles. The theoretical distribution requires the occurrence of strong maxima that are not observed in our experimental and natural samples, thus arguing for heterogeneous nucleation mechanisms. Received: 1 October 1998 / Accepted: 25 June 1999  相似文献   

16.
 Simulated gas-driven eruptions using CO2–water-polymer systems are reported. Eruptions are initiated by rapidly decompressing CO2–saturated water containing up to 1.0 wt.% CO2. Both cylindrical test cells and a flask test cell were used to examine the effect of magma chamber/conduit geometry on eruption dynamics. Bubble-growth kinetics are examined quantitatively in experiments using cylindrical test cells. Uninhibited bubble growth can be roughly expressed as dr/dt≈λD(β-1)/(γt 1/3) for a CO2–water-polymer system at 0–22  °C and with viscosities up to 5 Pa·s, where r is the radius of bubbles, λ and D are the Ostwald solubility coefficient and diffusivity of the gas in the liquid, β is the degree of saturation (decompression ratio), and γ characterizes how the boundary layer thickness increases with time and is roughly 1.0×10–5 m/s1/3 in this system. Unlike the radius of cylindrical test cells, which does not affect the eruption threshold and dynamics, the shape of the test cells (flask vs cylindrical) affects the dynamics but not the threshold of eruptions. For cylindrical test cells, the front motion is characterized by constant acceleration with both Δh (the height increase) and ΔV (the volume increase) being proportional to t 2; for the flask test cell, however, neither Δh nor ΔV is proportional to t 2 as the conduit radius varies. Test-cell geometry also affects foam stability. In the flask test cell, as it moves from the wider base chamber into the narrower conduit, the bubbly flow becomes fragmented, affecting the eruption dynamics. The fragmentation may be caused by a sudden increase in acceleration induced by conduit-shape change, or by the presence of obstacles to the bubbly flow. This result may help explain the range in vesicularities of pumice and reticulite. Received: 16 May 1997 / Accepted: 11 October 1997  相似文献   

17.
Sub-Plinian to Plinian eruptions of basic magma present a challenge to modeling volcanic behavior because many models rely on magma becoming viscous enough during ascent to behave brittlely and cause fragmentation. Such models are unable, however, to strain low viscosity magma fast enough for it to behave brittlely. That assumes that such magmas actually have low viscosities, but the rare Plinian eruptions of basic magma may in fact result from them being anomalously viscous. Here, we examine two such eruptions, the 122 B.C. eruption of hawaiitic basalt from Mt. Etna and the late Pleistocene eruption of basaltic andesite from Masaya Caldera, to test whether they were anomalously viscous. We carried out hydrothermal experiments on both magmas and analyzed glass inclusions in plagioclase phenocrysts from each to determine their most likely pre-eruptive temperatures and water contents. We find that the hawaiite was last stored at 1,000–1,020°C, whereas the basaltic andesite was last stored at 1,010–1,060°C, and that both were water saturated with ∼3.0 wt.% water dissolved in them. Such water contents are not high enough to trigger Plinian explosive behavior, as much more hydrous basic magmas erupt less violently. In addition, despite being relatively cool, the viscosities of both magmas would range from ∼102.2–2.5 Pa s before erupting to ∼104 Pa s when essentially degassed, all of which are too fluid to cause brittle disruption. Without invoking special external forces to explain all such eruptions, one of the more plausible explanations is that when the bubble content reaches some critical value the fragile foam-like magma disrupts. The rarity of Plinian eruptions of basic magma may be because such magmas must ascend fast enough to retain their bubbles.  相似文献   

18.
Experiments have been performed to determine the effect of deformation on degassing of bubble-bearing melts. Cylindrical specimens of phonolitic composition, initial water content of 1.5 wt.% and 2 vol.% bubbles, have been deformed in simple-shear (torsional configuration) in an internally heated Paterson-type pressure vessel at temperatures of 798–848 K, 100–180 MPa confining pressure and different final strains. Micro-structural analyses of the samples before and after deformation have been performed in two and three dimensions using optical microscopy, a nanotomography machine and synchrotron tomography. The water content of the glasses before and after deformation has been measured using Fourier Transform Infrared Spectroscopy (FTIR). In samples strained up to a total of γ ∼ 2 the bubbles record accurately the total strain, whereas at higher strains (γ ∼ 10) the bubbles become very flattened and elongate in the direction of shear. The residual water content of the glasses remains constant up to a strain of γ ∼ 2 and then decreases to about 0.2 wt.% at γ ∼ 10. Results show that strain enhances bubble coalescence and degassing even at low bubble volume-fractions. Noticeably, deformation produced a strongly water under-saturated melt. This suggests that degassing may occur at great depths in the volcanic conduit and may force the magma to become super-cooled early during ascent to the Earth’s surface potentially contributing to the genesis of obsidian.  相似文献   

19.
The giant ignimbrites that erupted from the Cerro Galán caldera complex in the southern Puna of the high Andean plateau are considered to be linked to crustal and mantle melting as a consequence of delamination of gravitationally unstable thickened crust and mantle lithosphere over a steepening subduction zone. Major and trace element analyses of Cerro Galán ignimbrites (68–71% SiO2) that include 75 new analyses can be interpreted as reflecting evolution at three crustal levels. AFC modeling and new fractionation corrected δ18O values from quartz (+7.63–8.85‰) are consistent with the ignimbrite magmas being near 50:50 mixtures of enriched mantle (87Sr/86Sr ~ 0.7055) and crustal melts (87Sr/86Sr near 0.715–0.735). Processes at lower crustal levels are predicated on steep heavy REE patterns (Sm/Yb = 4–7), high Sr contents (>250 ppm) and very low Nb/Ta (9-5) ratios, which are attributed to amphibolite partial melts mixing with fractionating mantle basalts to produce hybrid melts that rise leaving a gravitationally unstable garnet-bearing residue. Processes at mid crustal levels create large negative Eu anomalies (Eu/Eu* = 0.45–0.70) and variable trace element enrichment in a crystallizing mush zone with a temperature near 800–850°C. The mush zone is repeatedly recharged from depth and partially evacuated into upper crustal magma chambers at times of regional contraction. Crystallinity differences in the ignimbrites are attributed to biotite, zoned plagioclase and other antecrysts entering higher level chambers where variable amounts of near-eutectic crystallization occurs at temperatures as low as 680°C just preceding eruption. 40Ar/39Ar single crystal sanidine weighted mean plateau and isochron ages combined with trace element patterns show that the Galán ignimbrite erupted in more than one batch including a ~ 2.13 Ma intracaldera flow and outflows to the west and north at near 2.09 and 2.06 Ma. Episodic delamination of gravitationally unstable lower crust and mantle lithosphere and injection of basaltic magmas, whose changing chemistry reflects their evolution over a steepening subduction zone, could trigger the eruptions of the Cerro Galán ignimbrites.  相似文献   

20.
Vulcanian eruptions are common at many volcanoes around the world. Vulcanian activity occurs as either isolated sequences of eruptions or as precursors to sustained explosive events and is interpreted as clearing of shallow plugs from volcanic conduits. Breadcrust bombs characteristic of Vulcanian eruptions represent samples of different parts of these plugs and preserve information that can be used to infer parameters of pre-eruption magma ascent. The morphology and preserved volatile contents of breadcrust bombs erupted in 1999 from Guagua Pichincha volcano, Ecuador, thus allow us to constrain the physical processes responsible for Vulcanian eruption sequences of this volcano. Morphologically, breadcrust bombs differ in the thickness of glassy surface rinds and in the orientation and density of crack networks. Thick rinds fracture to create deep, widely spaced cracks that form large rectangular domains of surface crust. In contrast, thin rinds form polygonal networks of closely spaced shallow cracks. Rind thickness, in turn, is inversely correlated with matrix glass water content in the rind. Assuming that all rinds cooled at the same rate, this correlation suggests increasing bubble nucleation delay times with decreasing pre-fragmentation water content of the melt. A critical bubble nucleation threshold of 0.4–0.9 wt% water exists, below which bubble nucleation does not occur and resultant bombs are dense. At pre-fragmentation melt H2O contents of >∼0.9 wt%, only glassy rinds are dense and bomb interiors vesiculate after fragmentation. For matrix glass H2O contents of ≥1.4 wt%, rinds are thin and vesicular instead of thick and non-vesicular. A maximum measured H2O content of 3.1 wt% establishes the maximum pressure (63 MPa) and depth (2.5 km) of magma that may have been tapped during a single eruptive event. More common H2O contents of ≤1.5 wt% suggest that most eruptions involved evacuation of ≤1.5 km of the conduit. As we expect that substantial overpressures existed in the conduit prior to eruption, these depth estimates based on magmastatic pressure are maxima. Moreover, the presence of measurable CO2 (≤17 ppm) in quenched glass of highly degassed magma is inconsistent with simple models of either open- or closed-system degassing, and leads us instead to suggest re-equilibration of the melt with gas derived from a deeper magmatic source. Together, these observations suggest a model for the repeated Vulcanian eruptions that includes (1) evacuation of the shallow conduit during an individual eruption, (2) depressurization of magma remaining in the conduit accompanied by open-system degassing through permeable bubble networks, (3) rapid conduit re-filling, and (4) dome formation prior to the subsequent explosion. An important part of this process is densification of upper conduit magma to allow repressurization between explosions. At a critical overpressure, trapped pressurized gas fragments the nascent impermeable cap to repeat the process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号