首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A comparison between published field galaxy stellar mass functions (GSMFs) shows that the cosmic stellar mass density is in the range 4–8 per cent of the baryon density (assuming  Ωb= 0.045  ). There remain significant sources of uncertainty for the dust correction and underlying stellar mass-to-light ratio even assuming a reasonable universal stellar initial mass function. We determine the   z < 0.05  GSMF using the New York University Value-Added Galaxy Catalog sample of 49 968 galaxies derived from the Sloan Digital Sky Survey and various estimates of stellar mass. The GSMF shows clear evidence for a low-mass upturn and is fitted with a double Schechter function that has  α2≃−1.6  . At masses below  ∼108.5 M  , the GSMF may be significantly incomplete because of missing low-surface-brightness galaxies. One interpretation of the stellar mass–metallicity relation is that it is primarily caused by a lower fraction of available baryons converted to stars in low-mass galaxies. Using this principle, we determine a simple relationship between baryonic mass and stellar mass and present an 'implied baryonic mass function'. This function has a faint-end slope,  α2≃−1.9  . Thus, we find evidence that the slope of the low-mass end of the galaxy mass function could plausibly be as steep as the halo mass function. We illustrate the relationship between halo baryonic mass function → galaxy baryonic mass function → GSMF. This demonstrates the requirement for peak galaxy formation efficiency at baryonic masses  ∼1011 M  corresponding to a minimum in feedback effects. The baryonic-infall efficiency may have levelled off at lower masses.  相似文献   

2.
We compute two-point correlation functions and measure the shear signal due to galaxy–galaxy lensing for 80 000 optically identified and 5700 radio-loud active galactic nuclei (AGN) from Data Release 4 of the Sloan Digital Sky Survey. Halo occupation models are used to estimate halo masses and satellite fractions for these two types of AGN. The large sample size allows us to separate AGN according to the stellar mass of their host galaxies. We study how the halo masses of optical and radio AGN differ from those of the parent population at fixed   M *  . Halo masses deduced from clustering and from lensing agree satisfactorily. Radio AGN are found in more massive haloes than optical AGN: in our samples, their mean halo masses are  1.6 × 1013  and  8 × 1011  h −1 M  , respectively. Optical AGN follow the same relation between stellar mass and halo mass as galaxies selected without regard to nuclear properties, but radio-loud AGN deviate significantly from this relation. The dark matter haloes of radio-loud AGN are about twice as massive as those of control galaxies of the same stellar mass. This boost is independent of radio luminosity, and persists even when our analysis is restricted to field galaxies. The large-scale gaseous environment of the galaxy clearly plays a crucial role in producing observable radio emission. The dark matter halo masses that we derive for the AGN in our two samples are in good agreement with recent models in which feedback from radio AGN becomes dominant in haloes where gas cools quasi-statically.  相似文献   

3.
We investigate the role that dry mergers play in the build-up of massive galaxies within the cold dark matter paradigm. Implementing an empirical shut-off mass scale for star formation, we find a nearly constant dry merger rate of  ∼6 × 10−5 Mpc−3 Gyr−1  at   z ≤ 1  and a steep decline at larger z . Less than half of these mergers are between two galaxies that are morphologically classified as early-types, and the other half is mostly between an early- and late-type galaxy. Latter are prime candidates for the origin of tidal features around red elliptical galaxies. The introduction of a transition mass scale for star formation has a strong impact on the evolution of galaxies, allowing them to grow above a characteristic mass scale of   M *, c ∼ 6.3 × 1010 M  by mergers only. As a consequence of this transition, we find that around   M *, c   , the fraction of 1:1 mergers is enhanced with respect to unequal mass major mergers. This suggests that it is possible to detect the existence of a transition mass scale by measuring the relative contribution of equal mass mergers to unequal mass mergers as a function of galaxy mass. The evolution of the high-mass end of the luminosity function is mainly driven by dry mergers at low z . We however find that only 10–20 per cent of galaxies more massive than   M *, c   experience dry major mergers within their last Gyr at any given redshift   z ≤ 1  .  相似文献   

4.
The first spectroscopic census of active galactic nuclei (AGNs) associated with late-type galaxies in the Virgo cluster was carried out by observing 213 out of a complete set of 237 galaxies more massive than   M dyn > 108.5 M  . Among them, 77 are classified as AGNs [including 21 transition objects, 47 low-ionization nuclear emission regions (LINERs) and nine Seyferts] and comprise 32 per cent of the late-type galaxies in Virgo. Due to spectroscopic incompleteness, at most 21 AGNs are missed in the survey, so that the fraction would increase up to 41 per cent. Using corollary near-infrared observations that enable us to estimate galaxy dynamical masses, it is found that AGNs are hosted exclusively in massive galaxies, i.e.   M dyn≳ 1010 M  . Their frequency increases steeply with the dynamical mass from zero at   M dyn≈ 109.5 M  to virtually 1 at   M dyn > 1011.5 M  . These frequencies are consistent with those of low-luminosity AGNs found in the general field by the Sloan Digital Sky Survey. Massive galaxies that harbour AGNs commonly show conspicuous r -band star-like nuclear enhancements. Conversely, they often, but not necessarily, contain massive bulges. A few well-known AGNs (e.g. M61, M100, NGC 4535) are found in massive Sc galaxies with little or no bulge. The AGN fraction seems to be only marginally sensitive to galaxy environment. We infer the black hole masses using the known scaling relations of quiescent black holes. No black holes lighter than  ∼106 M  are found active in our sample.  相似文献   

5.
Transformation of discs into spheroids via mergers is a well-accepted element of galaxy formation models. However, recent simulations have shown that the bulge formation is suppressed in increasingly gas-rich mergers. We investigate the global implications of these results in a cosmological framework, using independent approaches: empirical halo-occupation models (where galaxies are populated in haloes according to observations) and semi-analytic models. In both, ignoring the effects of gas in mergers leads to the overproduction of spheroids: low- and intermediate-mass galaxies are predicted to be bulge-dominated (   B / T ∼ 0.5  at  <1010 M  , with almost no 'bulgeless' systems), even if they have avoided major mergers. Including the different physical behaviour of gas in mergers immediately leads to a dramatic change: bulge formation is suppressed in low-mass galaxies, observed to be gas-rich (giving   B / T ∼ 0.1  at  <1010 M  , with a number of bulgeless galaxies in good agreement with observations). Simulations and analytic models which neglect the similarity-breaking behaviour of gas have difficulty reproducing the strong observed morphology–mass relation. However, the observed dependence of gas fractions on mass, combined with suppression of bulge formation in gas-rich mergers, naturally leads to the observed trends. Discrepancies between observations and models that ignore the role of gas increase with redshift; in models that treat gas properly, galaxies are predicted to be less bulge-dominated at high redshifts, in agreement with the observations. We discuss implications for the global bulge mass density and future observational tests.  相似文献   

6.
Using the spectroscopic sample of the Sloan Digital Sky Survey Data Release 1 (SDSS DR1), we measure how gas was transformed into stars as a function of time and stellar mass: the baryonic conversion tree (BCT). There is a clear correlation between early star formation activity and present-day stellar mass: the more massive galaxies have formed approximately 80 per cent of their stars at   z > 1  , while for the less massive ones the value is only approximately 20 per cent. By comparing the BCT with the dark matter merger tree, we find indications that star formation efficiency at   z > 1  had to be approximately a factor of two higher than today (∼10 per cent) in galaxies with present-day stellar mass larger than  2 × 1011 M  , if this early star formation occurred in the main progenitor. Therefore, the λ cold dark matter (LCDM) paradigm can accommodate a large number of red objects. On the other hand, in galaxies with present-day stellar mass less than  1011 M  , efficient star formation seems to have been triggered at   z ∼ 0.2  . We show that there is a characteristic mass  ( M *∼ 1010 M)  for feedback efficiency (or lack of star formation). For galaxies with masses lower than this, feedback (or star formation suppression) is very efficient while for higher masses it is not. The BCT, determined here for the first time, should be an important observable with which to confront theoretical models of galaxy formation.  相似文献   

7.
The kinematics of satellite galaxies reflect the masses of the extended dark matter haloes in which they orbit, and thus shed light on the mass–luminosity relation (MLR) of their corresponding central galaxies. In this paper, we select a large sample of centrals and satellites from the Sloan Digital Sky Survey and measure the kinematics (velocity dispersions) of the satellite galaxies as a function of the r -band luminosity of the central galaxies. Using the analytical framework presented in More, van den Bosch & Cacciato, we use these data to infer both the mean and the scatter of the MLR of central galaxies, carefully taking account of selection effects and biases introduced by the stacking procedure. As expected, brighter centrals on average reside in more massive haloes. In addition, we find that the scatter in halo masses for centrals of a given luminosity,  σlog  M   , also increases with increasing luminosity. As we demonstrate, this is consistent with  σlog  L   , which reflects the scatter in the conditional probability function   P ( L c| M )  , being independent of halo mass. Our analysis of the satellite kinematics yields  σlog  L = 0.16  ±  0.04  , in excellent agreement with constraints from clustering and group catalogues, and with predictions from a semi-analytical model of galaxy formation. We thus conclude that the amount of stochasticity in galaxy formation, which is characterized by  σlog  L   , is well constrained, independent of halo mass and in a good agreement with current models of galaxy formation.  相似文献   

8.
The evolution of number density, size and intrinsic colour is determined for a volume-limited sample of visually classified early-type galaxies selected from the Hubble Space Telescope /Advanced Camera for Surveys images of the Great Observatories Origins Deep Survey (GOODS) North and South fields (version 2). The sample comprises 457 galaxies over 320 arcmin2 with stellar masses above  3 × 1010 M  in the redshift range  0.4 < z < 1.2  . Our data allow a simultaneous study of number density, intrinsic colour distribution and size. We find that the most massive systems  (≳3 × 1011 M)  do not show any appreciable change in comoving number density or size in our data. Furthermore, when including the results from 2dF galaxy redshift survey, we find that the number density of massive early-type galaxies is consistent with no evolution between   z = 1.2  and 0, i.e. over an epoch spanning more than half of the current age of the Universe. We find large discrepancies between the predictions of semi-analytic models. Massive galaxies show very homogeneous intrinsic colour distributions, with nearly flat radial colour gradients, but with a significant negative correlation between stellar mass and colour gradient, such that red cores appear predominantly in massive galaxies. The distribution of half-light radii – when compared to   z ∼ 0  and   z > 1  samples – is compatible with the predictions of semi-analytic models relating size evolution to the amount of dissipation during major mergers.  相似文献   

9.
We confirm and extend the recent finding that the central surface density  μ0D≡ r 0ρ0  of galaxy dark matter haloes, where r 0 and  ρ0  are the halo core radius and central density, is nearly constant and independent of galaxy luminosity. Based on the co-added rotation curves (RCs) of ∼1000 spiral galaxies, the mass models of individual dwarf irregular and spiral galaxies of late and early types with high-quality RCs, and the galaxy–galaxy weak-lensing signals from a sample of spiral and elliptical galaxies, we find that  log μ0D= 2.15 ± 0.2  in units of  log(M pc−2)  . We also show that the observed kinematics of Local Group dwarf spheroidal galaxies are consistent with this value. Our results are obtained for galactic systems spanning over 14 mag, belonging to different Hubble types and whose mass profiles have been determined by several independent methods. In the same objects, the approximate constancy of  μ0D  is in sharp contrast to the systematical variations, by several orders of magnitude, of galaxy properties, including  ρ0  and central stellar surface density.  相似文献   

10.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

11.
We present the results of Australia Telescope Compact Array (ATCA) H  i line and 20-cm radio continuum observations of the galaxy quartet NGC 6845. The H  i emission extends over all four galaxies but can only be associated clearly with the two spiral galaxies, NGC 6845A and B, which show signs of strong tidal interaction. We derive a total H  i mass of at least  1.8 × 1010 M  , most of which is associated with NGC 6845A, the largest galaxy of the group. We investigate the tidal interaction between NGC 6845A and B by studying the kinematics of distinct H  i components and their relation to the known H  ii regions. No H  i emission is detected from the two lenticular galaxies, NGC 6845C and D. A previously uncatalogued dwarf galaxy, ATCA  J2001−4659  , was detected 4.4 arcmin NE from NGC 6845B and has an H  i mass of  ∼5 × 108 M  . No H  i bridge is visible between the group and its newly detected companion. Extended 20-cm radio continuum emission is detected in NGC 6845A and B as well as in the tidal bridge between the two galaxies. We derive star formation rates of  15–40 M yr−1  .  相似文献   

12.
We present 21-cm H  i line observations of the blue compact dwarf galaxy NGC 1705. Previous optical observations show a strong outflow powered by an ongoing starburst dominating the H  ii morphology and kinematics. In contrast, most of the H  i lies in a rotating disc. An extraplanar H  i spur accounts for ∼8 per cent of the total H  i mass, and is possibly associated with the H  ii outflow. The inferred mass loss rate out of the core of the galaxy is significant, ∼0.2 − 2 M yr−1, but does not dominate the H  i dynamics. Mass model fits to the rotation curve show that the dark matter (DM) halo is dominant at nearly all radii and has a central density ρ0 ≈ 0.1 M pc−3: ten times higher than typically found in dwarf irregular galaxies, but similar to the only other mass-modelled blue compact dwarf, NGC 2915. This large difference strongly indicates that there is little evolution between dwarf irregular and blue compact dwarf types. Instead, dominant DM haloes may regulate the morphology of dwarf galaxies by setting the critical surface density for disc star formation. Neither our data nor catalogue searches reveal any likely external trigger to the starburst in NGC 1705.  相似文献   

13.
We use semi-analytic modelling on top of the Millennium simulation to study the joint formation of galaxies and their embedded supermassive black holes. Our goal is to test scenarios in which black hole accretion and quasar activity are triggered by galaxy mergers, and to constrain different models for the light curves associated with individual quasar events. In the present work, we focus on studying the spatial distribution of simulated quasars. At all luminosities, we find that the simulated quasar two-point correlation function is fit well by a single power law in the range  0.5 ≲ r ≲ 20  h −1 Mpc  , but its normalization is a strong function of redshift. When we select only quasars with luminosities within the range typically accessible by today's quasar surveys, their clustering strength depends only weakly on luminosity, in agreement with observations. This holds independently of the assumed light-curve model, since bright quasars are black holes accreting close to the Eddington limit, and are hosted by dark matter haloes with a narrow mass range of a few  1012  h −1 M  . Therefore, the clustering of bright quasars cannot be used to disentangle light-curve models, but such a discrimination would become possible if the observational samples can be pushed to significantly fainter limits. Overall, our clustering results for the simulated quasar population agree rather well with observations, lending support to the conjecture that galaxy mergers could be the main physical process responsible for triggering black hole accretion and quasar activity.  相似文献   

14.
We consider the effect of reionization on the clustering properties of galaxy samples at intermediate redshifts ( z ∼ 0.3–5.5). Current models for the reionization of intergalactic hydrogen predict that overdense regions will be reionized early, thus delaying the build-up of stellar mass in the progenitors of massive lower redshift galaxies. As a result, the stellar populations observed in intermediate-redshift galaxies are somewhat younger and hence brighter in overdense regions of the Universe. Galaxy surveys would therefore be sensitive to galaxies with a somewhat lower dark matter mass in overdense regions. The corresponding increase in the observed number density of galaxies can be parametrized as a galaxy bias due to reionization. We model this process using merger trees combined with a stellar synthesis code. Our model demonstrates that reionization has a significant effect on the clustering properties of galaxy samples that are selected based on their star formation properties. The bias correction in Lyman-break galaxies (including those in proposed baryonic oscillation surveys at z < 1) is at the level of 10–20 per cent for a halo mass of  1012 M  , leading to corrections factors of 1.5–2 in the halo mass inferred from measurements of clustering length. The reionization of helium could also lead to a sharp increase in the amplitude of the galaxy correlation function at z ∼ 3. We find that the reionization bias is approximately independent of scale and halo mass. However, since the traditional galaxy bias is mass dependent, the reionization bias becomes relatively more important for lower mass systems. The correction to the bias due to reionization is very small in surveys of luminous red galaxies at z < 1.  相似文献   

15.
We introduce the contour process to describe the geometrical properties of merger trees. The contour process translates a tree structure into a one-dimensional object: the contour walk. We characterize the contour walk measuring its length and action. The length is proportional to the number of progenitors in the tree, and the action is a proxy for the mean length of a branch in the tree.
We construct the contour walk for merger trees extracted from the public data base of the Millennium Run and also for merger trees constructed with a public Monte Carlo code which implements a Markovian algorithm. The trees correspond to haloes of final masses between 1011 and  1014  h −1 M  . We study how the length and action scale with the mass of the final halo.
In all cases, except for the action measured from Markovian trees, we find a transitional scale around  1–6 × 1012  h −1 M  , which can be interpreted as the point where the halo growth starts to be dominated by mergers and not accretion. The transitional scale depends weakly on the mass resolution and time discretization of the merging trees.  相似文献   

16.
In this paper, we study the angular momentum properties of simulated dark matter haloes at high redshifts that likely host the first stars in the Universe. Calculating the spin distributions of these  106– 107 M  haloes in redshift slices from   z = 15  to 6, we find that they are well fit by a lognormal distribution as is found for lower redshift and more massive haloes in earlier work. We find that both the mean value of the spin and dispersion are largely unchanged with redshift for all haloes. Our key result is that subsamples of low- and high-spin, 106 and  107 M  , haloes show difference in clustering strength. In both mass bins, higher spin haloes are more strongly clustered in concordance with a tidal torquing picture for the growth of angular momentum in dark matter haloes in the cold dark matter paradigm.  相似文献   

17.
Using simple stellar population synthesis, we model the bulge stellar contribution in the optical spectrum of a narrow-line Seyfert 1 galaxy, RE J1034+396. We find that its bulge stellar velocity dispersion is  67.7 ± 8 km s−1  . The supermassive black hole (SMBH) mass is about  (1–4) × 106 M  if it follows the well-known   M BH–σ*  relation found in quiescent galaxies. We also derive the SMBH mass from the Hβ second moment, which is consistent with that from its bulge stellar velocity dispersion. The SMBH mass of (1–4)  × 106 M  implies that the X-ray quasi-periodic oscillation (QPO) of RE J1034+396 can be scaled to a high-frequency QPO at 27–108 Hz found in Galactic black hole binaries with a  10-M  black hole. With the mass distribution in different age stellar populations, we find that the mean specific star formation rate (SSFR) over the past 0.1 Gyr is  0.0163 ± 0.0011  Gyr−1, the stellar mass in the logarithm is  10.155 ± 0.06  in units of solar mass and the current star formation rate is  0.23 ± 0.016 M yr−1  . For RE J1034+396, there is no relation between the Eddington ratio and the SSFR as suggested by Chen et al., despite a larger scatter in their relation. We also suggest that about 7.0 per cent of the total Hα luminosity and 50 per cent of the total [O  ii ] luminosity come from the star formation process.  相似文献   

18.
Void regions of the Universe offer a special environment for studying cosmology and galaxy formation, which may expose weaknesses in our understanding of these phenomena. Although galaxies in voids are observed to be predominately gas rich, star forming and blue, a subpopulation of bright-red void galaxies can also be found, whose star formation was shutdown long ago. Are the same processes that quench star formation in denser regions of the Universe also at work in voids?
We compare the luminosity function of void galaxies in the 2dF Galaxy Redshift Survey, to those from a galaxy formation model built on the Millennium simulation. We show that a global star formation suppression mechanism in the form of low-luminosity 'radio-mode' active galactic nuclei (AGN) heating is sufficient to reproduce the observed population of void early types. Radio-mode heating is environment independent other than its dependence on dark matter halo mass, where, above a critical mass threshold of approximately   M vir∼ 1012.5 M  , gas cooling on to the galaxy is suppressed and star formation subsequently fades. In the Millennium simulation, the void halo mass function is shifted with respect to denser environments, but still maintains a high-mass tail above this critical threshold. In such void haloes, radio-mode heating remains efficient and red galaxies are found; collectively these galaxies match the observed space density without any modification to the model. Consequently, galaxies living in vastly different large-scale environments but hosted by haloes of similar mass are predicted to have similar properties, consistent with observations.  相似文献   

19.
We present discovery images, together with follow-up imaging and spectroscopy, of two large-separation gravitational lenses found by our survey for wide arcs [the CAmbridge Sloan Survey Of Wide ARcs in the skY (CASSOWARY)]. The survey exploits the multicolour photometry of the Sloan Digital Sky Survey to find multiple blue components around red galaxies. CASSOWARY 2 (or 'the Cheshire Cat') is composed of two massive early-type galaxies at   z = 0.426  and 0.432, respectively, lensing two background sources, the first a star-forming galaxy at   z = 0.97  and the second a high -redshift galaxy  ( z > 1.4)  . There are at least three images of the former source and probably four or more of the latter, arranged in two giant arcs. The mass enclosed within the larger arc of radius ∼11 arcsec is  ∼33 × 1012 M  . CASSOWARY 3 comprises an arc of three bright images of a   z = 0.725  source, lensed by a foreground elliptical at   z = 0.274  . The radius of the arc is ∼4 arcsec and the enclosed mass is  ∼2.5 × 1012 M  . Together with earlier discoveries like the Cosmic Horseshoe and the 8 o'clock Arc, these new systems, with separations intermediate between the arcsecond-separation lenses of typical strong galaxy lensing and arcminute-separation cluster lenses, probe the very high end of the galaxy mass function.  相似文献   

20.
In large spheroidal stellar systems, such as elliptical galaxies, one invariably finds a  106–109 M  supermassive black hole at their centre. In contrast, within dwarf elliptical galaxies one predominantly observes a  105–107 M  nuclear star cluster. To date, few galaxies have been found with both types of nuclei coexisting and even less have had the masses determined for both central components. Here, we identify one dozen galaxies housing nuclear star clusters and supermassive black holes whose masses have been measured. This doubles the known number of such hermaphrodite nuclei – which are expected to be fruitful sources of gravitational radiation. Over the host spheroid (stellar) mass range  108–1011 M  , we find that a galaxy's nucleus-to-spheroid (baryon) mass ratio is not a constant value but decreases from a few per cent to ∼0.3 per cent such that  log[( M BH+ M NC)/ M sph]=−(0.39 ± 0.07) log[ M sph/1010 M]− (2.18 ± 0.07)  . Once dry merging commences and the nuclear star clusters disappear, this ratio is expected to become a constant value.
As a byproduct of our investigation, we have found that the projected flux from resolved nuclear star clusters is well approximated with Sérsic functions having a range of indices from ∼0.5 to ∼3, the latter index describing the Milky Way's nuclear star cluster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号