首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
APPLICATION OF GIS IN ANALYZING ECOSYSTEM'S RELATIVE SENSITIVITY TO ACID DEPOSITIONAPPLICATIONOFGISINANALYZINGECOSYSTEM'SRELA...  相似文献   

2.
DYNAMIC VARIATIONS OF WATER QUALITY IN TAIHU LAKE AND MULTIVARIATE ANALYSIS OF ITS INFLUENTIAL FACTORSDYNAMICVARIATIONSOFWATE...  相似文献   

3.
FACTORS AFFECTING FORMATION AND DEVELOPMENT OF THE URBAN INDUSTRIAL DISTRICT IN CHINA──A Case StudyonCaohejingHi-TechParkinSh...  相似文献   

4.
RESEARCHONAPPLICATIONOFCOMBINEDNORMALTRANSFORMATIONINPROCESSOFGEOPHYSICALDATAMoChengbinLuHuaichengChenZhongxianChenKangTaoJun...  相似文献   

5.
THEHOLOCENESEDIMENTALCHARACTERISTICANDPALEOCLIMATICEVOLUTIONOFEBINURLAKE,XINJIANG吴敬禄,王苏民,吴艳宏THEHOLOCENESEDIMENTALCHARACTERIST...  相似文献   

6.
THEMETALLOGENICINFORMATIONANDTNEQUANTITATIVEFORECASTINGASSESSMENTOFMICRO┐GRAINEDGOLDDEPOSITSINNORTHWESTERNGUANGXIHuangqixun(N...  相似文献   

7.
STATISTICALANALYSISOFTEMPERATURESONBOTHTHEUPPERANDLOWERBOUNDARIESOFSUB-ALPINEDARKCONIFERFORESTSINCHINAWangJian(王建);XuXiaobin(...  相似文献   

8.
DEVELOPMENT,TERRITORIALDIFFERENCEANDSPATIALEVOLUTIONOFTOWNSINCHINA──ADISCUSSIONONTHEVIEWSOFANTI-URBANISMINCHINA¥GuChaolinInst...  相似文献   

9.
HONG KONG DIRECT INVESTMENT IN CHINA'S MAINLAND: A SPATIAL STUDY WITH SPECIAL REFERENCE TO THE LOCATIONAL BEHAVIOUR OF INVEST...  相似文献   

10.
CHARACTERISTICS AND RATIONAL EXPLOITATION OF LAND RESOURCES IN XIZANGCHARACTERISTICSANDRATIONALEXPLOITATIONOFLANDRESOURCESINX...  相似文献   

11.
Snowfall in the Tianshan Mountains in China is frequent during winter;thus,avalanches have become a severe issue in snow-covered areas.Accumulation and metamorphosis,as well as hydrothermal exchanges with the environment,considerably affect the stability of snow on slopes.Therefore,a hydrothermal model of snow cover and its underlying surfaces must be developed on the basis of meteorological data to predict and help manage avalanches.This study adopted the conceptual model of snow as a porous medium and quantitatively analysed its internal physical processes on the basis of the thermal exchanges amongst its components.The effects of local meteorological factors on snow structure and the redistribution of energy and mass inside the snow cover in the Tianshan Mountains were simulated.Simulation results showed that deformation as a result of overlying snow and sublimation of snow cover at the bottom is the main cause of density variation in the vertical profile of snow cover.Temperature drives water movement in snow.The low-density area of the bottom snow is the result of temperature gradient.The simulation results of the long-term snow internal mass distribution obtained by the method established in this study are highly consistent with the actual observed trend of variation.Such consistency indicates an accurate simulation of the physical characteristics of snow cover in small and microscale metamorphism in the Tianshan Mountains during the stable period.  相似文献   

12.
Xinjiang Tianshan is a serial natural property that has been nominated for World Heritage status.This paper presents a systematically comprehensive and comparative analysis of the heritage resources of Xinjiang Tianshan according to the World Heritage criteria.Its biological,ecological and aesthetic values,which are of global importance, are documented.It is concluded that Xinjiang Tianshan meets the world heritage criteria(vii)and (ix).Xinjiang Tianshan is compared with other mountain world heritage sites,mountains in Central Asia,the Tianshan Mountains outside China,and with the protected areas of the Tianshan Mountains on the Tentative List for World Heritage Sites,so as to provide objective data for the world heritage application.  相似文献   

13.
新疆NDVI时空特征及气候变化影响研究   总被引:1,自引:0,他引:1  
基于新疆50个气象测站2003-2010年逐日降水、气温资料,结合逐月归一化植被覆盖影像资料,利用趋势分析、R/S分析、模糊C均值聚类、图像处理等方法,系统分析了全疆NDVI时空变化特征及其可持续性,并探究NDVI与气候因子(气温、降水)之间的相关性。研究表明:植被覆盖及气象因子年际间差异不大,呈现出整体稳定的态势,但年内变化明显。北疆/天山北坡水热条件优良、植被长势最好,且植被长势对气候因子的滞后效应并不明显且滞后时间短。天山南坡/天山东段次之,而南疆植被覆盖程度最差,南疆/天山南坡植被长势对气候因子(降水、气温)存在明显的滞后效应,植被生长受气温、降水限制性更大,且气温作为主要因子,对天山南坡植被生长的限制作用表现得更为突出。总体上,新疆植被覆盖呈持续性变化,现有植被覆盖情况基本保持不变,但呈退化趋势的面积大于得到改善的面积,在一定程度上与人类活动有很大关系,探查植被长势的变化趋势并及时做出相应调整,不仅能为新疆地区的植被保护以及植被恢复工作提供一定的科学依据,更能够为合理有效地安排农作物生产提供重要的理论指导。  相似文献   

14.
The mountainous areas of Central Asia provide substantial water resources, and studying change in water storage and the impacts of precipitation and snow cover in the mountain ranges of Central Asia is of the greatest importance for understanding regional water shortages and the main factors. Data from the GRACE(Gravity Recovery and Climate Experiment) satellites, precipitation products and snow-covered area data were used to analyze the spatio-temporal characteristics of water storage changes and the effects of precipitation and snow cover from April 2002 to December 2013. The results were computed for each mountain ranges, and the following conclusions were drawn. The water storage in the mountainous areas of Central Asia as a whole increases in summer and winter, whereas it decreases in autumn. The water storage is affected by precipitation to some extent and some areas exhibit hysteresis. The area of positive water storage changes moves from west to east over the course of the year. The water storage declined during the period 2002–2004. It then returned to a higher level in 2005–2006 and featured lower levels in 2007–2009 Subsequently, the water storage increased gradually from 2010 to 2013. The Eastern Tianshan Mountains and Western Tianshan Mountain subzones examined in this study display similar tendencies, and the trends observed in the Karakorum Mountains and the Kunlun Mountains are also similar. However, the Eastern Tianshan Mountains and Western Tianshan Mountains were influenced by precipitation to a greater degree than the latter two ranges. The water storage in Qilian Mountains showed a pronounced increasing trend, and this range is the most strongly affected by precipitation. Based on an analysis of all investigated subzones, precipitation has the greatest influence on total water storage relative to the snow covered area in some areas of Central Asia. The results obtained from this study will be of value for scientists studying the mechanisms that influence changes in water storage in Central Asia.  相似文献   

15.
Snow avalanche is a serious threat to the safety of roads in alpine mountains. In the western Tianshan Mountains, large scale avalanches occur every year and affect road safety. There is an urgent need to identify the characteristics of triggering factors for avalanche activity in this region to improve road safety and the management of natural hazards. Based on the observation of avalanche activity along the national road G218 in the western Tianshan Mountains, avalanche event data in combination with meteorological, snowpack and earthquake data were collected and analyzed. The snow climate of the mountain range was examined using a recently developed snow climate classification scheme, and triggering conditions of snow avalanche in different snow climate regions were compared. The results show that snowfall is the most common triggering factor for a natural avalanche and there is high probability of avalanche release with snowfall exceeding 20.4 mm during a snowfall period. Consecutive rise in temperature within three days and daily mean temperature reaching 0.5°C in the following day imply a high probability of temperaturerise-triggered avalanche release. Earthquakes have a significant impact on the formation of large size avalanches in the area. For the period 2011-2017, five cases were identified as a consequence of earthquake with magnitudes of 3.3≤M_L≤5.1 and source-to-site distances of 19~139 km. The Tianshan Mountains are characterized by a continental snow climate with lower snow density, lower snow shear strength and high proportion depth hoar, which explains that both the snowfall and temperature for triggering avalanche release in the continental snow climate of the Tianshan Mountains are lower than that in maritime snow climate and transitional snow climate regions. The findings help forecast avalanche release for mitigating avalanche disaster and assessing the risk of avalanche disaster.  相似文献   

16.
The poor distribution of meteorological stations results in a limited understanding of the precipitation pattern in the Tianshan Mountains. The spatial patterns of precipitation over the mid Tianshan Mountains were characterized based on the TRMM 3B43 monthly precipitation data. By comparing satellite estimates with observed data, it shows that TRMM 3B43 data underestimate the precipitation in mountain region. Regression models were developed to improve the TRMM 3B43 data, using geographic location and topographic variables extracted from DEM using GIS technology. The explained variance in observed precipitation was improved from 64% (from TRMM 3B43 products alone) to over 82% and the bias reduced by over 30% when location and topographic variables were added. We recalculated all the TRMM 3B43 monthly precipitation grids for the period 1998 to 2009 using the best regression models, and then studied the variation patterns of precipitation over the mid Tianshan Mountains. The results are well explained by a general understanding of the patterns of precipitation and orographic effects. This indicated that the Tianshan Mountains strongly influences the amount and distribution of precipitation in the region. This is highlighted by the confinement of the precipitation maxima to the windward (northern slope). And complex vertical changes in the provenance and distribution of precipitation, like that a negative increasing rate of precipitation in the vertical direction exists in the north but does not in south. The results have also revealed large gradients and different patterns in seasonal precipitation that are not simply related to elevation, the distribution of precipitation may also be affected by other seasonal factors such as the sources of moist air, wind direction and temperature.  相似文献   

17.
Based on runoff, air temperature, and precipitation data from 1960 to 2010, the effects of climate change on water resources in the arid region of the northwestern China were investigated. The long-term trends of hydroclimatic variables were studied by using both Mann-Kendall test and distributed-free cumulative sum (CUSUM) chart test. Results indicate that the mean annual air temperature increases significantly from 1960 to 2010. The annual precipitation exhibits an increasing trend, especially in the south slope of the Tianshan Mountains and the North Uygur Autonomous Region of Xinjiang in the study period. Step changes occur in 1988 in the mean annual air temperature time series and in 1991 in the precipitation time series. The runoff in different basins shows different trends, i.e., significantly increasing in the Kaidu River, the Aksu River and the Shule River, and decreasing in the Shiyang River. Correlation analysis reveals that the runoff in the North Xinjiang (i.e., the Weigan River, the Heihe River, and the Shiyang River) has a strong positive relationship with rainfall, while that in the south slope of the Tianshan Mountains, the middle section of the north slope of the Tianshan Mountains and the Shule River has a strong positive relationship with air temperature. The trends of runoff have strong negative correlations with glacier coverage and the proportion of glacier water in runoff. From the late 1980s, the climate has become warm and wet in the arid region of the northwestern China. The change in runoff is interacted with air temperature, precipitation and glacier coverage. The results show that streamflow in the arid region of the northwestern China is sensitive to climate change, which can be used as a reference for regional water resource assessment and management.  相似文献   

18.
Mountain block recharge(MBR), an important water resource, is a widespread process that recharges lowland aquifers. However, little is known about MBR due to the limited climatic and geologic data in mountainous regions such as the northern central foothills of Tianshan. Here, we present an approach to quantify MBR through the combination of water balance calculations and numerical modeling. MBR calculated from the water balance in the data-limited Tianshan Mountains is employed as a fluid-flux boundary condition in the numerical model of the plain. To verify the performance of the model, mean absolute error and root mean square error were used. Results show that the volume of water that is recharging the aquifer via MBR is 107.29 million m~3/yr, accounting for 2.2% of the total precipitation that falls in the mountains. Additionally, 53.3% of that precipitation enters the plain aquifer via runoff, totaling 2,652.68 million m~3/yr. The lower volume of MBR is attributed to a major range-bounding anticline with apparent low permeability in the Tianshan Mountains. Through numerical modeling of groundwater, MBR coming from bedrock was found to be significant, accounting for 14% of total aquifer recharge in the plain, only after the portion of runoff seepage. This research contributes to a deeper understanding of MBR, and may provide instructions for estimating groundwater recharge in arid and semi-arid areas.  相似文献   

19.
Glaciers in the Tomor region of Tianshan Mountains preserve vital water resources.However,these glaciers suffer from strong mass losses in the recent years because of global warming.From 2008 to 2009,a large-scale scientific expedition has been carried out in this region.As an individual reference glacier,the tongue area of Qingbingtan glacier No.72 was measured by the high precise Real Time Kinematic-Global Position System (RTK-GPS).In this paper,changes of the tongue area of Qingbingtan glacier No.72 has been studied based on topographic map,remote sensing image and the survey during 2008-2009 field campaign.Results indicated that the ice surface-elevation of the tongue area changed-0.22±0.14 m a-1 from 1964 to 2008.The estimated loss in ice volume was 0.014±0.009 km3,which represented a ~20 % decrease from the 1964 volume and was equivalent to average annual mass balance of-0.20±0.12 m water equivalent for the tongue area during 1964-2008.Terminus retreated by 1852 m,approximately 41 m a-1,with the area reduction of 1.533 km2 (0.034 km2 a-1) from 1964 to 2009.Furthermore,the annual velocity reached to ~70 m a-1.Comparing with the other monitored glaciers in the eastern Tianshan Mountains,Qingbingtan glacier No.72 experienced more intensive in shrinkage,which resulted from the combined effects of climate change and glacier dynamic,providing evidence of the response to climatic warming.  相似文献   

20.
The characteristics of climatic change and river runoff, as well as the response of river runoff to climatic change in the northern Xinjiang are analyzed on the basis of the hydrological and meteorological data over the last 50 years by the methods of Mann-Kendall nonparametric test and the nonlinear regression model. The results show that: 1) The temperature and the precipitation increased significantly in the whole northern Xinjiang, but the precipitation displayed no obvious change, or even a decreasing trend in the northern mountainous area of the northern Xinjiang. 2) River runoff varied in different regions in the northern Xinjiang. It significantly increased in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang (p=0.05), while slightly increased in the west of the northern Xinjiang. 3) North Atlantic Oscillation (NAO) affects river runoff by influencing temperature and precipita-tion. The NAO and precipitation had apparent significant correlations with the river runoff, but the temperature did not in the northern Xinjiang. Since the mid-1990s river runoff increase was mainly caused by the increasing temperature in the northern slope of the Tianshan Mountains and the north of the northern Xinjiang. Increased precipitation resulted in increased river runoff in the west of the northern Xinjiang.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号