首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of melt composition and structure on the oxygen isotope fractionation was studied for the multicomponent (SiO2 ± TiO2 + Al2O3 ± Fe2O3 + MgO ± CaO) system at 1500°C and 1 atm. The experiments show that significant oxygen isotope effects can be observed in silicate melts even at such high temperature. It is shown that the ability of silicate melt to concentrate 18O isotope is mainly determined by its structure. In particular, an increase of the NBO/T ratio in the experimental glasses from 0.11 to 1.34 is accompanied by a systematic change of oxygen isotope difference between melt and internal standard by values from–0.85 to +1.29‰. The obtained data are described by the model based on mass-balance equations and the inferred existence of O0, O, and O2– (bridging, non-bridging, and free oxygen) ions in the melts. An application of the model requires the intra-structure isotope fractionation between bridging and non-bridging oxygens. Calculations show that the intra-structure isotope fractionation in our experiments is equal to 4.2 ± 1.0‰. To describe the obtained oxygen isotope effects at the melts relatively to temperature and fraction of non-bridging oxygen a general equation was proposed.  相似文献   

2.
Estimation of the framework connectivity and the atomic structure of depolymerized silicate melts and glasses (NBO/T > 0) remains a difficult question in high-temperature geochemistry relevant to magmatic processes and glass science. Here, we explore the extent of disorder and the nature of polymerization in binary Ca-silicate and ternary Ca-aluminosilicate glasses with varying NBO/T (from 0 to 2.67) using O-17 NMR at two different magnetic fields of 9.4 and 14.1 T in conjunction with quantum chemical calculations. Non-random distributions among framework cations (Si and Al) are demonstrated in the variation of relative populations of oxygen sites with NBO/T. The proportion of non-bridging oxygen (NBO, Ca-O-Si) in the binary and ternary aluminosilicate glasses increases with NBO/T. While the trend is consistent with predictions from composition, the detailed fractions apparently deviate from the predicted values, suggesting further complications in the nature of polymerization. The proportion of each bridging oxygen in the glasses also varies with NBO/T. The fractions of Al-O-Si and Al-O-Al increase with increasing polymerization as CaO is replaced with Al2O3, while that of Si-O-Si seems to decrease, implying that activity of silica may decrease from calcium silicate to polymerized aluminosilicates (XSiO2=constant). Quantum chemical molecular orbital calculations based on density functional theory show that a silicate chain with Al-NBO (Ca-O-Al) has an energy penalty (calculated cluster energy difference) of about 108 kJ/mol compared with the cluster with Ca-O-Si, consistent with preferential depolymerization of Si-networks, reported in an earlier O-17 NMR study [Allwardt, J., Lee, S.K., Stebbins, J.F., 2003. Bonding preferences of non-bridging oxygens in calcium aluminosilicate glass: Evidence from O-17 MAS and 3QMAS NMR on calcium aluminate glass. Am. Mineral.88, 949-954]. These prominent types of non-randomness in the distributions suggest significant chemical order in silicate glasses that leads to a decrease in silica activity coefficient and will be useful in modeling transport properties of melts.  相似文献   

3.
We examined aluminosilicate glasses containing a variety of network modifying to intermediate cations (Li, La, Sc, and Fe), quenched from melts at 1 atm to 8 GPa, to further investigate the role of cation field strength in Al coordination changes and densification. 27Al Nuclear Magnetic Resonance Spectroscopy (NMR) reveals that the mean Al coordination increases with increasing pressure in the Li-containing glasses, which can be explained by a linear dependence of fractional change in Al coordination number on cation field strengths in similar K-, Na-, and Ca-containing aluminosilicate glasses (K < Na < Li < Ca). Measured recovered densities follow a similar linear trend. In contrast, the La-containing glasses have significantly lower mean Al coordination numbers at given pressures than the cation field strength of La and glass density would predict. La L3 X-ray absorption fine structure (XAFS) spectroscopy results indicate a significant increase with pressure in average La-O bond distances, suggesting that La and Al may be “competing” for higher coordinated sites and hence that both play a significant role in the densification of these glasses, especially in the lower pressure range. However, in Na aluminosilicate glasses with small amounts of Sc, 45Sc NMR reveals only modest Sc coordination changes, which do not seem to significantly affect the mean Al coordination values. For a Li aluminosilicate glass, 17O MAS and multiple quantum magic angle spinning (3QMAS) NMR data are consistent with generation of more highly coordinated Al at the expense of non-bridging oxygen (NBO), whereas La aluminosilicate glasses have roughly constant O environments, even up to 8 GPa. Finally, we demonstrate that useful 23Na and 27Al MAS NMR spectra can be collected for Ca-Na aluminosilicate glasses containing up to 5 wt.% Fe oxide. We discuss the types of structural changes that may accompany density increases with pressure and how these structural changes are affected by the presence of different cations.  相似文献   

4.
The chemical interaction between fluorine and highly polymerized sodium aluminosilicate melts [Al/(Al+Si)= 0.125–0.250 on the join NaAlO2-SiO2] has been studied with Raman spectroscopy. Fluorine is dissolved to form F ions that are electrically neutralized with Na+ or Al3+. There is no evidence for association of fluorine with either Si4+ or Al3+ in four-fold coordination and no evidence of fluorine in six-fold coordination with Si4+ in these melt compositions. Upon solution of fluorine nonbridging oxygens are formed and are a part of structural units with nonbridging oxygen per tetrahedral cations (NBO/T) about 2 and 1. The proportions of these two depolymerized units in the melts increase systematically with increasing F/(F+O) at constant Al/(Al+Si) and with decreasing Al/(Al+Si) at constant F/(F+O). Depolymerization (increasing NBO/T) of silicate melts results from a fraction of aluminum and alkalies (in the present study; Na+) reacting to form fluoride complexes. In this process an equivalent amount of Na+ (orginally required for Al-3+charge-balance) or Al3+ (originally required Na+ to exist in tetrahedral coordination) become network-modifiers.The structural data have been used to develop a method for calculating the viscosity of fluorine-bearing sodium aluminosilicate melts at 1 atm. Where experimental viscosity data are available, the calculated and measured values are within 5% of each other.A method is also suggested by which the liquidus phase equilibria of fluorine-bearing aluminosilicate melts may be predicted. In accord with published experimental data it is suggested, for example, that — on the basis of the determined solubility mechanism of fluorine in aluminosilicate melts — with increasing fluorine content of feldspar-quartz systems, the liquidus boundaries between aluminosilicate minerals (e.g., feldspars) and quartz shift away from silica.  相似文献   

5.
This report presents a model predicting activities for NiO in a wide range of silicate melts that include the components SiO2, TiO2, Al2O3, MgO, FeO, CaO, Na2O, and K2O. The conceptual simplicity of this model, combined with its success in modeling complex variations in activity with melt composition, suggests that the approach may provide insight into the character of trace components in the melt. The model presented in this report considers NiO to exist as Ni2+ and O2? in the melt, and predicts the activity of NiO by modeling variations in both aNi2+ and aO2?. Activities of Ni2+ are modeled assuming that NiO mixes randomly with a hypothetical ‘mixing pool’ of cations dominated by cations of similar size and charge to Ni2+, mainly Fe2+, Mg2+, Ca2+, and Ni2+. aO2? is modeled as a function of total oxygen ? 2·network-forming cations, with the understanding that O2? in silicate melts exists in equilibrium with bridging and non-bridging oxygens through reactions of the type Si–O–Si + O2? → 2 Si–O. For illustration, the model is applied to reduced mafic lunar samples that may have equilibrated with a Ni-bearing metal phase.  相似文献   

6.
Structural interaction between dissolved fluorine and silicate glass (25°C) and melt (to 1400°C) has been examined with 19F and 29Si MAS NMR and with Raman spectroscopy in the system Na2O-Al2O3-SiO2 as a function of Al2O3 content. Approximately 3 mol.% F calculated as NaF dissolved in these glasses and melts. From 19F NMR spectroscopy, four different fluoride complexes were identified. These are (1) Na-F complexes (NF), (2) Na-Al-F complexes with Al in 4-fold coordination (NAF), (3) Na-Al-F complexes with Al in 6-fold coordination with F (CF), and (4) Al-F complexes with Al in 6-fold, and possibly also 4-fold coordination (TF). The latter three types of complexes may be linked to the aluminosilicate network via Al-O-Si bridges.The abundance of sodium fluoride complexes (NF) decreases with increasing Al/(Al + Si) of the glasses and melts. The NF complexes were not detected in meta-aluminosilicate glasses and melts. The NAF, CF, and TF complexes coexist in peralkaline and meta-aluminosilicate glasses and melts.From 29Si-NMR spectra of glasses and Raman spectra of glasses and melts, the silicate structure of Al-free and Al-poor compositions becomes polymerized by dissolution of F because NF complexes scavenge network-modifying Na from the silicate. Solution of F in Al-rich peralkaline and meta-aluminous glasses and melts results in Al-F bonding and aluminosilicate depolymerization.Temperature (above that of the glass transition) affects the Qn-speciation reaction in the melts, 2Q3 ⇔ Q4 + Q2, in a manner similar to other alkali silicate and alkali aluminosilicate melts. Dissolved F at the concentration level used in this study does not affect the temperature-dependence of this speciation reaction.  相似文献   

7.
The local configurations around sodium ions in silicate glasses and melts and their distributions have strong implications for the dynamic and static properties of melts and thus may play important roles in magmatic processes. The quantification of distributions among charge-balancing cations, including Na+ in aluminosilicate glasses and melts, however, remains a difficult problem that is relevant to high-temperature geochemistry as well as glass science.Here, we explore the local environment around Na+ in charge-balanced aluminosilicate glasses (the NaAlO2-SiO2 join) and its distribution using 23Na magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy at varying magnetic fields of 9.4, 14.1, and 18.8 T, as well as triple-quantum (3Q)MAS NMR spectroscopy at 9.4 T, to achieve better understanding of the extent of disorder around this cation. We quantify the extent of this disorder in terms of changes in Na-O distance (d[Na-O]) distributions with composition and present a structural model favoring a somewhat ordered Na distribution, called a “perturbed” Na distribution model. The peak position in 23Na MAS spectra of aluminosilicate glasses moves toward lower frequencies with increasing Si/Al ratios, implying that the average d(Na-O) increases with increasing R. The peak width is significantly reduced at higher fields (14.1 and 18.8 T) because of the reduced effect of second-order quadrupolar interaction, and 23Na MAS NMR spectra thus provide relatively directly the Na chemical shift distribution and changes in atomic environment with composition. Chemical shift distributions obtained from 23Na 3Q MAS spectra are consistent with MAS NMR data, in which deshielding decreases with R. The average distances between Na and the three types of bridging oxygens (BOs) (Na-{Al-O-Al}, Na-{Si-O-Al}, and Na-{Si-O-Si}) were obtained from the correlation between d(Na-O) and isotropic chemical shift. The calculated d(Na-{Al-O-Al}) of 2.52 Å is shorter than the d(Na-{Si-O-Si}) of 2.81 Å, and d(Na-{Al-O-Al}) shows a much narrower distribution than the other types of BOs. 23Na chemical shifts in binary (Al-free) sodium silicate glasses are more deshielded and have ranges distinct from those of aluminosilicate glasses, implying that d(Na-NBO) (nonbridging oxygen) is shorter than d(Na-BO) and that d(Na-{Si-O-Si}) in binary silicates can be shorter than that in aluminosilicate glasses. The results given here demonstrate that high-field 23Na NMR is an effective probe of the Na+ environment, providing not only average structural information but also chemically and topologically distinct chemical shift ranges (distributions) and their variation with composition and their effects on static and dynamic properties.  相似文献   

8.
The anionic structure of aluminosilicate melts of intermediate degree of polymerization (NBO/T = 0.5) and with along the composition join (LS4-LA4) has been examined in-situ to ˜1480 °C, and compared with recent data for melts along the analog composition join and with less polymerized melts along the join and O_5. With , the anionic equilibrium, (1) , adequately describes the structure. With , a second expression, (2) , is required because an additional structural unit, Q1, is stabilized in the melts. The enthalpy, , of reaction (1) increases from − 36 ±4 kJ/mol in the absence of aluminum to 34± 5 kJ/mol at and 64 ± 4 kJ/mol at Al/(Al + Si) = 0.45. Similar trends are reported for other alkali aluminosilicate melts. Least-squares fitting of abundance of structural units as a function of temperature and bulk composition has been conducted. The unit abundance is dominantly a function of temperature, Al/(Al +Si), and bulk melt polymerization. Configurational entropy and heat capacity of mixing of melts above their glass transition temperatures have been calculated with the aid of the least-squares fitted equations. The values of these parameters indicate that as the ionization potential of the metal cations increases, configurational heat capacity of alkali aluminosilicate melts becomes temperature dependent. As a result, transport properties (viscosity, diffusivity, and conductivity) of such melts will not show Arrhenian behavior even in the high-temperature range. Further, discontinuous changes in entropy and heat capacity of mixing results from temperature-induced changes in types of structural units in the melts. Such discontinuous changes would also be reflected in discontinuous changes of temperature-dependent transport properties. Received: 26 September 1996 / Accepted: 18 October 1996  相似文献   

9.
Dissolution of water in magmas significantly affects phase relations and physical properties. To shed new light on the this issue, we have applied 1H and 29Si nuclear magnetic resonance (NMR) spectroscopic techniques to hydrous silicate glasses (quenched melts) in the CaO-MgO-SiO2 (CMS), Na2O-SiO2, Na2O-CaO-SiO2 and Li2O-SiO2 systems. We have also carried out ab initio molecular orbital calculations on representative clusters to gain insight into the experimental results.The most prominent result is the identification of a major peak at ∼1.1 to 1.7 ppm in the 1H MAS NMR spectra for all the hydrous CMS glasses. On the basis of experimental NMR data for crystalline phases and ab initio calculation results, this peak can be unambiguously attributed to (Ca,Mg)OH groups. Such OH groups, like free oxygens, are only linked to metal cations, but not part of the silicate network, and are thus referred to as free hydroxyls in the paper. This represents the first direct evidence for a substantial proportion (∼13∼29%) of the dissolved water as free hydroxyl groups in quenched hydrous silicate melts. We have found that free hydroxyls are favored by (1) more depolymerized melts and (2) network-modifying cations of higher field strength (Z/R2: Z: charge, R: cation-oxygen bond length) in the order Mg > Ca > Na. Their formation is expected to cause an increase in the melt polymerization, contrary to the effect of SiOH formation. The 29Si MAS NMR results are consistent with such an interpretation. This water dissolution mechanism could be particularly important for ultramafic and mafic magmas.The 1H MAS NMR spectra for glasses of all the studied compositions contain peaks in the 4 to 17 ppm region, attributable to SiOH of a range of strength of hydrogen bonding and molecular H2O. The relative population of SiOH with strong hydrogen bonding grows with decreasing field strength of the network-modifying cations. Ab initio calculations confirmed that this trend largely reflects hydrogen bonding with nonbridging oxygens.  相似文献   

10.
Revealing the atomic structure and disorder in oxide glasses, including sodium silicates and aluminosilicates, with varying degrees of polymerization, is a challenging problem in high-temperature geochemistry as well as glass science. Here, we report 17O MAS and 3QMAS NMR spectra for binary sodium silicate and ternary sodium aluminosilicate glasses with varying degrees of polymerization (Na2O/SiO2 ratio and Na2O/Al2O3 ratio), revealing in detail the extent of disorder (network connectivity and topological disorder) and variations of NMR parameters with the glass composition. In binary sodium silicate glasses [Na2O-k(SiO2)], the fraction of non-bridging oxygens (NBOs, Na-O-Si) increases with the Na2O/SiO2 ratio (k), as predicted from the composition. The 17O isotropic chemical shifts (17O δiso) for both bridging oxygen (BO) and NBO increase by about 10-15 ppm with the SiO2 content (for k = 1-3). The quadrupolar coupling products of BOs and NBOs also increase with the SiO2 content. These trends suggest that both NBOs and BOs strongly interact with Na; therefore, the Na distributions around BOs and NBOs are likely to be relatively homogenous for the glass compositions studied here, placing some qualitative limits on the extent of segregation of alkali channels from silica-enriched regions as suggested by modified random-network models. The peak width (in the isotropic dimension) and thus bond angle and length distributions of Si-O-Si and Na-O-Si increase with the SiO2 content, indicating an increase in the topological disorder with the degree of polymerization. In the ternary aluminosilicate glasses [Na2O]x[Al2O3]1−xSiO2, the NBO fraction decreases while the Al-O-Si and Al-O-Al fractions apparently increase with increasing Al2O3 content. The variation of oxygen cluster populations suggests that deviation from “Al avoidance” is more apparent near the charge-balanced join (Na/Al = 1). The Si-O-Si fraction, which is closely related to the activity coefficient of silica, would decrease with increasing Al2O3 content at a constant mole fraction of SiO2. Therefore, the activity of silica may decrease from depolymerized binary silicates to fully polymerized sodium aluminosilicate glasses at a constant mole fraction of SiO2.  相似文献   

11.
The relationship between the redox ratio Fe+2/(Fe+2+Fe+3) and the K2O/(K2O + Al2O3) ratio (K2O*) were experimentally investigated in silicate melts with 78 mol% SiO2 in the system SiO2-Al2O3-K2O-FeO-Fe2O3, in air at 1,400° C. Quenched glass compositions were analyzed by electron microprobe and wet chemical microtitration techniques. Minimum values of the redox ratio were obtained at K2O*0.5. The redox ratio in peralkaline melts (K2O*>0.5) increases slightly with K2O* whereas this ratio increases dramatically in peraluminous melts (K2O*<0.5) as K2O is replaced by Al2O3. These data indicate that all Fe+3 (and Al+3) occur as tetrahedral species charge balanced with K+ in peralkaline melts. In peraluminous melts, Fe+3 (and Al+3) probably occur as both tetrahedral species using Fe+2 as a charge-balancing cation and as network-modifying cations associated with non-bridging oxygen.  相似文献   

12.
Mossbauer spectroscopy has been used to determine the redox equilibria of iron and structure of quenched melts on the composition join Na2Si2O5-Fe2O3 to 40 kbar pressure at 1400° C. The Fe3+/ΣFe decreases with increasing pressure. The ferric iron appears to undergo a gradual coordination transformation from a network-former at 1 bar to a network-modifier at higher (≧10 kbar) pressure. Ferrous iron is a network-modifier in all quenched melts. Reduction of Fe3+ to Fe2+ and coordination transformation of remaining Fe3+ result in depolymerization of the silicate melts (the ratio of nonbridging oxygens per tetrahedral cations, NBO/T, increases). It is suggested that this pressure-induced depolymerization of iron-bearing silicate liquids results in increasing NBO/T of the liquidus minerals. Furthermore, this depolymerization results in a more rapid pressure-induced decrease in viscosity and activation energy of viscous flow of iron-bearing silicate melts than would be expected for iron-free silicate melts with similar NBO/T.  相似文献   

13.
Normal coordinate calculations have been carried out on partially polymerized simple silicate crystals, including Li and Na di- and metasilicates, Li and Gd pyrosilicates, thortveitite and rankinite. In the antisymmetric Si-O stretching modes which are active at 800–1200 cm?1 in infrared spectra, Si-Obr vibrations occur at higher frequencies than Si-Onb vibrations if the bonds have equivalent strengths. However, this relationship is usually reversed when bridging oxygens are overbonded and non-bridging oxygens are underbonded in terms of Pauling bond strengths, a situation which is generally more common in crystals. An observed bimodality of the high-frequency envelope in infrared spectra of glasses in the alkali oxide-silica systems may be somewhat fortuitous, with the high frequency component (ca. 1100 cm?1) representing underbonded non-bridging oxygens and saturated bridging oxygens, and the lower-frequency component (ca. 1000 cm?1) mainly oversaturated bridging oxygens. Significant differences between crystals and glasses in the number and location of the main high-frequency infrared peaks suggest that there are short-range bonding rearrangements in the glasses, and that crystallite models are not applicable. Mid-frequency (600–800 cm?1) infrared modes in silicates more polymerized than the pyrosilicate (Si2O7) appear to be mostly antisymmetric modes in which Si rattles against bridging oxygens, rather than symmetric stretching modes.  相似文献   

14.
 The speciation of water dissolved in glasses along the join NaAlSi3O8-KAlSi3O8 has been investigated using infrared spectroscopy. Hydrous melts have been hydrothermally synthesized by chemical equilibration of cylinders of bubble-free anhydrous start glasses with water at 1040° C and 2 kbar. These melts have been isobarically and rapidly (200° C/s) “drop”-quenched to room temperature and then subsequently depressurized. The speciation of water in the quenched glasses reflects the state of water speciation at a temperature (the so-called fictive temperature) where the quenched-in structure of the glasses closely corresponds to the melt structure at equilibrium. This fictive temperature is detectable as the macroscopically measureable glass transition temperature of these melt compositions. A separate set of experiments using vesicular samples of the same chemistry has precisely defined the glass transition temperature of these melts (±5° C) on the basis of homogenization temperatures for water-filled fluid inclusions (Romano et al. 1994). The spectroscopic data on the speciation of water in these quenched glasses has been quantified using experimentally determined absorptivities for OH and H2O for each individual melt composition. The knowledge of glass transition temperatures, together with quantitative speciation data permits an analysis of the temperature dependence of the water speciation over the 113° C range of fictive temperatures obtained for these water-saturated melts. The variation of water speciation, cast as the equilibrium constant K where K = [H2O] [O m ]/[OH]2 is plotted versus the fictive temperature of the melt to obtain the temperature dependence of speciation. Such a plot describes a single linear trend of the logarithm of the equilibrium constant versus reciprocal temperature, implying that the exchange of K for Na has little influence on melt speciation of water. The enthalpy derived from temperature dependence is 36.5(±5) kJ/mol. The results indicate a large variation in speciation with temperature and an insensitivity of the speciation to the K–Na exchange. Received: 8 March 1995/Accepted: 6 June 1995  相似文献   

15.
A model for the mixing of H2O and silicate melts has been derived from the experimentally determined effects of H2O on the viscosity (fluidity), volumes, electrical conductivities, and especially the thermodynamic properties of hydrous aluminosilicate melts. It involves primarily the reaction of H2O with those O?2 ions of the melt that are shared (bridging) between adjacent (Al, Si)O4 tetrahedra to produce OH? ions. However, in those melts that contain trivalent ions in tetrahedral coordination, such as the Al3+ ion in feldspathic melts, the model further involves exchange of a proton from H2O with a non-tetrahedrally coordinated cation that must be present to balance the net charge on the AlO4 group. This cation exchange reaction, which goes essentially to completion, results in dissociation of the H2O and is limited only by the availability of H2O and the number of exchangeable cations per mole of aluminosilicate.In the system NaAlSi3O8-H2O, upon which this thermodynamic model is based, there is 1 mole of exchangeable cations (Na+) per mole (GFW) of NaAlSi3O8, consequently ion exchange occurs for H2O contents up to a 1:1 mole ratio (Xmw = mole fraction H2O = 0.5). For mole fractions of H2O greater than 0.5, no further exchange can occur and the reaction with additional bridging oxygens of the melt produces 2 moles of associated OH? ions per mole of H2O dissolved. These reactions lead to a linear dependence of the thermodynamic activity of H2O (amw) on the square of its mole fraction (Xmw) for values of Xmw, up to 0.5 and an exponential dependence on Xmw at higher H2O contents. Thus, for values of Xmw ? 0.5, amw = k(Xmw)2, where k is a Henry's law constant for the dissociated solute.Extension of the thermodynamic model for NaAlSi3O8-H2O to predict H2O solubilities and other behavior of compositionally more complex aluminosilicate melts (magmas) requires placing these melts on an equimolal basis with NaAlSi3O8. This is readily accomplished using chemical analyses of quenched glasses by normalizing to the stoichiometric requirements of NaAlSi3O8, first in terms of equal numbers of exchangeable cations for mole fractions of H2O up to 0.5 and secondly in terms of 8 moles of oxygen for higher H2O contents. Chemical analyses of three igneous-rock glasses, ranging in composition from tholeiitic basalt to lithium-rich pegmatite, were thus recast and the experimental H2O solubilities were computed on this equimolal basis. The resulting equimolal solubilities are all the same, within experimental error, as the solubility of H2O in NaAlSi3O8 melt calculated from the thermodynamic relations.The equivalence of equimolal solubilities implies that the Henry's law constant (k), which is a function of temperature and pressure, is independent of aluminosilicate composition over a wide range. Moreover, as a consequence of the Gibbs-Duhem relation and the properties of exact differentials, it is clear that the silicate components of the melt, properly defined, mix ideally. Thus, a relatively simple mixing model for H2O in silicate melts has led to a quantitative thermodynamic model for magmas that has far-reaching consequences in igneous petrogenesis.  相似文献   

16.
Optical absorption spectra obtained on glasses quenched from sodium silicate melts show Mn3+ to be the dominant species for melts heated in air and Mn2+ to be the dominant species for melts heated at Po2 = 10?17 bar. The absorption spectrum of Mn3+ consists of an intense band at 20,000cm?1 with a 15,000cm?1 satellite possibly arising from the Jahn-Teller effect. The independence of the spectrum from melt composition and the high band intensity is offered as evidence for a distinct Mn3+ complex in the melt. The spectrum of Mn2+ is weak and many expected bands are not observed. A two-band luminescence spectrum from Mn2+ has been tentatively interpreted as due to Mn2+ in interstitial sites in the network and Mn2+ coordinated by non-bridging oxygens.  相似文献   

17.
The solubility behavior of phosphorus in glasses and melts in the system Na2O-Al2O3-SiO2-P2O5 has been examined as a function of temperature and Al2O3 content with microRaman spectroscopy. The Al2O3 was added (2, 4, 5, 6, and 8 mol% Al2O3) to melts with 80 mol% SiO2 and ∼2 mol% P2O5. The compositions range from peralkaline, via meta-aluminous to peraluminous. Raman spectra were obtained of both the phosphorus-free and phosphorous-bearing glasses and melts between 25 and 1218 °C. The Raman spectrum of Al-free, P-bearing glass exhibits a characteristic strong band near 940 cm−1 assigned to P=O stretching in orthophosphate complexes together with a weaker band near 1000 cm−1 assigned P2O7 complexes. With increasing Al content, the proportion of P2O7 initially increases relative to PO4 and is joined by AlPO4 complexes which exhibit a characteristic P-O stretch mode slightly above 1100 cm−1. The latter complex appears to dominate in meta-aluminosilicate glass and is the only phosphate complex in peraluminous glasses. When P-bearing peralkaline silicate and aluminosilicate glasses are transformed to supercooled melts, there is a rapid decrease in PO4/P2O7 so that in the molten state, PO4 units are barely discernible. The P2O7/AlPO4 abundance ratio in peralkaline compositions increases with increasing temperature. This decrease in PO4/P2O7 with increasing temperature results in depolymerization of the silicate melts. Dissolved P2O5 in peraluminous glass and melts forms AlPO4 complexes only. This solution mechanism has no discernible influence on the aluminosilicate melt structure. There is no effect of temperature on this solution mechanism. Received: 7 October 1997 / Accepted: 11 May 1998  相似文献   

18.
The structures of sodium silicate and aluminosilicate glasses quenched from melts at high pressure (6-10 GPa) with varying degrees of polymerization (fractions of nonbridging oxygen) were explored using solid-state NMR [17O and 27Al triple-quantum magic-angle spinning (3QMAS) NMR]. The bond connectivity in melts among four and highly coordinated network polyhedra, such as [4]Al, [5,6]Al, [4]Si, and [5,6]Si, at high pressure is shown to be significantly different from that at ambient pressure. In particular, in the silicate and aluminosilicate melts, the proportion of nonbridging oxygen (NBO) generally decreases with increasing pressure, leading to the formation of new oxygen clusters that include 5- and 6-coordinated Si and Al in addition to 4-coordinated Al and Si, such as [4]Si-O-[5,6]Si, [4]Si-O-[5,6]Al and Na-O-[5,6]Si. While the fractions of [5,6]Al increase with pressure, the magnitude of this increase diminishes with increasing degrees of ambient-pressure polymerization under isobaric conditions. Incorporating the above structural information into models of melt properties reproduces the anomalous pressure-dependence of O2− diffusivity and viscosity often observed in silicate melts.  相似文献   

19.
Phase relations were investigated in the model water-saturated system Si-Al-Na-Li-F-O at high fluorine contents, a temperature of 800°C, and a pressure of 1 kbar. The obtained aluminosilicate melts are widely variable from quartz- to nepheline-normative compositions with agpaitic indexes both higher and lower than one. Various fluoride, aluminofluoride, and oxide phases were observed in the equilibrium assemblage depending on the melt composition: quartz and cryolite associate with the silica richest aluminosilicate melts, topaz and corundum coexist with peraluminous melts, and villiaumite was observed in highly peralkaline melts. Extensive immiscibility between aluminosilicate and aluminofluoride melts was observed in the system. Aluminofluoride melt coexists with quartz- and nepheline-normative aluminosilicate melts with agpaitic indexes (K a) of 0.7–1.4. The composition of aluminosilicate melt in equilibrium with aluminofluoride melt ranges from 33 to 70 wt % SiO2, from 12 to 24 wt % Al2O3, and from 5 to 16 wt % alkalis. The aluminofluoride melt is variable in composition, its Al/Na ratio ranges from 20/80 to 40/60 depending on the composition of the equilibrium aluminosilicate melt. The experimental aluminosilicate melts equilibrated with cryolite, topaz, and aluminofluoride melt coincide in major component proportions with the bulk compositions of cryolite- and topaz-bearing granites and melt inclusions in minerals.  相似文献   

20.
The effect of CaO, Na2O, and K2O on ferric/ferrous ratio in model multicomponent silicate melts was investigated in the temperature range 1450–1550?°C at 1-atm total pressure in air. It is demonstrated that the addition of these network modifier cations results in an increase of Fe3+/Fe2+ ratio. The influence of network modifier cations on the ferric/ferrous ratio increases in the order Ca?<?Na?<?K. Some old controversial conceptions concerning the effect of potassium on Fe3+/Fe2+ ratio in simple model liquids are critically evaluated. An empirical equation is proposed to predict the ferric/ferrous ratio in SiO2–TiO2–Al2O3–FeO–Fe2O3–MgO–CaO–Na2O–K2O–P2O5 melts at air conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号