首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
由精密星历利用拉格朗日插值公式求二次导数的方法计算了卫星在J2000.0惯性坐标系下的总加速度;利用现有的力模型计算了地球中心引力,地球非球形摄动力,太阳、月球和其他行星的摄动力,地球固体潮摄动力,相对论效应摄动力对GPS/BDS卫星所产生的加速度数值大小;利用G-file里的BERNE太阳光压模型参数计算了GPS卫星太阳光压摄动加速度大小;对GPS/BDS卫星所受的不同摄动力进行了数值分析,对同一摄动力对不同类型卫星的影响进行了数值分析比较。结果表明,现有力模型与GPS/BDS卫星所受的实际作用力仍有一定的差距,不同类型卫星所受摄动力有明显差异,在精密定轨的实际应用中应根据不同类型卫星建立合适的力学模型。  相似文献   

2.
为确保高精度星载GPS实时定轨算法能够应用于较低轨道卫星,提出了用地球引力近似函数法(GAAF)代替传统球谐函数递推法来计算地球引力加速度,在不降低实时定轨精度的同时,大幅减小高阶次重力场模型的轨道积分计算负荷,以满足计算能力有限的星载处理器的在轨处理要求。分析了影响GAAF计算精度的两个因素:伪中心位置拟合多项式的次数选取和经纬度格网大小的最优确定。用CHAMP卫星的实测GPS数据模拟实时定轨试验,结果表明,采用二次及以上伪中心拟合多项式,格网纬度小于0.75°、经度小于1.5°的GAAF时,实时定轨的轨道精度要优于70×70阶次重力场模型直接参与实时定轨,且大幅降低实时定轨的计算负荷。  相似文献   

3.
柳培清 《测绘科学》2016,41(7):166-172
影响GPS精密定轨的因素除卫星轨道初值外还取决于力模型的精度,而地球引力加速度是GPS卫星精密定轨力模型中最为重要的部分。为满足精密定轨需要,该文针对目前各IGS中心所采用的简化动力法,深入研究了GPS卫星精密定轨中的地球引力加速度,详细推导了相关公式并编写程序,先后选取7颗GPS卫星及1颗卫星进行计算验证,结果表明:该文所采用的算法得到的地球引力加速度的计算精度优于10E-11ms~(-2),并且当引力位模型阶数为8~12阶时,引力加速度无明显差异。  相似文献   

4.
低轨卫星精密定轨中重力场模型误差的补偿   总被引:2,自引:0,他引:2  
分析了不同重力场对低轨卫星运动影响的特征,并基于CHAMP卫星和GRACE卫星的真实轨道,利用轨道积分和轨道拟舍的方法,研究了线性分段加速度、周期性分段加速度以厦虚拟随机脉冲加速度在精密定轨中对重力场模型误差的补偿效果。  相似文献   

5.
采用星载GPS观测数据与简化动力学定轨方法,在方程中引入伪随机脉冲参数,从而实现对Swarm卫星的精密定轨. 详细分析了不同阶次的GOCO06s地球重力场模型对Swarm卫星简化动力学定轨精度的影响,对比了PGM2000a、EIGEN-2、EGM2008以及GECO重力场模型展开到100阶次时Swarm卫星解算的轨道精度. 结果表明:当GOCO06s地球重力场模型阶次处于30~100阶次时,Swarm-A、Swarm-B和Swarm-C卫星在径向、切向、法向上的定轨精度随着GOCO06s阶次的不断增加而越来越高,而在高于100阶次时,定轨精度基本稳定,且在各方向定轨精度优于3 cm. 此外,采用100阶次GECO、EGM2008和GOCO06s模型对三颗Swarm卫星进行定轨,解算的轨道精度相当,且要高于同阶次其他重力场模型的定轨结果.   相似文献   

6.
以GRACE卫星为例,分析比较利用SLR观测资料进行卫星定轨时,采用不同重力场模型对GRACE卫星定轨精度的影响;以及重力场截断阶引起的积分轨道差异;同时,将定轨结果与采用GPS确定的定轨结果进行比较,分析与GPS定轨结果的差异.实验证明.重力场模型选择GGM02C的定轨结果优于选择JGM-3的定轨结果,基于SLR的定...  相似文献   

7.
基于动力学法反演地球重力场的基本理论,研究了卫星初始状态向量误差对应用低轨卫星精密轨道数据反演地球重力场的影响。在仅考虑低轨卫星初始状态误差的情况下进行了模拟计算,结果表明:在利用低轨卫星精密轨道数据反演地球重力场时,卫星初始状态向量误差需要重新进行估计;在目前的轨道精度水平下,若不顾及误差方程二次项的影响,反演弧长不宜过长;卫星初始状态速度误差(约1.5mm/s)的影响要大于位置误差(约10 cm)的影响。  相似文献   

8.
新近月球重力场模型的比较与分析   总被引:1,自引:0,他引:1  
针对以往和新近高阶月球重力场模型,利用多种方式分析和比较了不同重力场模型的功率谱和自由空气重力异常,仿真计算了不同高度、不同倾角、不同重力场模型对探月卫星轨道演化的影响。所有重力场模型对近极轨卫星轨道的影响相同,均适用于近极轨卫星的精密定轨。CEGM02、SGM100h、SGM150较适用于非极轨绕月卫星的精密定轨。未来探月活动可以考虑发射非极轨卫星,进一步完善月球重力场模型。在月球重力场全球模型的基础上,使用局部球谐函数方法,可以对局部重力场进行补充,以完善全球重力场模型。  相似文献   

9.
由地心运动引起的引力位1次项系数不为零会对卫星轨道产生摄动.文中主要通过模拟计算来研究地心运动或坐标系统不自洽引起的地心偏离,从而对不同轨道根数的卫星轨道产生的摄动量级.实验表明地心运动对卫星轨道的影响,在高精度精密定轨和反演地球重力场中也是需要顾及的一项内容,特别是在坐标系统不自洽的情况下,影响更大.  相似文献   

10.
目前国内缺少针对雷达观测数据的空间目标定轨开源软件,给从事雷达系统设计的非轨道力学专业的研究人员带来不便.研制定轨软件的核心内容是摄动加速度计算,它是实现高精度数值轨道计算的基础.为此,本文以地球引力为例,介绍了地球非球形引力摄动的数学原理,给出了加速度计算的程序设计思路,实现了接口函数并集成到笔者前期开发的雷达定轨函数库(RadarOrbDet)中.实验结果验证了本文接口函数的有效性,表明该定轨函数库可以辅助科研人员进行雷达系统设计.  相似文献   

11.
重力场长周期变化的观测与理论结果比较   总被引:1,自引:0,他引:1  
利用Chandler摆动周期作为约束,估计了地幔滞弹性对地球二阶带谐响应系数κ、带谐位系数J2和卫星轨道升交点Ω的影响,理论预测的长周期潮汐参数被用来与人卫激光测距(SLR)观测结果进行比较。结果表明,SLR确定的长周期潮汐解已能检测到地幔滞弹性的影响。考虑地幔滞弹性和非平衡海洋潮汐效应后,理论预测的18.6a潮汐参数与SLR潮汐解基本相符。  相似文献   

12.
郭金运  金鑫  边少锋  常晓涛 《测绘学报》2022,51(7):1215-1224
垂线偏差是大地测量学和地球物理学的基础数据。固体潮和海潮是影响高精度垂线偏差测量的重要因素,固体潮改正主要表现为天体引潮位对垂线偏差的直接影响及造成地球形变而产生的附加位对其的间接影响。本文基于引力场球谐展开理论,推导了垂线偏差测量中固体潮和海潮的改正公式。利用JPL DE421星历和EOT11A海潮模型,计算全球19 570个GNSS测站处垂线偏差的潮汐改正值,分析了垂线偏差潮汐改正的时空变化规律。通过实例给出了日、月引潮位及附加位、海潮对垂线偏差子午和卯酉分量的改正。现有高精度垂线偏差测量精度已达到0.1″,而固体潮和海潮对垂线偏差的改正总量级可达我国一等天文规定精度(0.3″)的17%,因此在高精度的垂线偏差应用中需要顾及潮汐改正。  相似文献   

13.
基于IERS2003协议,介绍了地球固体潮,海潮,极潮等改正模型,叙述了各潮汐项改正步骤,分析了各类潮汐改正模型的量级及对精密单点定位的影响。  相似文献   

14.
潮汐改正对精密GPS基线解算的影响   总被引:2,自引:1,他引:1  
介绍了三类潮汐模型改正,分析了中国及周边地区不同类型、大尺度GPS网,研究了极潮、大洋潮、固体潮模型改正对定位精度的影响,给出了模型的使用方法.  相似文献   

15.
A 29-year time-series of four-times-daily atmospheric effective angular momentum (EAM) estimates is used to study the atmospheric influence on nutation. The most important atmospheric contributions are found for the prograde annual (77 μas), retrograde annual (53 as), prograde semiannual (45 as), and for the constant offset of the pole (δψsinɛ0=−86 as, δɛ=77 as). Among them only the prograde semiannual component is driven mostly by the wind term of the EAM function, while in all other cases the pressure term is dominant. These are nonnegligible quantities which should be taken into account in the new theory of nutation. Comparison with the VLBI corrections to the IAU 1980 nutation model taking into account the ocean tide contribution yields good agreement for the prograde annual and semiannual nutations. We also investigated time variability of the atmospheric contribution to the nutation amplitudes by performing the sliding-window least-squares analysis of both the atmospheric excitation and VLBI nutation data. Almost all detected variations of atmospheric origin can be attributed to the pressure term, the biggest being the in-phase annual prograde component (about 30 as) and the retrograde one (as much as 100200 as). These variations, if physical, limit the precision of classical modeling of nutation to the level of 0.1 mas. Comparison with the VLBI data shows significant correlation for the retrograde annual nutation after 1989, while for the prograde annual term there is a high correlation in shape but the size of the atmospherically driven variations is about three times less than deduced from the VLBI data. This discrepancy in size can be attributed either to inaccuracy of the theoretical transfer function or the frequency-dependent ocean response to the pressure variations. Our comparison also yields a considerably better agreement with the VLBI nutation data when using the EAM function without the IB correction for ocean response, which indicates that this correction is not adequate for nearly diurnal variations. Received: 10 September 1997 / Accepted: 5 March 1998  相似文献   

16.
在顾及(方案I)和不顾及(方案Ⅱ)海潮影响的情况下,利用中国地壳运动观测网络工程基准站观测数据分别计算总天顶延迟量,并对其进行比较。通过频谱特征分析,进一步研究了海潮对GNSS总天顶延迟量观测的影响,并得出了一些有益的结论。  相似文献   

17.
低阶地球引力场长期变化的确定   总被引:3,自引:1,他引:2  
彭碧波  吴斌  许厚泽 《测绘学报》2000,29(Z1):38-42
利用约11年的Lageos人卫激光测距(SLR)资料,反演了地球引力场系数J2和J3变化的时间序列,分析得到每年的2=(-2.6±0.4)×10-11,3=(-1.2±0.4)×10-11及18.6年固体潮Love数k2=0.3154±0.0070,相位滞后ε=3.1°±2.0°.由此可以对地幔滞弹和地球各圈层的动力学变化及相互作用提供高精度的天文观测约束。为了提供高精度的J2和J3变化的时间序列,可能的误差源必须考虑,如自转速率变化引起的极潮,引力场系数Jn的低阶和高阶项之间的弱的耦合等。  相似文献   

18.
The Doppler effect is the apparent shift in frequency of an electromagnetic signal that is received by an observer moving relative to the source of the signal. The Doppler frequency shift relates directly to the relative speed between the receiver and the transmitter, and has thus been widely used in velocity determination. A GPS receiver-satellite pair is in the Earth’s gravity field and GPS signals travel at the speed of light, hence both Einstein’s special and general relativity theories apply. This paper establishes the relationship between a Doppler shift and a user’s ground velocity by taking both the special and general relativistic effects into consideration. A unified Doppler shift model is developed, which accommodates both the classical Doppler effect and the relativistic Doppler effect under special and general relativities. By identifying the relativistic correction terms in the model, a highly accurate GPS Doppler shift observation equation is presented. It is demonstrated that in the GPS “frequency” or “velocity” domain, the relativistic effect from satellite motion changes the receiver-satellite line-of-sight direction, and the measured Doppler shift has correction terms due to the relativistic effects of the receiver potential difference from the geoid, the orbit eccentricity, and the rotation of the Earth.  相似文献   

19.
GPS精密定位中的海潮位移改正   总被引:2,自引:0,他引:2  
根据海洋负荷潮理论,利用NAO99b全球海潮模型,计算了中国部分IGS站的海潮位移改正,并将海潮位移改正应用到GPS数据处理当中。在GAMIT软件的解算过程中,分别按加入和不加入海潮位移改正,对GPS基线分量和测站坐标分别进行了计算和比较分析。结果表明,海潮位移改正无论是对GPS基线分量还是对测站坐标,都有一定的影响。  相似文献   

20.
Gravity measurements close to the ocean are strongly affected by ocean tide loading (OTL). The gravitational OTL effect consists of three parts, i.e. a change in gravity caused by direct attraction from the variable water-masses, by displacement of the observing point due to the load, and by redistribution of masses due to crustal deformation. We compare the OTL gravitational effect of several global models to observed time-series of gravity to identify the best model for four arctic observation sites. We also investigate if the global models are sufficient for correcting gravity observations. The NAO99b model fits the observations best at three stations. At two stations (Tromsø and Bodø) the global models explain the variability in the observations well. At the other two (Honningsvåg and Andøya), a significant periodic signal remains after the OTL correction has been applied. We separate two of the gravitational effects, the direct attraction and the change in gravity due to displacement, to study the local effects. Simple geometric models of the water load and independent measurements from local tide-gauges are used to calculate these effects. This leads to improved correspondence with the OTL signal, hence demonstrating the importance of careful modelling of local effects for correction of gravity observations in coastal stations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号