首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 473 毫秒
1.
During several triaxial compression experiments on plastic hardening, softening, and failure properties of dense sand specimens, it was found on various stress paths that the size of the failure surface was not constant. Instead, it changed depending on the current state of hydrostatic pressure. This finding is in contrast to the standard opinion consisting of the fact that the failure surface remains constant, once it has been reached during an experiment or in situ. In general, the behaviour of cohesionless granular‐material‐like sand is somehow characterised in between fluid and solid, where the solid behaviour results from the angle of internal friction and the confining pressure. Although the friction angle is an intrinsic material property, the confining pressure varies with the boundary conditions, thus defining different solid properties like plastic hardening, softening, and also failure. Based on our findings, it was the goal of the present contribution to introduce an improved setting for the plastic strain hardening and softening behaviour including the newly found yield properties at the limit state. For the identification of the material parameters, a complete triaxial experimental analysis of the tested sand is given. The overall elasto‐plasticity concept is validated by numerical computations of several laboratory foundation‐ and slope‐failure experiments. The performance of the proposed approach is compared with the standard concept of a constant failure surface, where the corresponding yield surfaces are understood as contours of equivalent plastic work or plastic strain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The bifurcation and instability conditions in geomechanics are closely related to the elasto‐plastic behaviour. In this paper the potential of a multimechanism elasto‐plastic model to predict various modes of failure is examined. First, a brief overview for the essential aspects of the constitutive model and the development of the elasto‐plastic constitutive matrix for this model are presented. Then, numerical simulations of different drained and undrained paths in the axisymmetric and plane‐strain conditions for the Hostun sand are illustrated. These examples confirm the capacity of the model to reproduce instability and strain localization phenomena. The obtained response is in agreement with experimental observations, theoretical developments and numerical analyses existing in the literature. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
The paper presents detailed FE simulation results of concrete elements under mixed‐mode failure conditions according to the so‐called shear‐tension test by Nooru‐Mohamed, characterized by curved cracks. A continuous and discontinuous numerical two‐dimensional approach was used. In order to describe the concrete's behaviour within continuum mechanics, two different constitutive models were used. First, an elasto‐plastic model with isotropic hardening and softening was assumed. In a compression regime, a Drucker–Prager criterion with a non‐associated flow rule was used. In turn, in a tensile regime, a Rankine criterion with an associated flow rule was adopted. Second, an isotropic damage constitutive model was applied with a single scalar damage parameter and different definitions of the equivalent strain. Both constitutive laws were enriched by a characteristic length of micro‐structure to capture properly strain localization. As an alternative approach, the extended finite element method was used. Our results were compared with the experimental ones and with results of other FE simulations reported in the literature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, we evaluate geomechanics of fluid injection from a fully penetrating vertical well into an unconsolidated formation confined with stiff seal rocks. The coupled behavior of an isotropic, homogeneous sand layer is studied under injection pressures that are high enough to induce plasticity yet not fracturing. Propagation of the significant influence zone surrounding the injection borehole, quantified by the extent of the plastic domain in the elasto‐plastic model, is examined for the first time. First, a new fully coupled axisymmetric numerical model is developed. A comprehensive assessment is performed on pore pressures, stresses/strains, and failure planes during the entire transient period of an injection cycle. Results anticipate existence of five distinctive zones in terms of plasticity state: liquefaction at wellbore; two inner plastic domains surrounding the wellbore, where failure occurs along two planes and major principal stress is in vertical direction; remaining of the plastic domain, where formation fails along one plane and major principal stress is in radial direction; and a non‐plastic region. Failure mechanism at the wellbore is found to be shear followed by liquefaction. Next, a novel methodology is proposed based on which new weakly coupled poro‐elasto‐plastic analytical solutions are derived for all three stress/strain components. Unlike previous studies, extension of the plastic zone is obtained as a function of injection pressure, incorporating plasticity effects on the subsequent elastic domain. Solutions, proven to be a good approximation of numerical simulations, offer a huge advantage as the run time of coupled numerical simulations is considerably long. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, the onset of mechanical instability in time‐sensitive elasto‐viscoplastic solids is theoretically analyzed at the constitutive level and associated with the occurrence of ‘spontaneous accelerations’ under stationary external perturbations. For this purpose, a second‐order form of Perzyna's constitutive equations is first derived by time differentiation, and a sufficient stability condition is identified for general mixed loading programs. These loading conditions are in fact the most general in both laboratory tests and real boundary value problems, where a combination of certain stress and strain components is known/prescribed. The theoretical analysis leads to find precise stability limits in terms of material hardening modulus. In the case of constitutive relationships with isotropic strain‐hardening, no instabilities are possible while the hardening modulus is larger than the so‐called ‘controllability modulus’ defined for (inviscid) elasto‐plastic materials. It is also shown that the current stress/strain rate may also directly influence the occurrence of elasto‐viscoplastic instability, which is at variance with elasto‐plastic inviscid media. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A rotational kinematic hardening constitutive model with the capability of predicting the behavior of soil during three‐dimensional stress reversals has been developed. An existing elasto‐plastic constitutive model, the Single Hardening Model, utilizing isotropic hardening serves as the basic framework in these formulations. The framework of the kinematic hardening model was discussed in a companion paper. The previously proposed cross‐anisotropic Single Hardening Model is added to the present kinematic hardening mechanism to capture inherent anisotropy of sands in addition to the stress reversals. This model involves 13 parameters, which can be determined from simple laboratory experiments, such as isotropic compression, drained triaxial compression and triaxial extension tests. The results from a series of true triaxial tests with large three‐dimensional stress reversals performed on medium dense cross‐anisotropic Santa Monica Beach sand are employed for comparison with predictions. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A new phenomenological macroscopic constitutive model for the numerical simulation of quasi‐brittle fracture and ductile concrete behavior, under general triaxial stress conditions, is presented. The model is particularly addressed to simulate a wide range of confinement stress states, as also, to capture the strong influence of the mean stress value in the concrete failure mechanisms. The model is based on a two‐surface damage‐plastic formulation. The mechanical behavior in different domains of the stress space is separately described by means of a quasi‐brittle or ductile material response:

8.
In this paper results of triaxial and true triaxial testing conducted on physical models of a rock mass are used to describe its post failure behaviour. The specimens comprised of three continuous joint sets and were prepared from blocks of sand lime model material. The testing was performed using a True Triaxial System (TTS) developed by the authors. The results show strain hardening, strain softening and plastic behaviour in the simulated rock mass specimens depending upon joint geometry and stress state. Expressions are suggested to estimate post peak modulus in triaxial and true triaxial stress conditions. Finally, a zonation table is proposed to assess the strain hardening, softening and plasticity behaviour of a rock mass material with the help of joint geometry and confining stress conditions at site.  相似文献   

9.
Gas hydrate‐bearing sediments (GHBSs) have been considered as a potential energy resource. In this paper, the mechanical properties of GHBS are firstly investigated by the integrated test apparatus for synthesis of GHBS using silty sand as skeleton. Triaxial tests indicate an obvious transition of stress‐strain relationship from strain hardening under low hydrate saturation and strain softening under high hydrate saturation. The hypoplastic models coupled with Drucker‐Prager criterion and the Mohr‐Coulomb criterion are proposed to analyze the stress‐strain relationship of GHBS with considering the effective porosity because of the hydrate filling in the pores of GHBS. The strain hardening and softening behaviors are well predicted with less material parameters compared with the classical models. Compared with the test results, the proposed hypoplastic models are verified to be capable of capturing the salient features of the mechanical behaviors of GHBS under the conditions of little temperature change and no hydrate dissociation.  相似文献   

10.
基于Drucker-Prager准则的岩石弹塑性损伤本构模型研究   总被引:1,自引:0,他引:1  
袁小平  刘红岩  王志乔 《岩土力学》2012,33(4):1103-1108
大多数岩石材料软化本构模型在硬化函数中引入塑性内变量来表示材料的硬化/软化性质,但并不能反映岩石微裂隙损伤对材料力学性能的影响及单轴拉伸和压缩所表现的初始屈服强度f0与屈服极限fu的差异。基于D-P准则同时考虑塑性软化及损伤软化,建立岩石类材料的弹塑性本构关系及其数值算法。塑性屈服函数采用Borja等的应力张量的硬化/软化函数,反映塑性内变量及应力状态对硬化函数的影响;由于岩石损伤软化是微裂隙扩展所导致的体积膨胀引起的,因此,提出用体积应变表征岩石损伤变量的演化,并用回映隐式积分算法编制了岩石的弹塑性损伤本构程序。对单轴压缩及拉伸荷载作用下的岩石材料试验进行数值模拟,结果表明,所提出的岩石弹塑性损伤本构模型可以较好地符合岩石材料的力学特性。  相似文献   

11.
This article focuses on modeling the strain hardening‐softening response of statically compacted silty sand as observed from a comprehensive series of suction‐controlled, consolidated‐drained triaxial tests accomplished in a fully automated, double‐walled triaxial test system via the axis‐translation technique. The constitutive model used in this work is based on the theory of Bounding Surface (BS) plasticity and is formulated within a critical state framework. The essential BS model parameters are calibrated using the full set of triaxial test results and then used for predictions of compacted silty sand response at matric suction states varying from 50 to 750 kPa. Complementary simulations using the Barcelona Basic Model have also been included, alongside BS model predictions, in order to get further enlightening insights into some of the main limitations and challenges facing both frameworks within the context of the experimental evidence resulting from the present research effort. In general, irrespective of the value of matric suction applied, the Barcelona Basic Model performs relatively well in predicting response at peak and critical state failure under low net confining pressure while the Bounding Surface Model performs relatively well under high net confining pressures.  相似文献   

12.
A literature review has shown that there exist adequate techniques to obtain ground reaction curves for tunnels excavated in elastic‐brittle and perfectly plastic materials. However, for strain‐softening materials it seems that the problem has not been sufficiently analysed. In this paper, a one‐dimensional numerical solution to obtain the ground reaction curve (GRC) for circular tunnels excavated in strain‐softening materials is presented. The problem is formulated in a very general form and leads to a system of ordinary differential equations. By adequately defining a fictitious ‘time’ variable and re‐scaling some variables the problem is converted into an initial value one, which can be solved numerically by a Runge–Kutta–Fehlberg method, which is implemented in MATLAB environment. The method has been developed for various common particular behaviour models including Tresca, Mohr–Coulomb and Hoek–Brown failure criteria, in all cases with non‐associative flow rules and two‐segment piecewise linear functions related to a principal strain‐dependent plastic parameter to model the transition between peak and residual failure criteria. Some particular examples for the different failure criteria have been run, which agree well with closed‐form solutions—if existing—or with FDM‐based code results. Parametric studies and specific charts are created to highlight the influence of different parameters. The proposed methodology intends to be a wider and general numerical basis where standard and newly featured behaviour modes focusing on obtaining GRC for tunnels excavated in strain‐softening materials can be implemented. This way of solving such problems has proved to be more efficient and less time consuming than using FEM‐ or FDM‐based numerical 2D codes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
陆勇  周国庆  顾欢达 《岩土力学》2018,39(2):614-620
为构建能够反映砂土高低压下不同力学特性的统一模型,分析了砂土在较大的压力范围内的力学试验结果并获取其强度、等向压缩以及临界状态特性参数。通过引入应力路径相关因子来修正塑性应变增量中与应力路径相关的部分,从而使得模型硬化参量能够反映密实砂土在常压下的剪胀特性。同时,基于砂土的临界状态特性提出能够与砂土内部状态相对应的潜在状态面概念,由屈服面与潜在状态面间的动态关系确定加载过程中的动态密实参数及潜在强度,进而使得硬化参量也能够反映密实砂土在常压下的软化特性及高压下的剪缩、硬化特性。分析模型屈服面及潜在状态面间的演化规律并对不同压力等级下的砂土受荷力学行为进行模拟预测,证实了该模型能够反映密实砂土常压下剪胀软化及高压下剪缩硬化的特性。  相似文献   

14.
On the one hand, it has been observed that liquefaction‐induced shear deformation of soils accumulates in a cycle‐by‐cycle pattern. On the other hand, it is known that heating could induce plastic hardening. This study deals with the constitutive modelling of the effect that heat may have on the cyclic mechanical properties of cohesive soils, a relatively new area of interest in soil mechanics. In this paper, after a presentation of the thermo‐mechanical framework, a non‐isothermal plasticity cyclic model formulation is presented and discussed. The model calibration is described based on data from laboratory sample tests. It includes numerical simulations of triaxial shear tests at various constant temperatures. Then, the model predictions are compared with experimental results and discussed in the final section. Both drained and undrained loading conditions are considered. The proposed constitutive model shows good ability to capture the characteristic features of behaviour. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
16.
This paper presents a simple three‐dimensional (3D) Distinct Element Method (DEM) for numerical simulation of the mechanical behavior of bonded sands. First, a series of micro‐mechanical tests on a pair of aluminum rods glued together by cement with different bond sizes were performed to obtain the contact mechanical responses of ideally bonded granular material. Second, a 3D bond contact model, which takes into account the influences of bond sizes, was established by extending the obtained 2D experimental results to 3D case. Then, a DEM incorporating the new contact model was employed to perform a set of drained triaxial compression tests on the DEM bonded specimens with different cement contents under different confining pressures. Finally, the mechanical behavior of the bonded specimens was compared with the available experimental results. The results show that the DEM incorporating the simple 3D bond contact model is able to capture the main mechanical behavior of bonded sands. The bonded specimen with higher cement content under lower confining pressure exhibits more pronounced strain softening and shear dilatancy. The peak and residual strengths, the apparent cohesion and peak/residual friction angles, and the position and slope of the critical state line increase with increase in cement content. Microscopically, bond breakage starts when the system starts to dilate and the maximum rate of bond breakage coincides with the maximum rate of dilation. Bond breakage is primarily due to tension‐shear failure and the percentage of such failures is independent of both confining pressure and cement content. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper investigates the effects of a non‐coaxial model on simulated stress–strain behaviour of granular materials subject to simple shearing under various initial conditions. In most cases, a significant difference of predictions between coaxial and non‐coaxial modelling is found during the early stage in shearing. With the increase in shearing, non‐coaxial simulations approach and tend to coincide with coaxial simulations. It is also found that the roles of non‐coaxial modelling in simulating simple shear behaviour are considerably influenced by hardening rules, flow rules, initial static lateral pressure coefficients. In some cases, the non‐coaxial modelling gives a similar simulation as the coaxial modelling. In other cases, the non‐coaxial modelling decreases the hardening response or softening response of materials, compared with the coaxial modelling. Under certain conditions, the predicted peak strength of materials with non‐coaxial modelling is larger than that for coaxial modelling. Some of these observations can be attributed to the amount of principal stress rotation in various cases analysed. Others can be attributed to the difference between the directions of the non‐coaxial plastic flow and those for coaxial plastic flow. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
三轴压缩条件下裂隙性黄土的破坏特征   总被引:3,自引:0,他引:3  
卢全中  葛修润  彭建兵  冯利斌 《岩土力学》2009,30(12):3689-3694
通过裂隙性黄土样的三轴压缩试验,利用土样裂隙和侧壁标记的网格在试验前后的对比与直观反映,描述了具有不同裂隙空间形态的不同性状土样在不同试验围压下的破坏特征,总结了其变形破坏规律,试验结果显示,裂隙性黄土的破坏分为脆性破坏和塑性破坏两种类型,表现为极强软化型、强软化型、软化型、理想塑性型(或弱软化型、弱硬化型)和硬化型5种型式,其破坏特征与土样原裂隙的空间形态及性质、试验围压等因素密切相关,形成的破裂面位置主要受土样的原裂隙、变形方式和上下底面透水石的边界控制。  相似文献   

19.
In this paper, a phenomenological constitutive model is proposed to simulate the stress–strain behaviours of intact rocks with shear failure mode. The model captures a wide range of behaviours of rock material such as elastic, plastic, strain softening, ‘Class II’, strain localization, elastic modulus degradation, etc. The sensitivity of the stress–strain relation on the parameters is also investigated. Typical results obtained by testing a number of granite and marble specimens are used to validate the proposed model. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

20.
An objective of this paper is to demonstrate that the small strain model developed by the authors can be incorporated into the conventional kinematic hardening plasticity framework to predict pre‐failure defor mations. The constitutive model described in this paper is constituted by three elliptical yield surfaces in triaxial stress space. Two inner surfaces are rotated ellipses of the same shape, representing the boundaries of the linear elastic and small strain regions, while the third surface is the modified Cam clay large‐scale yield surface. Within the linear elastic region, the soil behaviour is elastic with cross‐coupling between the shear and volumetric stress–strain components. Within the small strain region, the soil behaviour is elasto‐plastic, described by the kinematic hardening rule with an infinite number of loading surfaces defined by the incremental energy criterion. Within the large‐scale yield surface, the soil behaviour is elasto‐plastic, described by kinematic and isotropic hardening of the small strain region boundary. Since the yield surfaces have different shapes, the uniqueness of the plastic loading condition imposes a restriction on the ratio between their semi‐diameters. The model requires 12 parameters, which can be determined from a single consolidated undrained triaxial compression test. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号