首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Interpretation of reprocessed seismic reflection profiles reveals three highly coherent, layered, unconformity-bounded sequences that overlie (or are incorporated within) the Proterozoic “granite–rhyolite province” beneath the Paleozoic Illinois basin and extend down into middle crustal depths. The sequences, which are situated in east–central Illinois and west–central Indiana, are bounded by strong, laterally continuous reflectors that are mappable over distances in excess of 200 km and are expressed as broad “basinal” packages that become areally more restricted with depth. Normal-fault reflector offsets progressively disrupt the sequences with depth along their outer margins. We interpret these sequences as being remnants of a Proterozoic rhyolitic caldera complex and/or rift episode related to the original thermal event that produced the granite–rhyolite province. The overall thickness and distribution of the sequences mimic closely those of the overlying Mt. Simon (Late Cambrian) clastic sediments and indicate that an episode of localized subsidence was underway before deposition of the post-Cambrian Illinois basin stratigraphic succession, which is centered farther south over the “New Madrid rift system” (i.e., Reelfoot rift and Rough Creek graben). The present configuration of the Illinois basin was therefore shaped by the cumulative effects of subsidence in two separate regions, the Proterozoic caldera complex and/or rift in east–central Illinois and west–central Indiana and the New Madrid rift system to the south. Filtered isostatic gravity and magnetic intensity data preclude a large mafic igneous component to the crust so that any Proterozoic volcanic or rift episode must not have tapped deeply or significantly into the lower crust or upper mantle during the heating event responsible for the granite–rhyolite.  相似文献   

2.
The Horse Prairie basin of southwestern Montana is a complex, east-dipping half-graben that contains three angular unconformity-bounded sequences of Tertiary sedimentary rocks overlying middle Eocene volcanic rocks. New mapping of the basin and its hanging wall indicate that five temporally and geometrically distinct phases of normal faulting and at least three generations of fault-related extensional folding affected the area during the late Mesozoic (?) to Cenozoic. All of these phases of extension are evident over regional or cordilleran-scale domains. The extension direction has rotated 90° four times in the Horse Prairie area resulting in a complex three-dimensional strain field with 60% east–west and >25% north–south bulk extension. Extensional folds with axes at high angles to the associated normal fault record most of the three-dimensional strain during individual phases of extension (phases 3a, 3b, and 4). Cross-cutting relationships between normal faults and Tertiary volcanic and sedimentary rocks constrain the ages of each distinct phase of deformation and show that extension continued episodically for more than 50 My. Gravitational collapse of the Sevier fold and thrust belt was the ultimate cause of most of the extension.  相似文献   

3.
A few long-range airborne magnetic profiles flown at an altitude of 7.5 km a.s.l. across the Indian shield are analysed and interpreted in terms of magnetization in the lower crust. The wavelengths of the crustal anomalies are in the range of 51–255 km and this is used to separate them from signals originating at shallow depths. Spectral analysis of these profiles provided a maximum depth of 34–41 km for the long-wavelength anomalies and 9–10 km for the shallow sources identified as Mohorovic̆ić discontinuity and the basement respectively. The magnetic “high” recorded in satellite observations over the Indian shield is interpreted as due to a bulge of 3–4 km in the Moho under the Godovari graben, with a magnetization of 200 nT in the direction of the Earth's present-day magnetic field. Similarly the magnetic lows observed over the Himalaya are interpreted in terms of thickening of the granitic part of the crust from 18 to 23.5 km with a magnetization contrast of 200 nT in the direction of the Earth's present-day magnetic field.  相似文献   

4.
The Mesozoic platform sequence of the Menderes Massif consists of thick succession of detrital and carbonate rocks. In this sequence there are mafic metavolcanic rocks at two different levels. The first level of mafic metavolcanic intercalations is in the Late Triassic detrital-rich series located in the ÇaltayL Formation, which is the lowermost unit of the Mesozoic platform. The second level of the mafic metavolcanic rocks is located in the Late Cretaceous-(?)Paleocene Selçuk Formation laying on top of the platform sequence. The ÇaltayL Formation, which is composed of mica-schists, thinly-bedded cherts, calc-schist and mafic volcanic intercalations unconformably overlie the BayLndLr Formation, which consists of mica-schists, phyllites, and white quartzites of Palaeozoic or probably older age. The mafic volcanic rocks in the ÇaltayL Formation are alkaline basalts with within plate characteristics and are formed during an intraplate extension. The ÇaltayL Formation is conformably overlain by the KayaaltL Formation represented by calc-schists, dolomitic marbles, and rudist- and emery-bearing massive marbles in ascending order. The Selçuk Formation overlies the KayaaltL Formation and consists of a mica-schist matrix with allochthonous blocks of mafic volcanic rocks, metaperidotites, metagabbros and massive marbles. The mafic volcanic rocks in the Selçuk Formation are tholeiitic basalts and are petrologically similar to mid-oceanic basalts. The geological and geochemical characteristics of the mafic metavolcanic rocks in the ÇaltayL Formation indicate that during the Late Triassic, the Menderes platform was segmented, probably by the opening of a branch of the Neotethyan Ocean. Between the Late Triassic and the Late Cretaceous, the Menderes carbonate platform was built up. During the Latest Cretaceous-Early Paleocene, a slab of oceanic crust obducted on this platform and provided slices of mafic metavolcanic rocks into the Selçuk Formation.  相似文献   

5.
The NW–SE-striking Northeast German Basin (NEGB) forms part of the Southern Permian Basin and contains up to 8 km of Permian to Cenozoic deposits. During its polyphase evolution, mobilization of the Zechstein salt layer resulted in a complex structural configuration with thin-skinned deformation in the basin and thick-skinned deformation at the basin margins. We investigated the role of salt as a decoupling horizon between its substratum and its cover during the Mesozoic deformation by integration of 3D structural modelling, backstripping and seismic interpretation. Our results suggest that periods of Mesozoic salt movement correlate temporally with changes of the regional stress field structures. Post-depositional salt mobilisation was weakest in the area of highest initial salt thickness and thickest overburden. This also indicates that regional tectonics is responsible for the initiation of salt movements rather than stratigraphic density inversion.Salt movement mainly took place in post-Muschelkalk times. The onset of salt diapirism with the formation of N–S-oriented rim synclines in Late Triassic was synchronous with the development of the NNE–SSW-striking Rheinsberg Trough due to regional E–W extension. In the Middle and Late Jurassic, uplift affected the northern part of the basin and may have induced south-directed gravity gliding in the salt layer. In the southern part, deposition continued in the Early Cretaceous. However, rotation of salt rim synclines axes to NW–SE as well as accelerated rim syncline subsidence near the NW–SE-striking Gardelegen Fault at the southern basin margin indicates a change from E–W extension to a tectonic regime favoring the activation of NW–SE-oriented structural elements. During the Late Cretaceous–Earliest Cenozoic, diapirism was associated with regional N–S compression and progressed further north and west. The Mesozoic interval was folded with the formation of WNW-trending salt-cored anticlines parallel to inversion structures and to differentially uplifted blocks. Late Cretaceous–Early Cenozoic compression caused partial inversion of older rim synclines and reverse reactivation of some Late Triassic to Jurassic normal faults in the salt cover. Subsequent uplift and erosion affected the pre-Cenozoic layers in the entire basin. In the Cenozoic, a last phase of salt tectonic deformation was associated with regional subsidence of the basin. Diapirism of the maturest pre-Cenozoic salt structures continued with some Cenozoic rim synclines overstepping older structures. The difference between the structural wavelength of the tighter folded Mesozoic interval and the wider Cenozoic structures indicates different tectonic regimes in Late Cretaceous and Cenozoic.We suggest that horizontal strain propagation in the brittle salt cover was accommodated by viscous flow in the decoupling salt layer and thus salt motion passively balanced Late Triassic extension as well as parts of Late Cretaceous–Early Tertiary compression.  相似文献   

6.
J. -B. Edel   《Tectonophysics》2003,363(3-4):225-241
Generally, the lack of bedding criteria in basement units hampers the interpretation of paleomagnetic results in terms of geotectonics. Nevertheless, this work demonstrates that successive remagnetizations recorded in Early Carboniferous metamorphic and plutonic units, without clear bedding criteria, can be used to constrain a polyphased tectonic evolution consisting of a regional clockwise rotation, followed by a folding phase, a tilting phase and a second regional clockwise rotation.Metamorphic, ultrabasic, tonalitic and granitic rocks from different parts of Limousin (western French Massif central; 45.5°N/1.25°E), which underwent metamorphism during Devonian–Early Carboniferous or were intruded in the Early–Middle Carboniferous, were sampled in order (a) to identify the magnetic overprinting phases and the related tectono-magmatic events and (b) to constrain the regional and plate tectonic evolution of Limousin. Paleomagnetic results from 32 new and 26 sites investigated previously show that at least 90% of the magnetization isolated in rocks older than 330 Ma are overprints. In agreement with results from adjacent areas of the Variscan belt, the major overprinting phases occurred: (a) in the last stages of the major exhumation phase [332–328 Ma; mean Virtual Geomagnetic Pole (VGP) “Cp”: 37°N/70.5°E], (b) during the post-collisional syn-orogenic extension (325–315 Ma; VGP “B”: 11°N/114°E), (c) in the Latest Carboniferous and Early Permian (VGP “A1”: 27°N/149°E) and (d) in the Late Permian (VGP “A”: 48°N/146°E). The Middle–Late Carboniferous overprints “Cp” and “B” are contemporaneous with emplacement of leucogranitic, crustal derived plutons, and probably result from the hydro-thermal activity related to the magmatism. The drift from “Cp” directions to “B” directions implies that after 330 Ma, Limousin underwent a clockwise rotation by 65°, together with the Central Europe Variscides. The “Bt” components, the VGPs of which deviate from the mean apparent polar wander path (APWP) of the belt, are interpreted as “B” overprints tilted during Late Variscan tectonics, that is, in the time range 325–315 Ma. The first and most important generation of “Bt” overprints was tilted during NW–SE folding associated with NE–SW shortening, updoming and emplacement of leucogranitic plutons. The second generation reveals southeastward tilting due to NE-striking normal faulting. The drift from “B” to “A1” directions implies that Limousin has participated to the second clockwise rotation by 40° of the whole belt in Westphalian times.  相似文献   

7.
A 3D backstripping approach considering salt flow as a consequence of spatially changing overburden load distribution, isostatic rebound and sedimentary compaction for each backstripping step is used to reconstruct the subsidence history in the Northeast German Basin. The method allows to determine basin subsidence and the salt-related deformation during Late Cretaceous–Early Cenozoic inversion and during Late Triassic–Jurassic extension. In the Northeast German Basin, the deformation is thin-skinned in the basinal part, but thick-skinned at the basin margins. The salt cover is deformed due to Late Triassic–Jurassic extension and Late Cretaceous–Early Cenozoic inversion whereas the salt basement remained largely stable in the basin area. In contrast, the basin margins suffered strong deformation especially during Late Cretaceous–Early Cenozoic inversion. As a main question, we address the role of salt during the thin-skinned extension and inversion of the basin. In our modelling approach, we assume that the salt behaves like a viscous fluid on the geological time-scale, that salt and overburden are in hydrostatical near-equilibrium at all times, and that the volume of salt is constant. Because the basement of the salt is not deformed due to decoupling in the basin area, we consider the base of the salt as a reference surface, where the load pressure must be equilibrated. Our results indicate that major salt movements took place during Late Triassic to Jurassic E–W directed extension and during Late Cretaceous–Early Cenozoic NNE–SSW directed compression. Moreover, the study outcome suggests that horizontal strain propagation in the salt cover could have triggered passive salt movements which balanced the cover deformation by viscous flow. In the Late Triassic, strain transfer from the large graben systems in West Central Europe to the east could have caused the subsidence of the Rheinsberg Trough above the salt layer. In this context, the effective regional stress did not exceed the yield strength of the basement below the Rheinsberg Trough, but was high enough to provoke deformation of the viscous salt layer and its cover. During the Late Cretaceous–Early Cenozoic phase of inversion, horizontal strain propagation from the southern basin margin into the basin can explain the intensive thin-skinned compressive deformation of the salt cover in the basin. The thick-skinned compressive deformation along the southern basin margin may have propagated into the salt cover of the basin where the resulting folding again was balanced by viscous salt flow into the anticlines of folds. The huge vertical offset of the pre-Zechstein basement along the southern basin margin and the amount of shortening in the folded salt cover of the basin indicate that the tectonic forces responsible for this inversion event have been of a considerable magnitude.  相似文献   

8.
Rhyolite-dominating bimodal volcanic suites (rhyolite/basalt), mafic dikes and A-type granites distribute from N Zhejiang to S Fujian over 800 km in the Southeast Coast Magmatic Belt (SCMB) – the Late Yanshanian (LY) orogenic belt in SE China. Data of 40Ar/39Ar and K–Ar whole-rock ages and LA-ICPMS U–Pb zircon ages indicate that rhyolitic volcanism (101–72 Ma) is contemporaneous with the A-type granitic intrusions (100–90 Ma) and mafic dike injections (94–77 Ma). This time span is used to define the upper volcanic series in Zhejiang–Fujian areas. One striking feature of rhyolites in the SCMB is that many are strongly peraluminous (SP) and others, mostly restrict in Fujian, are peralkaline to mildly peraluminous (P-MP) and chemically resemble A-type granites. The SP character is unique among well-known large rhyolite provinces worldwide. Based on experimental works for a common thermal regime and inherited zircon age information, we suggest that SP and P-MP rhyolites represent low pressure melting of the felsic (quartzofeldspathic) granite (±metapelite) and the accompanied granodioritic, tonalitic and trondhjemitic member of the core complex assemblage, respectively, to account for the decreasing aluminosity. They could have also been contaminated by young igneous rocks, and ancient crust to a lesser degree, during ascent to the surface. Plate subduction and lithosphere extension processes, respectively, are numerically simulated for the magma generation of these rhyolites using the mafic underplating model. Results suggest that the most effective controlling factor to generate SP and associated P-MP (A-type) magmas during 95–80 Ma is thinning of the lithosphere thickness with a high exhumation rate. Under this circumstance, the core complex assemblage can be uplifted to lower level of the crust and match the constraint of experimental works.  相似文献   

9.
Cenozoic, mafic alkaline volcanic rocks throughout West Antarctica (WA) occupy diverse tectonic environments. On the Antarctic Peninsula (AP), late Miocene-Pleistocene (7 to <1 Ma) alkaline basaltic rocks were erupted <1 to 45 million years after subduction ceased along the Pacific margin of the AP. In Marie Byrd Land (MBL), by contrast, alkaline basaltic volcanism has been semi-continuous from 25–30 Ma to the present, and occurs in the West Antarctic rift system. Together, these Antarctic tectono-magmatic associations are analogous to the Basin and Range, Sierran, and Coast Range batholith provinces. Unlike the western US, however, basaltic rocks throughout WA have uniform geochemical characteristics, with especially narrow ranges in initial87Sr/86Sr (0.7026–0.7035),143Nd/144Nd (0.51286–0.51299), and La/Nb (0.6–1.4) ratios, suggesting very limited liput from old subcontinental lithosphere or crustal sources during magma genesis. However, there are significant differences in the relative and absolute abundances of the LILE (large-ionlithophile elements), and these divide WA into two provinces. Basalts from the AP region have unusually high K/Ba and K/Rb ratios (50–140 and 500–1500 respectively) and marked Ba depletion (Ba/Nb=2.5–8.0; Ba ppm 66–320) relative to MBL basalts, which have LILE distributions within the range for OIB (ocean-island basalt) (K/Ba <50, Ba/Nb 5–20). This geochemical contrast is accompanied by a three-fold increase in the age range of volcanic activity and a three orders of magnitude increase in the volume of eruptive products, within MBL. The regional differences in geochemistry, and in the volume and duration of volcanic activity, are best explained by a plume-related origin for MBL basalts, whereas alkaline magmatism in the AP is causally related to slab window formation following the cessation of subduction. Plume activity has alreadybeen proposed to explain tectonic doming and associated spatial patterns of volcanism in MBL. Most MBL geochemical traits are shared by the volcanic rocks of the western Ross Sea, suggesting that a large plume head underlies the West Antarctic rift system. The uniformity of basalt compositions throughout WA and the entire rift system suggest uniformly minimal extension throughout this region during late Cenozoic time. Differences in crustal thicknesses can be explained by early Cenozoic or pre-Cenozoic extension, but restraint on extension is suggested by the size of the region and the implied size of the plume. The c. 95% encirclement of the Antarctic plate by mid-ocean ridges and transforms restrains extension on a regional scale, leading to nonadiabatic plume rise and correspondingly little decompression melting.  相似文献   

10.
Analysis and synthesis of multi-disciplinary geoscience information from geological literature/maps and from digitally-processed aeromagnetic and gravity data pertinent to the Aravalli province were carried out to address some hitherto unresolved questions about the tectonostratigraphy of this Archaean–Proterozoic metallogenic province. Based on the magnetic anomalies, several tectonic domains were identified. These domains, bounded by regional-scale geophysical lineaments, have distinct crustal, lithological, metamorphic, and metallogenic characteristics and correlate broadly with lithostratigraphic belts identified by several earlier workers. New interpretations on the tectonostratigraphy and the base-metal mineralization controls in the Aravalli province are as follows. The Hindoli sequences, in the eastern parts of the province, constitute an independent Palaeo–Proterozoic tectonic domain and do not form part of the Archaean basement complex. The base-metal-bearing metasedimentary enclaves in the central parts of the province also constitute an independent Palaeo–Proterozoic tectonic domain, which is quite distinct from the surrounding (basement complex?) rocks. The base-metal-bearing metavolcano-sedimentary sequences in the western parts of the province constitute an independent Neo–Proterozoic tectonic domain. The base-metal deposits in the province are spatially associated with the regional-scale lineaments and with the mafic metavolcanic rocks deduced from the aeromagnetic data. The regional-scale lineaments, which possibly represent Proterozoic crustal-scale faults, are plausible structural controls on the base-metal mineralization in the province. The mafic metavolcanic rocks are plausible heat-source controls on the SEDEX- and/or VMS-type base-metal mineralizations and are possible metal-source controls on the VMS-type base-metal mineralization in the province.  相似文献   

11.
Abundant gold deposits are distributed along the margins of the North China Craton (NCC). Occurring throughout the Precambrian basement and located in or proximal to Mesozoic granitoids, these deposits show a consistent spatial–temporal association with Late Jurassic–Early Cretaceous magmatism and are characterized by quartz lode or disseminated styles of mineralization with extensive alteration of wall rock. Their ages are mainly Early Cretaceous (130–110 Ma) and constrain a very short period of metallogenesis. Sr–Nd–Pb isotopic tracers of ores, minerals and associated rocks indicate that gold and associated metals mainly were derived from multi-sources, i.e., the wall rocks (Precambrian basement and Mesozoic granites) and associated mafic rocks.Previous studies, including high surface heat flow, uplift and later basin development, slow seismic wave speeds in the upper mantle, and a change in the character of mantle xenoliths sampled by Paleozoic to Cenozoic magmas, have been used to suggest that ancient, cratonic mantle lithosphere was removed from the base of the NCC some time after the Ordovician, and replaced by younger, less refractory lithospheric mantle. The geochemistry and isotopic compositions of the mafic rocks associated with gold mineralization (130–110 Ma) indicate that they were derived from an ancient enriched lithospheric mantle source; whereas, the mafic dikes and volcanic rocks younger than 110 Ma were derived from a relatively depleted mantle source, i.e., asthenospheric mantle. According to their age and sources, relation to magmatism and geodynamic framework, the gold deposits were formed during lithospheric thinning. The removal of lithospheric mantle and the upwelling of new asthenospheric mantle induced partial melting and dehydration of the lithospheric mantle and lower crust due to an increase of temperature. The fluids derived from the lower crust were mixed with magmatic and meteoric waters, and resulted in the deposition of gold and associated metals.  相似文献   

12.
In the last decade, even in areas that had been considered tectonically stable, a great amount of Cenozoic, including the Quaternary period, structural data have been collected throughout Brazil. The main goal of this study is to describe the Cenozoic structures and tectonic evolution of an area that is located at the border of the Paraná Basin in the state of São Paulo.The research methods consisted of the analysis of: (1) brittle structure data, mainly conjugate fractures and fault slip data; (2) lineaments traced on air photos and TM Landsat and radar images; and (3) a second-order base surface map.The study area, during the Cenozoic, has been affected by five strike–slip tectonic events, which generated mainly strike–slip faults, and secondarily normal and reverse ones. The events were named, from the oldest to the youngest, E1-NE, E2-EW, E3-NW, E4-NS, and E5-NNE; and the maximum principal stresses σ1 strike approximately NE–SW, E–W, NW–SE, N–S, and NNE–SSW, respectively. Event E2-EW seems to have been contemporaneous with the deposition of the Rio Claro Formation, the most important Cenozoic deposit of probable Neogenic age, and also to have controlled the distribution of its deposits. Event E3-NW was the strongest one in the area, as is pointed out by structural data, and the maximum principal stress σ1 of event E5-NNE is partially concordant with the orientation of σH-max of well break-out data in the Paraná Basin, suggesting a Neotectonic activity for this event. Finally, discontinuities parallel and correlated to the directions of strike–slip faults of the Cenozoic events seem to have actively controlled the sculpturing of the relief in the study area.  相似文献   

13.
During late Early to Late Cretaceous, the Peruvian coastal margin underwent fast and oblique subduction and was characterized by important arc plutonism (the Peruvian Coastal Batholith) and formation of volcanosedimentary basins known as the Western Peruvian Trough (WPT). We present high-precision U–Pb ages and initial Hf isotopic compositions of zircon from conformable volcanic and crosscutting intrusive rocks within submarine volcanosedimentary strata of the WPT hosting the Perubar massive sulfide deposit. Zircons extracted from both the volcanic and intrusive rocks yield concordant U–Pb ages ranging from 67.89±0.18 Ma to 69.71±0.18 Ma, indicating that basin subsidence, submarine volcanism and plutonic activity occurred in close spatial and temporal relationship within the Andean magmatic arc during the Late Cretaceous. Field observations, satellite image interpretation, and plate reconstructions, suggest that dextral wrenching movements along crustal lineaments were related to oblique subduction. Wrench tectonics is therefore considered to be the trigger for the formation of the WPT as a series of pull-apart basins and for the emplacement of the Coastal Batholith. The zircon initial Hf values of the dated magmatic rocks fall between 5.5 and 7.4, and indicate only very subordinate influence of a sedimentary or continental component. The absence of inherited cores in the zircons suggest a complete lack of old basement below the WPT, in agreement with previous U–Pb and Sr isotopic data for batholithic rocks emplaced in the WPT area. This is supported by the presence of a most likely continuous block of dense (~3.0 g/cm3) material observed beneath the WPT area on gravimetric crustal cross sections. We suggest that this gravimetric anomaly may correspond to a piece of lithospheric mantle and/or oceanic crust inherited from a possible Late Permian–Triassic rifting. Such young and mafic crust was the most probable source for arc magmatism in the WPT area.  相似文献   

14.
Magnetic observations over the area of the Transantarctic Mountains (TAM) and the Ross Sea have been compiled into a digital database that furnishes a new regional scale view of the magnetic anomaly crustal field in this key sector of the Antarctic continent. This compilation is a component of the ongoing IAGA/SCAR Antarctic Digital Magnetic Anomaly Project (ADMAP). The aeromagnetic surveys total 115 000 line km, and are distributed across the Victoria Land sector of the TAM, the Ross Sea, and Marie Byrd Land. The magnetic campaigns were performed within the framework of the national and international Italian–German–US Antarctic research programs and conducted with differing specifications during nine field seasons from 1971 until 1997. Generally flight line spacing was less than 5 km while survey altitude varied from about 610 to 4000 m above sea level for barometric surveys and was equal to 305 m above topography for the single draped survey. Reprocessing included digitizing the old contour data, improved levelling by means of microlevelling in the frequency domain, and re-reduction to a common reference field based on the DGRF90 model. A multi-frequency grid procedure was then applied to obtain a coherent and merged total intensity magnetic anomaly map. The shaded relief map covers an area of approximately 380 000 km2. This new compilation provides a regional image of the location and spatial extent of the Cenozoic alkaline magmatism related to the TAM–Ross Sea rift, Jurassic tholeiites, and crustal segments of the Early Palaeozoic magmatic arc. A linear, approximately 100-km wide and 600-km long Jurassic rift-like structure is newly identified. Magnetic fabric in the Ross Sea rift often matches seismically imaged Cenozoic fault arrays. Major buried onshore pre-rift fault zones, likely inherited from the Ross Orogen, are also delineated. These faults may have been reactivated as strike-slip belts that segmented the TAM into various crustal blocks.  相似文献   

15.
The South Yellow Sea Basin is partially surrounded by the East Asian continental Meso-Cenozoic widespread igneous rocks belt. Magnetic anomaly and multi-channel seismic data both reveal the prevalent occurrence of igneous rocks. We preliminarily defined the coupling relation between magnetic anomalies and igneous rock bodies. Some igneous complexes were also recognized by using multi-channel seismic and drilling data. We identified various intrusive and extrusive igneous rock bodies, such as stocks, sills, dikes, laccoliths and volcanic edifice relics through seismic facies analysis. We also forecasted the distribution characteristics of igneous complexes. More than fifty hypabyssal intrusions and volcanic relics were delineated based on the interpretation of magnetic anomaly and dense intersecting multi-channel seismic data. It is an important supplement to regional geology and basin evolution research. Spatial matching relations between igneous rock belts and fractures document that extensional N–E and N–NE-trending deep fractures may be effective pathways for magma intrusion. These fractures formed under the influence of regional extension during the Meso-Cenozoic after the Indosinian movement. Isotopic ages and crosscutting relations between igneous rock bodies and the surrounding bedded sedimentary strata both indicate that igneous activities might have initiated during the Late Jurassic, peaked in the Early Cretaceous, gradually weakened in the Late Cretaceous, and continued until the Miocene. Combined with previous studies, it is considered that the Meso-Cenozoic igneous activities, especially the intensive igneous activity of the Early Cretaceous, are closely associated with the subduction of the Paleo-Pacific Plate.  相似文献   

16.
Mafic dyke swarms and aulacogens are major anorogenic extensional events in the Late Paleoproterozoic North China Craton (NCC). The N–NNW mafic dyke swarms are widespread in the NCC, whose ages span between 1.83 and 1.77 Ga. The similar ages and orientations of  1.8 Ga dyke swarms in the NCC demonstrate that the amalgamated NCC experienced widespread extension at this time.Based on the width statistics of dyke swarms on ten survey lines, an average crustal extension ratio of 0.35% was found for the NCC. The small magnitude of overall extension suggests that the mafic dyke swarms were emplaced into the elastic fractures, and indicates that the NCC had become a brittle plate prior to the emplacement of the mafic dyke swarms.Precisely dated mafic dyke swarms, when used as paleostress indicators, can be employed in the paleostress field reconstruction of Precambrian cratons. Two dimensional finite element modeling (2-D FEM) of the NCC, in which the various blocks were assigned densities and elastic constants, shows that north–south compression favors dyke intrusion along generally N–NW lines, and that deviations in dyke trends can be explained by the effects of boundary constraints and the physical properties of the crust. The best fitting model can be considered a plausible representation of the tectonic force acting on the NCC that produces the intraplate stress field that is most consistent with the observed orientation of dyke swarms. The results of modeling of the Late Paleoproterozoic stress field suggest a common tectonic setting for the emplacement of mafic dyke swarms in the Central Orogenic Zone, Western and East Blocks of the NCC. The results also show that the north–south tectonic forces play an important role in determining the paleostress field in the NCC. The widespread extension of the NCC resulted from the north–south tectonic forces which may be related to the break-up of the Late Paleoproterozoic supercontinent. The paleostress field modeling provides a possible approach to consider the supercontinent paleostress reconstruction and to reveal the mechanisms of the supercontinent break-up.  相似文献   

17.
The Jinshajiang orogenic belt (JOB) of southwestern China, located along the eastern margin of the Himalayan–Tibetan orogen, includes a collage of continental blocks joined by Paleozoic ophiolitic sutures and Permian volcanic arcs. Three major tectonic stages are recognized based on the volcanic–sedimentary sequence and geochemistry of volcanic rocks in the belt. Westward subduction of the Paleozoic Jinshajiang oceanic plate at the end of Permian resulted in the formation of the Chubarong–Dongzhulin intra-oceanic arc and Jamda–Weixi volcanic arc on the eastern margin of the Changdu continental block. Collision between the volcanic arcs and the Yangtze continent block during Early–Middle Triassic caused the closing of the Jinshajiang oceanic basin and the eruption of high-Si and -Al potassic rhyolitic rocks along the Permian volcanic arc. Slab breakoff or mountain-root delamination under this orogenic belt led to post-collisional crustal extension at the end of the Triassic, forming a series of rift basins on this continental margin arc. Significant potential for VHMS deposits occurs in the submarine volcanic districts of the JOB. Mesozoic VHMS deposits occur in the post-collisional extension environment and cluster in the Late Triassic rift basins.  相似文献   

18.
Ophiolite belts and the collision of island arcs in the Arabian Shield   总被引:1,自引:0,他引:1  
The Arabian Shield is divided into several segments by ophiolite zones. The segments display features of island arcs with respect to their magmatic evolution as well as their mineralization.The northern part of the “Hulayfah—Hamdah ophiolite belt” which cuts the Arabian Shield in a north—southerly direction, has been sampled and described. Serpentinized ultramafics, gabbros, doleritic dike rocks and basalts are the most important members. The ophiolite belt is marked by magnetic anomalies with amplitudes of 200–500 gammas.In conclusion, the Arabian Shield is considered to be built up of several generations of juxtaposed volcanic arcs of Late Proterozoic age. The arcs have been closely swept together squeezing out the trench-fill sediments in the case of the Hulayfah—Hamdah belt. Cratonization was completed by the end of the Precambrian.  相似文献   

19.
The Iberian Chain is a wide intraplate deformation zone formed by the tectonic inversion during the Pyrenean orogeny of a Permian–Mesozoic basin developed in the eastern part of the Iberian Massif. The N–S convergence between Iberia and Eurasia from the Late Cretaceous to the Lower Miocene times produced significant intraplate deformation. The NW–SE oriented Castilian Branch of the Iberian Chain can be considered as a “key zone” where the proposed models for the Cenozoic tectonic evolution of the Iberian Chain can be tested. Structural style of basin inversion suggests mainly strike–slip displacements along previous NW–SE normal faults, developed mostly during the Mesozoic. To confirm this hypothesis, structural and basin evolution analysis, macrostructural Bouguer gravity anomaly analysis, detailed mapping and paleostress inversions have been used to prove the important role of strike slip deformation. In addition, we demonstrate that two main folding trends almost perpendicular (NE–SW to E–W and NW–SE) were simultaneously active in a wide transpressive zone. The two fold trends were generated by different mechanical behaviour, including buckling and bending under constrictive strain conditions. We propose that strain partitioning occurred with oblique compression and transpression during the Cenozoic.  相似文献   

20.
Gravity and magnetic data of the Kachchh basin and surrounding regions have delineated major E–W and NW–SE oriented lineaments and faults, which are even extending up to plate boundaries in the north Arabian Sea and western boundary of the Indian plate, respectively. The epicentral zone of Bhuj earthquake and its aftershocks is located over the junction of Rann of Kachchh and median uplifts viz. Kachchh mainland and Wagad uplifts, which are separated by thrust faults. Gravity data with constraints from the results of the seismic studies along a profile suggest that the basement is uplifted towards the north along thrust faults dipping 40–60° south. Similarly gravity and magnetic modeling along a profile across Wagad uplift suggest south dipping (50–60°) basement contacts separating rocks of high susceptibility and density towards the north. One of these contacts coincides with the fault plane of the Bhuj earthquake as inferred from seismological studies and its projection on the surface coincides with the E–W oriented north Wagad thrust fault. A circular gravity high in contact with the fault in northern part of the Wagad uplift along with high amplitude magnetic anomaly suggests plug type mafic intrusive in this region. Several such gravity anomalies are observed over the island belt in the Rann of Kachchh indicating their association with mafic intrusions. The contact of these intrusives with the country rock demarcates shallow crustal inhomogeneities, which provides excellent sites for the accumulation of regional stress. A regional gravity anomaly map based on the concept of isostasy presents two centers of gravity lows of −11 to −13 mGal (10−5 m/s2) representing mass deficiency in the epicentral region. Their best-fit model constrained from the receiver function analysis and seismic refraction studies suggest crustal root of 7–8 km (deep crustal inhomogeneity) under them for a standard density contrast of −400 kg/m3. It is, therefore, suggested that significant amount of stress get concentrated in this region due to (a) buoyant crustal root, (b) regional stress due to plate tectonic forces, and (c) mafic intrusives as stress concentrators and the same might be responsible for the frequent and large magnitude earthquakes in this region including the Bhuj earthquake of January 26, 2001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号