首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
坡度在坡面侵蚀中的作用*   总被引:39,自引:2,他引:39  
靳长兴 《地理研究》1996,15(3):57-63
本文分析了坡度在坡面侵蚀中的作用,包括不同坡度下被蚀体的特征差异,坡度对坡面溅蚀、坡面入渗、坡面径流及坡面侵蚀的影响,最后从理论上阐明了坡面侵蚀中的临界坡度。  相似文献   

2.
Spatial patterns of soil surface components (vegetation, rock fragments, crusts, bedrock outcrops, etc.) are a key factor determining hydrological functioning of hillslopes. A methodological approach to analyse the patterns of soil surface components at a detailed scale is proposed in this paper. The methods proposed are applied to two contrasting semi-arid Mediterranean hillslopes, and the influence of soil surface component patterns on the runoff response of the slopes was analysed. A soil surface components map was derived from a high resolution photo-mosaic obtained in the field by means of a digital camera. Rainfall simulation experimental data were used to characterise the hydrological behaviour of areas with a specific pattern of soil surface components by means of the parameters of the Horton equation. Plot runoff data were extrapolated at the hillslope scale based on the soil surface component maps and their hydrological characterisation. The results show that in both slopes runoff generation is concentrated up- and downslope, with a water accepting area in the centre of both slopes disrupting the hydrological connectivity at the slope scale. This reinfiltration patch at the centre of the slope is related to the type of soil surface component and its spatial pattern. Herbaceous vegetation and ‘on top rock fragments’ increase the infiltration capacity of soils at the centre of the slope. In contrast, embedded rock fragments, rock outcrops, as well as crusted surfaces located in the upper and lower slopes favour runoff generation in these areas. In addition, a general pattern of water contribution areas downslope is apparent on both slopes. The south-facing slope shows a higher hydrological connectivity and more runoff. 55% of the surface of the south-facing slope produces runoff at the end of a 1 hour rainfall event and 17.3% of the surface is covered by a runoff depth between 0.5 and 1 mm. While on the north-facing slope only 38% of the surface produces runoff under the same conditions. Longitudinal connectivity of runoff is higher at the south-facing slope where more runoff-generating surfaces appear and where the vegetation pattern favours the connectivity of bare areas.  相似文献   

3.
Slope failures cause billions of dollars of damage annually and put human lives at risk. This study employed field measurements and observations to provide the framework for laboratory simulations to investigate the effects of environmental characteristics on slope stability in the highly fractured bedrock region of the Boston Mountains, northwest Arkansas. Field measurements, to determine characteristics and possible controls of 10 shallow slope failures along an interstate highway, revealed that slope failures occurred within a relatively narrow range of slope angles (17–36°) and in loamy soils. Based on field observations, flume experiments were conducted to investigate the relationships between soil texture, slope angle, bedrock fractures, soil compaction, and slope instability. Time to failure differed (p < 0.05) among treatment combinations. Generally, slopes composed of loam were more stable than slopes composed of sand. Time to failure decreased more on slopes of 15–20° than on slopes of 20–25°. Flume slopes with sod cover never failed. This study provided a methodology for using field analyses of slope failures to guide laboratory experiments and demonstrated that complex interactions among environmental factors work to stabilize or compromise steep (>20°) slopes.  相似文献   

4.
Nikolaus J. Kuhn  Aaron Yair   《Geomorphology》2004,57(3-4):183-200
High rill density may be regarded as indicative of frequent and integrated runoff along a drainage network. However, field observations of soil development and rill geometry in small, first-order catchments (0.1 to 1 ha) of the Zin Valley Badlands, northern Negev, Israel, suggest a pattern of partial area contribution and frequent flow discontinuities along hillslopes and channels. Changing soil properties, associated with an increase of slope angle and slope length, appear to be responsible for high infiltration on the slopes, leading to nonuniform runoff generation within small drainage basins. Runoff observation, sprinkling tests, and soil analysis along ridges and sideslopes were carried out to test this hypothesis. The results confirmed that infiltration capacity on the sideslopes is significantly higher than on the ridges. Under current rainfall conditions, only extreme rainfall intensities are sufficient to generate runoff along entire slopes. The discontinuous nature of most runoff events causes erosion on ridges and deposition on slopes, which enhances soil development on the valley sideslopes, creating a positive feedback on infiltration rate and depth. This demonstrates that the links between within-storm rainfall conditions and spatial distribution of soil characteristics have to be incorporated into our understanding of landscape development in badlands.  相似文献   

5.
黄土地区梁峁坡的坡地特征与土壤侵蚀   总被引:14,自引:0,他引:14  
曹银真 《地理研究》1983,2(3):19-29
本文指出黄土地区梁峁坡的坡角主要分布在14°—28°之间,特征坡角的上限相当于黄土的内摩擦角,下限相当于内摩擦角的0.45倍。黄土地区的坡地形态可分为直形坡、凸形坡、凹形坡、复合形坡和阶梯形坡等五种类型。土壤侵蚀主要受坡地形态和坡度的控制,侵蚀量随着坡度的增大而增加,坡度大于15°时,侵蚀量突增,坡面冲刷加剧,26°达极大值,此后冲刷作用减弱,重力侵蚀逐渐显著,至45°侵蚀达到最大值,以后又趋减弱。  相似文献   

6.
《自然地理学》2013,34(6):561-573
The semi-arid forest-steppe ecotone in China is characterized by a patchy pattern of forest and steppe, with forest patches restricted to shady slopes. To address the effect of topography on forest distribution through regulation of available water, we calculated evaporation as a function of slope aspect and inclination. Field vegetation records from randomly selected sites with minimum slope inclination were used to test the simulated forest distribution. Seasonal and diurnal changes of surface soil temperature and moisture of shady and sunny slopes were recorded. Soil water content was measured during two growing seasons on both sunny and shady slopes with the same forest type at three sites located along the mean annual precipitation (MAP) gradient. Evaporation decreases with slope inclination on shady slopes, but increases with inclination on sunny slopes. The shady slope received 35% of the annual direct solar radiation received by the sunny slope when the slope inclination was 25°, and the contrast in annual direct solar radiation between the shady and sunny slopes further widens as slope inclination increases. Steeper shady slopes can support forests in dryer climates, with log-linear regression revealing a minimum slope inclination for forest distribution along the MAP gradient. The simulated minimum slope inclination for forest growth was larger than the observed minimum inclination, and the difference was greater in wetter conditions. A larger forest area fraction was considered to lead to a reduction in soil temperature and evaporation, as verified by soil temperature and moisture records and soil water content measurements. The slope-specific forest distribution in the semi-arid region of China can be explained by a topography-controlled soil water supply. Lower evaporation, resulting from lower direct solar radiation on shady slopes, allows shady slopes to retain a water supply sufficient for sustaining forests, and the existence of forests on shady slopes further reduces evaporation. Different tree species coexist at the xeric timberline due to regulation by slope inclination and aspect.  相似文献   

7.
Soil formation depends upon several factors such as parent material, soil biota, topography and climate. It is difficult to use conventional soil survey methods for mapping the depth of soil in complex mountainous terrains. In this context, the present study aimed to estimate the soil depth for a large area (330.35 km2) using different geo-environmental factors through a soil-landscape regression kriging (RK) model in the Darjeeling Himalayas. RK with seven predictor variables such as elevation, slope, aspect, general curvature, topographic wetness index, distance from the streams and land use, was used to estimate the soil depth. While topographic parameters were derived from an 8-m resolution digital elevation model, the ortho-rectified Cartosat-1 satellite image was used to prepare the land use map. Soil depth measured at 148 sites within the study area was used to calibrate and validate the RK model. The result showed that the RK model with the seven predictors could explain 67% spatial variability of soil depth with a prediction variance between 0.23 and 0.42 m at the test site. In the regression analysis, land use (0.133) and slope (–0.016) were identified as significant determinants of soil depth. The prediction map showed higher soil depth in south-facing slopes and near valleys in comparison to other areas. Mean, mean absolute and root mean-square errors were used to access the reliability of the prediction, which indicated a goodness-of-fit of the RK model.  相似文献   

8.
Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at forested sites in the Andes Mountains (Ecuador), the southern Appalachian Mountains (USA), and the Luquillo Mountains (Puerto Rico). Using a portable rainfall simulator–infiltrometer (all three areas), and a single ring infiltrometer (Andes), we determined infiltration rates, even on steep slopes. Based on these results, we examine the spatial variability of infiltration, the relationship of rainfall runoff and infiltration to landscape position, the influence of vegetation on infiltration rates on slopes, and the implications of this research for better understanding erosional processes and landscape change.Infiltration rates ranged from 6 to 206 mm/h on lower slopes of the Andes, 16 to 117 mm/h in the southern Appalachians, and 0 to 106 mm/h in the Luquillo Mountains. These rates exceed those of most natural rain events, confirming that surface runoff is rare in montane forests with deep soil/regolith mantles. On well-drained forested slopes and ridges, apparent steady-state infiltration may be controlled by the near-surface downslope movement of infiltrated water rather than by characteristics of the full vertical soil profile. With only two exceptions, the local variability of infiltration rates at the scale of 10° m overpowered other expected spatial relationships between infiltration, vegetation type, slope position, and soil factors. One exception was the significant difference between infiltration rates on alluvial versus upland soils in the Andean study area. The other exception was the significant difference between infiltration rates in topographic coves compared to other slope positions in the tabonuco forest of one watershed in the Luquillo Mountains. Our research provides additional evidence of the ability of forests and forest soils to preserve geomorphic features from denudation by surface erosion, documents the importance of subsurface flow in mountain forests, and supports the need for caution in extrapolating infiltration rates.  相似文献   

9.
Past evaluation of high altitude slope development in Lesotho, southern Africa, is largely based on hypothetical or macro-scale geomorphic approaches. Consequently, the information pertaining to high altitude southern African Quaternary slope environments has remained rather rudimentary. The present study describes the morphology and discusses the likely palaeogeomorphic processes of blockstreams and debris deposits on the Popple Peak and Njesuthi-Mafadi south-facing-slopes in the Drakensberg. The geomorphic evidence provides much needed information to help improve the understanding of south-facing slope processes during past colder periods. A model for high altitude Drakensberg south facing slopes is presented and used to challenge and expand on recent models and ideas on southern African valley asymmetry. It is found that solifluction and debris flows/avalanches were operative on south-facing slopes during past cold periods and thereby contributed to past slope development at some high altitude sites in Lesotho. However, the geomorphological observations do not support the valley asymmetry hypothesis and it is suggested that greater caution be exercised in valley-form interpretations, particularly where geomorphological ground-truthing has been absent.  相似文献   

10.
On a local scale, topography influences microclimate, vegetation structure and the morpho-physiological attributes of plants. We studied the effects of microclimatic differences between NE- and SW-facing slopes on the water relations and hydraulic properties of two dominant shrubs of the Patagonian steppe in Argentina (Retanilla patagonica and Colliguaja integerrima). The NE-facing slope had higher irradiance and air saturation deficits and lower soil water availability and wind speed than the SW-facing slope. Predawn and midday ΨL and osmotic potentials were significantly lower in shrubs on the NE-facing slope. Osmotic adjustment and more elastic cell walls helped the plants to cope with a more xeric environment on NE-facing slope. Higher water deficits on NE-facing slope were partially compensated by a higher leaf and stem water storage. While stem hydraulic efficiency did not vary between slopes, leaf hydraulic conductance was between 40% and 300% higher on the NE-facing slope. Changes observed in leaf size and in SLA were consistent with responses to mechanical forces of wind (smaller and scleromorphic leaves on SW-facing slope). Morpho-physiological adjustments observed at a short spatial scale allow maintenance of midday ΨL above the turgor loss point and demonstrate that leaves are more responsive to microclimatic selective pressures than stems.  相似文献   

11.
Rates of soil creep were studied periodically over a 30-year period in southeastern Utah on Mancos Shale badland slopes averaging 35 degrees. More intensive studies were carried out over a 10-year period on slopes averaging 40 degrees. On the 35 degree slope the average rate of movement was 2.71 cm yr−1.On the 40 degree slopes, rates varied from 3.14 to 5.94 cm yr−1.
Individual rates of movement varied widely, but average movement of a given line was consistent. No statistical differences in rates of movement were found between north- and south-facing slopes.
About two-thirds of the total movement occurred during the winter/spring period; episodes of rapid movement coincided with years in which storms deposited at least 0.6 cm of precipitation per day for at least two consecutive days. Downslope rotation of nails indicates that creep involves only the top few centimeters of soil.  相似文献   

12.
为进一步研究不同草本植物和边坡坡面形态对坡面产流产沙的影响,以西宁盆地毛鸡湾流域长岭绿化区作为试验区,设计了直形和阶梯形2种坡形,选取3种优势草本老芒麦(Elymus sibiricus Linn.)、垂穗披碱草(Elymus nutans Griseb.)和细茎冰草(Agropyron trachycaulum Linn.Gaertn.)作为试验供试种,通过人工模拟降雨试验,探讨了种植不同草本和坡形条件下,边坡坡面的产流、产沙和入渗特征。结果表明,在直形边坡中,裸坡坡面的产流时间小于种植草本植物坡面,且垂穗披碱草坡面和老芒麦坡面的形成产流时间相对较长,为4 min。与直形边坡相比,垂穗披碱草阶梯形坡面产流时间相对最长,为8 min;在直形边坡中,垂穗披碱草坡面和老芒麦坡面累积径流量、累积产沙量和径流系数相对最小,分别为51.42 L/min、160 g、14.98%,51.25 L/min、210 g、14.93%,细茎冰草坡面的累积径流量、累积产沙量和径流系数分别为96.97 L/min, 700 g, 28.25%;垂穗披碱草坡面和老芒麦坡面稳定入渗速率相对最大,其值为0.38~...  相似文献   

13.
极端干旱环境下的胡杨细根分布与土壤特征   总被引:5,自引:2,他引:3  
以塔里木河下游的中龄胡杨为研究对象,采用开挖剖面分层取样法,对胡杨细根(D≤2 mm)的空间分布以及与土壤特征因子之间的关系进行了分析。结果表明:①在长期干旱胁迫下,胡杨细根(D≤2 mm)根长密度(RLD)、根表面积密度(SAD)从表层到地下100 cm土层内,呈逐渐增加趋势,100~140 cm土层内表现为减少的波动分布趋势;细根RLD、SAD集中分布在60~120 cm土层内,约占0~140 cm土层总细根RLD和SAD的74%以上;在水平方向上,距树干0.75~2.5 m范围内,呈逐渐减少趋势,而在3.5~5.5 m范围内呈波动的增加趋势。②胡杨细根(D≤2 mm)RLD和SAD与土壤总盐、土壤有效养分含量之间呈显著负相关关系,适合乘幂模型,与土壤含水率之间呈一定程度的正相关关系,适合三次曲线模型。  相似文献   

14.
Footpath erosion is a matter of concern in the English Lake District, where recreational pressure on the fells is increasing. Erosion may be expected to result from the interaction of recreational geomorphological and climatic forces with the inherent resistance of vegetation and soil conditions. A broad-scale survey of 485 sites on 25 paths in the Lake District demonstrated the importance of specific variables for footpath erosion. Erosion (measured as path width, extent of bare ground or maximum depth) is found to increase with the square root of the slope angle and the square of the recreation pressure. These two variables also interact with each other, while other factors, such as vegetation type, soil type and topographic position, also influence rate of erosion. A threshold slope angle of 15–17° seems to separate actively eroding from stable slopes.  相似文献   

15.
This study investigates the impact of local convergence and divergence of air on turbulent transfer at a mid-latitude alpine fellfield site. Pairs of simultaneous wind and temperature profile measurements on a knoll crest and primary slope (aspect =0, 90, 180, and 270°) are analyzed assuming the logarithmic law. Friction velocity (u*) and roughness length (z0) vary systematically from windward to leeward slopes. General relationships of the form u* = f(u) are derived for conditions of westerly flow with wind speed (u) ranging between 2 and 24 m s-1. Coefficients in the empirical equations for estimating u* at sites on the knoll from wind speed measurements on the crest vary in a consistent manner with respect to local convergence and divergence. Large differences in z0 values between windward and leeward sites correspond with contrasts in surface temperature.  相似文献   

16.
Although the question of whether tilted trees indicate hillslope instability has been discussed by previous authors, few systematic measurements have been made. In Giles County, Virginia, tree-tilt measurements were made on 30 trees at each of seven sites. Sites included topographic noses, side slopes, boulder streams, and talus, with slope angles ranging from 6° to 39°. Trees on steep boulder streams are tilted more than those on noses or side slopes with comparable slope angles, but this difference could result from a difference in tree types. On one very steep (39°) fine-grained talus, however, tilt of all types of trees is great, the average tilt from the vertical being 29.1°. Tilt at this location probably reflects slope instability, although evidence suggests that this instability is not simple creep. In a second study, calculations were made of the importance of tree fall for hillslope erosion. The volumes of all tree-fall pits within a 4-hectare area on a steep shale nose were measured, and, using assumptions of previous workers, an erosion rate of 13 mm/1000 yr was calculated. This value is an order of magnitude lower than one value reported previously.  相似文献   

17.
祁连山森林草原带坡面尺度土壤有机碳分布   总被引:1,自引:1,他引:0  
以祁连山森林草原带3个山头为研究对象,在坡面尺度上分析了坡向和坡位对不同深度(0~10、10~20、20~40、40~60 cm)土壤有机碳浓度和密度的影响。结果表明:坡肩、背坡及坡脚各层有机碳浓度变化趋势为北坡>西坡>西南坡>南坡,不同沟谷土壤有机碳浓度差异不显著。有机碳浓度的坡位分布因坡向而异,在南坡、西南坡及西坡,沟谷各层有机碳浓度均显著高于其他坡位(P<0.05),坡脚高于坡肩与背坡;在北坡,坡肩、背坡及坡脚有机碳浓度无显著差异,沟谷20~40、40~60 cm土层有机碳浓度显著低于坡肩(P<0.05)。不同层次土壤有机碳密度的变化特征与有机碳浓度相似,0~60 cm有机碳密度最大值出现在北坡(33.64±0.91 kg·m-2)及沟谷(34.30±2.55 kg·m-2),约为南坡的3.20倍,西南坡的2.87倍、西坡的1.90倍。  相似文献   

18.
西安刘家坡剖面第1第5层古土壤研究*   总被引:22,自引:1,他引:21  
赵景波 《地理研究》1991,10(4):51-58
根据对土壤结构、CaCO3淀积深度、化学成分和孢粉资料的分析,本文得出:西安刘家坡剖面第1层古土壤为棕壤,发育在年平均降水景800mm以上的温暖条件下,第5层古土壤为黄棕壤,发育在年平均降水量850mm以上的北亚热带条件下。  相似文献   

19.
东北黑土区土壤剖面地温和水分变化规律   总被引:3,自引:1,他引:2  
东北黑土区土壤侵蚀的结果使土壤在坡面上发生再分配,土壤腐殖质层厚度的空间变异增大。腐殖质层厚度的变化又引起地温和土壤水分等土壤物理性质的变化,地温和水分是影响和反映冻融侵蚀作用的重要因子,也是影响地表和土壤剖面物质运移的重要因素。本文通过实测不同厚度腐殖质层剖面的地温和土壤水分,分析了地温和水分随时间和土壤剖面深度的变化规律。结果显示腐殖质层厚度对土壤温度和含水量有显著影响,腐殖质层较厚的剖面解冻速度比薄层黑土区要慢,不同深度土层温度到达0℃的日期也不相同,腐殖质层较厚的剖面冻结时间要滞后1周左右。同时,腐殖质层较厚的黑土区土壤含水量明显大于薄层黑土区,土壤水分运移的深度范围也大。  相似文献   

20.
Spatio-temporal patterns of flowering in forest ecosystems are hard to quantify and monitor. The objectives of this study were to investigate spatio-temporal patterns(e.g. soilssimple slope classesslope aspectand flow accumulation) of flowering around Lake IssaqueenaSouth Carolina(SCUSA) using plant-flowering database collected with GPS- enabled camera(stored in Picasa 3 web albums and project website) on a monthly basis in 2012 and Li DAR-based topography. Pacolet fine sandy loam had the most flowering plantsfollowed by Madison sandy loamboth dominant soil types around the lake. Most flowering plants were on moderately steep(17%–30%) and gently sloping(4%–8%) slopes. Most flowering plants were on west(247.5°–292.5°)southwest(202.5°–247.5°)and northwest(292.5°–337.5°) aspects. Most flowering plants were associated with minimum and maximum flows within the landscape. Chi-square tests indicated differences in the distributions of the proportions of flowering plants were significant by soil typeslopeaspectand flow accumulation for each month(February-November)for all months(overall)and across months. The Chi-square test on area-normalized data indicated significant differences for all months and individual differences by each month with some months not statistically significant. Cluster analysis on flowering counts for nine plant families with the most flowering counts indicated no unique separation by clusterbut implied that the majority of these families were flowering on strongly sloping(9%–16%) slopeson southwest(202.5°–247.5°) aspectsand low flow accumulation(0–200). Presented methodology can serve as a template for future efforts to quantify spatio-temporal patterns of flowering and other phenological events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号