首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
This paper provides data on the landforms, soils, and sediments within a unique northern Michigan landscape known as the Grayling Fingers, and evaluates these data to develop various scenarios for the geomorphic development of this region. Composed of several large, flat-topped ridges that trend N–S, the physiography of the “Fingers” resembles a hand. Previously interpreted as “remnant moraines”, the Grayling Fingers are actually a Pleistocene constructional landscape that was later deeply incised by glacial meltwater. The sediments that comprise the Fingers form a generally planar assemblage, with thick (>100 m), sandy glacial outwash forming the lowest unit. Above the outwash are several meters of till that is remarkably similar in texture to the outwash below; thus, the region is best described as an incised ground moraine. Finally, a thin silty “cap” is preserved on the flattest, most stable uplands. This sediment package and the physiography of the Fingers are suggestive of geomorphic processes not previously envisioned for Michigan.Although precise dates are lacking, we nonetheless present possible sequences of geomorphic/sedimentologic processes for the Fingers. This area was probably a topographic high prior to the advance of marine isotope stage 2 (Woodfordian) ice. Much of the glacial outwash in the Fingers is probably associated with a stagnant, early Woodfordian ice margin, implying that this interlobate area remained ice-free and ice-marginal for long periods during stage 2. Woodfordian ice eventually covered the region and deposited 5–10 m of sandy basal till over the proglacial outwash plain. Small stream valleys on the outwash surface were palimpsested onto the till surface as the ice retreated, as kettle chains and as dry, upland valleys. The larger of these valleys were so deeply incised by meltwater that they formed the large, through-flowing Finger valleys. The silt cap that occupies stable uplands was probably imported into the region, while still glaciated. The Fingers region, a col on the ice surface, could have acted as a collection basin for silts brought in as loess or in superglacial meltwater. This sediment was let down as the ice melted and preserved only on certain geomorphically stable and fluvially isolated locations. This study demonstrates that the impact of Woodfordian ice in this region was mostly erosional, and suggests that Mississippi Valley loess may have indirectly impacted this region.  相似文献   

2.
Drumlins are enigmatic subglacial landforms that have been interpreted to form by a number of processes, including incremental accumulation of till, erosion of previously deposited sediment, catastrophic meltwater floods, and sediment deformation. However, relatively little is known about the controls on drumlin formation, such as spatially variable glacial processes or substrate characteristics, and how these controls may be identified from variations in drumlin morphology within a single drumlin field. This paper explores a computational method that allows identification of drumlins and extraction of their morphological characteristics from existing topographic digital data for a portion of the Peterborough drumlin field in Ontario, Canada. Spatial and non‐spatial analysis of the form and distribution of drumlins across the study area identifies drumlin characteristics such as size, elongation ratio, symmetry and long axis orientation and shows that drumlins are not randomly distributed across the region and their form characteristics have distinct regional trends. Kernel density analysis is used to identify the regional trends in drumlin characteristics. Factors that appear to influence the form and distribution of drumlins in the study area include sediment thickness, length of time beneath the ice, ice velocity and direction of ice movement. The distribution of particularly well developed asymmetric and elongate drumlins coincides with the location of a broad bedrock low and is interpreted to identify the former location of a fast‐flowing ice stream.  相似文献   

3.
The extent of Late Quaternary glaciation in the northwest Nelson region of New Zealand has traditionally been regarded as minor, with small‐scale valley glaciation in confined upland reaches. New geomorphological evidence, including moraines, kame terraces, till‐mantled bedrock and outwash terraces, indicate that greatly expanded valley glaciers flowed into the lowland valley system at the mouths of the Cobb‐Takaka and Anatoki drainages. The timing for this ice advance into lowland valleys is constrained by lowland landform characteristics and a single cosmogenic exposure age, suggesting Late and Middle Pleistocene ice expansion, respectively. Evidence for expanded upland ice on the Mount Arthur Tableland and adjacent areas includes trimlines, boulder trains and roche moutonées. Two cosmogenic exposure ages on upland bedrock surfaces suggest that major ice expansion occurred during MIS 3 and/or 4, while previously published exposure dating from Cobb Valley suggests large MIS 2 ice expansion as well. The inferred, markedly expanded ice left little or no clear geomorphic imprint on the Cobb–Takaka Gorge, and required temperature depression of 4–6°C with near‐modern precipitation levels.  相似文献   

4.
Randall J. Schaetzl   《Geomorphology》2008,102(3-4):287-296
This paper presents textural, geochemical, mineralogical, soils, and geomorphic data on the sediments of the Grayling Fingers region of northern Lower Michigan. The Fingers are mainly comprised of glaciofluvial sediment, capped by sandy till. The focus of this research is a thin silty cap that overlies the till and outwash; data presented here suggest that it is local-source loess, derived from the Port Huron outwash plain and its down-river extension, the Mainstee River valley. The silt is geochemically and texturally unlike the glacial sediments that underlie it and is located only on the flattest parts of the Finger uplands and in the bottoms of upland, dry kettles. On sloping sites, the silty cap is absent. The silt was probably deposited on the Fingers during the Port Huron meltwater event; a loess deposit roughly 90 km down the Manistee River valley has a comparable origin. Data suggest that the loess was only able to persist on upland surfaces that were either closed depressions (currently, dry kettles) or flat because of erosion during and after loess deposition. Deep, low-order tributary gullies (almost ubiquitous on Finger sideslopes) could only have formed by runoff, and soil data from them confirm that the end of gully formation (and hence, the end of runoff) was contemporaneous with the stabilization of the outwash surfaces in the lowlands. Therefore, runoff from the Finger uplands during the loess depositional event is the likely reason for the absence of loess at sites in the Fingers. Because of the sandy nature and high permeability of the Fingers' sediments, runoff on this scale could only have occurred under frozen ground conditions. Frozen ground and windy conditions in the Fingers at the time of the Port Huron advance is likely because the area would have been surrounded by ice on roughly three sides. This research (1) shows that outwash plains and meltwater streams of only medium size can be significant loess sources and (2) is the first to present evidence for frozen ground conditions in this part of the upper Midwest.  相似文献   

5.
A modified ice-tongue model suggests that subglacial, saturated, fine sediment derived from local bedrock sources reduced basal shear strength and lowered the ice surface gradient sufficiently to produce ice tongues 20 km long in all major north-south oriented valleys on the northeastern Appalachian Plateau, while adjacent uplands were virtually ice-free. Associated environments of deposition produced two different landform assemblages, one representative of active ice retreat in through valleys and another that depicts widespread stagnation in non-through valleys.Pebble count data indicate that sediment transport by glacial flow was important to the moraine-building process, but the occurrence of isolated kame fields suggests an origin linked to inwash from major upland tributaries.All coarse valley fill (sand and gravel) is derived from two basic sources: (1) re-worked upland drift, and (2) resedimented debris from upvalley sources, including the glacier. Processes common to through valleys favor upvalley sources and active ice landforms, whereas inwash and stagnant ice sedimentation are typical of non-through valleys. Although extensive ice-free uplands served as a source of some fine sediment, a comparison of sediment volume to upland area indicates that inwash processes could not have yielded sufficient fines to account for the volume of fine sand and silt found within the valley fill. Meltwater flow via subglacial tunnels discharged saturated, fine sediment directly into proglacial lakes and served as the major source and transport mechanism for most sand and silt.The Laurentide deglacial environment throughout the upper Susquehanna region was characterized by proglacial lakes, detached remnant ice masses, dead-ice sedimentation and collapsed ice tongues. Stagnation and downwasting in ice-contact lakes peripheral to the eastern Bering Piedmont Glacier, Alaska, serve to depict analog conditions for retreat in central New York.  相似文献   

6.
Late Quaternary Lakes in the McMurdo Sound Region of Antarctica   总被引:2,自引:0,他引:2  
Lake levels within the enclosed drainage basins of the Dry Valleys adjacent to McMurdo Sound have fluctuated widely during the Late Quaternary due to (a) local climate change and the consequent variation in the evaporation–precipitation regime, and (b) glacial fluctuations, resulting in changes in the catchment and meltwater drainage areas of the glaciers and, in some cases, in the volumes of the available lake basins. Three types of lakes can be distinguished on the basis of their water source: (1) lakes receiving the bulk of their water from melting of local alpine glaciers; (2) proglacial lakes associated with outlet glaciers from the East Antarctic Ice Sheet; (3) proglacial lakes associated with the marine oxygen-isotope stage 2 Ross Sea ice sheet and its precursors. The Dry Valleys contain an exceptionally long lacustrine record, extending back at least 300,000 years. Lacustrinesedimentation is cyclical, occurring over periods of about 100,000 years. During the last such cycle, relatively small lakes, both adjacent to East Antarctic outlet glaciers and fed by meltwater from alpine glaciers, existed during stage 5. However, these local lakes gave way to large proglacial lakes adjacent to the Ross Sea ice sheet in stage 2. The same relationship apparently occurred during the previous 100,000-year cycle. Dating of lacustrine sediments suggests that lakes proglacial to the Ross Sea ice sheet have existed during episodes of sea-level lowering during global glaciations. Lakes proglacial to outlet glaciers from the East Antarctic Ice Sheet have formed coincident with episodes of high eustatic sea level during interglacial periods.  相似文献   

7.
Widespread till and moraines record excursions of middle-Pleistocene ice that flowed up-slope into several watersheds of the Valley and Ridge Province along the West Branch of the Susquehanna River. A unique landform assemblage was created by ice-damming and jökulhlaups emanating from high gradient mountain watersheds. This combination of topography formed by multiple eastward-plunging anticlinal ridges, and the upvalley advance of glaciers resulted in an ideal geomorphic condition for the formation of temporary ice-dammed lakes. Extensive low gradient (1°–2° slope) gravel surfaces dominate the mountain front geomorphology in this region and defy simple explanation. The geomorphic circumstances that occurred in tributaries to the West Branch Susquehanna River during middle Pleistocene glaciation are extremely rare and may be unique in the world. Failure of ice dams released sediment-rich water from lakes, entraining cobbles and boulders, and depositing them in elongated debris fans extending up to 9 km downstream from their mountain-front breakout points. Poorly developed imbrication is rare, but occasionally present in matrix-supported sediments resembling debris flow deposits. Clast weathering and soils are consistent with a middle Pleistocene age for the most recent flows, circa the 880-ka paleomagnetic date for glacial lake sediments north of the region on the West Branch Susquehanna River. Post-glacial stream incision has focused along the margins of fan surfaces, resulting in topographic inversion, leaving bouldery jökulhlaup surfaces up to 15 m above Holocene channels. Because of their coarse nature and high water tables, jökulhlaup surfaces are generally forested in contrast to agricultural land use in the valleys and, thus, are readily apparent from orbital imagery.  相似文献   

8.
《自然地理学》2013,34(2):170-182
The enigmatic DeKalb mounds in north-central Illinois, United States, are oval, inactive hillocks of Wisconsinan age. They have heights up to 5 m, lengths up to 1 km, and are composed either of till and lacustrine sediment with a thin cap of loess, or entirely of outwash. They are underlain by one till member within a large depression that is flanked by higher, elevated, morainic till members. Different origins have been proposed for the DeKalb mound field but the only previous in-depth study identified them as pingo remnants, presumably due to the degradation of significant ground ice and permafrost. However, the investigators who reported this viewed their own hypothesis as problematical. These problems can be resolved by correlating the relict Illinois landforms to relict glacial landforms that show similar morphologies and field relationships in Saskatchewan, Canada, and North Dakota, United States. In this study, the DeKalb mounds are presumed to have developed from an intricate set of glacial dead-ice and mass movement processes. This reinterpretation reflects a range of either discontinuous permafrost or negative permafrost within the paleoenvironment.  相似文献   

9.
Bowser Lake, a fiord lake in the northern Coast Mountains of British Columbia, contains a thick Holocene fill consisting mainly of silt and clay varves. These sediments were carried into the lake by proglacial Bowser River which drains a high-energy, heavily glacierized basin. Sedimentation in the lake is controlled by seasonal snow and ice melt, by autumn rainstorms, and by rare, but very large jökulhlaups from glacier-dammed lakes in the upper Bowser River basin which complicate environmental inferences from the sedimentary record. Sediment is dispersed through the deep western part of the lake by energetic turbidity currents. The turbidity currents apparently do not overtop a sill that separates the western basin from much shallower areas to the east. Large amounts of silt and clay are deposited from suspension in the eastern part of the lake, but sediment accumulation rates there are much lower than to the west. Several strong acoustic reflectors punctuate the varved fill in the western basin; these may be thick or relatively coarse beds deposited during jökulhlaups or exceptionally large storms. The contemporary sediment yield to Bowser Lake, estimated from sediments in the lake, is about 360 t km-2a-1. This is a relatively high value, but it is less than yields insome other, similar montane basins with extensive snow and ice cover.The most likely explanation for the difference is that large amounts of sediment have been, and continue to be, stored on the Bowser delta andin small proglacial lakes.  相似文献   

10.
Geomorphic, lithologhic, and stratigraphic field studies as well as pollen data and mineralogical study have been used to propose Pliocene and Pleistocene paleogeographic reconstructions of the El’gygytgyn meteorite crater area. The moment of impact is recorded above the early Pliocene hill denudation plain as a “chaotic horizon” consisting of fragments of impactite rocks. This chaotic horizon lies between layers of late Pliocene alluvial sediments. During the second half of the late Pliocene, the region was tectonically active, when the Anadyr lowland was uplifted causing alluvial sediments to accumulate in the basins to the south of the crater. Regional climatic cooling, which supported the spread of tundra and the formation of permafrost is characteristically to late Pliocene. The 35–40 m high terrace that roughly follows the 530 m contour interval along the Enmyvaam River formed during the middle Pleistocene. This terrace represents the maximum lake level. Erosion and incision of the upper Enmyvaam River increased due to another wave of uplift. Additionally, El’gygytgyn Lake discharge increased causing lake level to begin to drop in the Middle Pleistocene. Cooling continued, which led to the development of herb-dominated arctic tundra. middle and late Pleistocene glaciations did not reach the El’gygytgyn lake region. The 9–11 m high lacustrine terrace was formed around the lake during the late Pleistocene and the 2–3 m high lacustrine terrace formed later during the Holocene. During the last 5000 years, the lake level has continued to drop as the modern coastline developed. This is the third in a series of eleven papers published in this special issue dedicated to initial studies of El’gygytgyn Crater Lake and its catchment in NE Russia. Julie Brigham-Grette, Martin Melles, Pavel Minyuk were guest editors of this special issue.  相似文献   

11.
Mapping and laboratory analysis of the sediment—landform associations in the proglacial area of polythermal Storglaciären, Tarfala, northern Sweden, reveal six distinct lithofacies. Sandy gravel, silty gravel, massive sand and silty sand are interpreted as glaciofluvial in origin. A variable, pervasively deformed to massive clast‐rich sandy diamicton is interpreted as the product of an actively deforming subglacial till layer. Massive block gravels, comprising two distinctive moraine ridges, reflect supraglacial sedimentation and ice‐marginal and subglacial reworking of heterogeneous proglacial sediments during the Little Ice Age and an earlier more extensive advance. Visual estimation of the relative abundance of these lithofacies suggests that the sandy gravel lithofacies is of the most volumetric importance, followed by the diamicton and block gravels. Sedimentological analysis suggests that the role of a deforming basal till layer has been the dominant factor controlling glacier flow throughout the Little Ice Age, punctuated by shorter (warmer and wetter climatic) periods where high water pressures may have played a more important role. These results contribute to the database that facilitates discrimination of past glacier thermal regimes and dynamics in areas that are no longer glacierized, as well as older glaciations in the geological record.  相似文献   

12.
Glacial Lake Wisconsin was a large proglacial lake that formed along the southern margin of the Laurentide Ice Sheet during the Wisconsin glaciation. It was formed when ice of the Green Bay Lobe came into contact with the Baraboo Hills in southwestern Wisconsin and blocked the south-flowing Wisconsin River. During early glacial recession, the ice dam failed catastrophically and the lake drained in about a week. Despite early recognition of the former lake and the likelihood that it failed catastrophically, outflow rates during the failure have not been previously evaluated. Estimates based on step-backwater modeling indicate that peak discharge was between 3.6 and 5.3 × 104 m3/s in the lower Wisconsin River. As an alternate method, we used a previously derived empirical relationship between lake volume and peak discharge for dam-break events. From a digital elevation model altered to incorporate isostatic depression, we estimated the lake volume to be 87 km3 just prior to dam breach, suggesting that the flooding magnitude was as high as 1.5 × 105 m3/s at the outlet. Adjusting these results for downstream flood wave attenuation gives a discharge of around 4.4 × 104 m3/s in the lower reach, which closely matches the results of the step-backwater modeling. These estimates of discharge from the catastrophic failure of ice-marginal lakes improve our understanding of the processes that have produced the morphology and behavior of present-day upper Midwest river systems.  相似文献   

13.
The most well known sub‐glacial lake is probably Grímsvötn under Vatnajökul, Iceland, from where jökulhlaups regularly burst forth. It is created by thermal melting under the ice cap. The Antarctic Lake Vostok, on the other hand, is considered to be located over a region with normal geothermal heat transfer, where it can exist because the ice is so thick that its base is at the pressure melting point. This makes it a candidate for testing the captured ice shelf (CIS) hypothesis, which states that the motion of a totally confined ice shelf creates a hydrostatic seal in the form of an ice rim over the threshold. The CIS hypothesis may offer a source of water for the controversial Laurentian jökulhlaups inferred from field data, implicated in dramatic climatic changes. Here I show that Lake Vostok agrees with the hypothesis, and that it may be on the verge of a jökulhlaup, which could create an ice stream and regional downdraw. The result also implies that the lake may well be of pre‐glacial origin, and that it may have experienced jökulhlaups during previous interglacials.  相似文献   

14.
Aprons of bouldery diamicton frequently have been observed in concave landscape positions in the Southern Blue Ridge. Because of their relatively flat topography, large aprons often are the focus of local economic activity. An environmentally sound development of these landforms can benefit from systematic pedological studies. The present research provides characterization data, and examines spatio-geomorphic variability, for some pedons that have developed on these debris aprons under a warm to temperate humid climate. This study also compares the pedons to those derived from nearby saprolite. Thirteen pedons, located variously on the foot slopes and the apices of the aprons, were studied in three sequences of multiple deposits. The pedons typically contain high amounts of rock fragments and have clay contents that are related to age. Most pedons have lithologic discontinuities. Some of these discontinuities result from the stacking of different deposits, whereas others represent internal variations within one deposit. Because of the heterogeneity in parent material, many soil characteristics do not possess systematic trends with depth. Depth to maximum clay mass and free-iron mass accumulation, however, systematically increase from foot to apex positions, and from topographically low to high deposits. deposits. [Key words: debris flows, soils, lithologic discontinuities, Blue Ridge.]  相似文献   

15.
Glacial striae and other ice movement indicators such as roche moutonées, glacial erratics, till fabric and glaciotectonic deformation have been used to reconstruct the Late Weichselian ice movements in the region of eastern Svalbard and the northern Barents Sea. The ice movement pattern may be divided into three main phases: (1) a maximum phase when ice flowed out of a centre east or southeast of Kong Karls Land. At this time the southern part of Spitsbergen was overrun by glacial ice from the Barents Sea; (2) the phase of deglaciation of the Barents Sea Ice Sheet, when an ice cap was centred between Kong Karls Land and Nordaustlandet. At the same time ice flowed southwards along Storfjorden; and (3) the last phase of the Late Weichselian glaciation in eastern Svalbard is represented by local ice caps on Spitsbergen, Nordaustlandet, Barentsoya and Edgeøya.
The reconstructed ice flow pattern during maximum glaciation is compatible with a centre of uplift in the northern Barents Sea as shown by isobase reconstructions and suggested by isostatic modelling.  相似文献   

16.
Hooker Glacier in the central Southern Alps of New Zealand has undergone significant downwasting and recession (~2.14 km) during the last two centuries. High retreat rates (51 m a?1 1986–2001, 43 m a?1 2001–2011) have produced a large (1.22 km2) proglacial lake. We present a retreat scenario for Hooker Glacier. A retreat scenario predicts that the glacier terminus will stabilise >3 km up‐valley of the current lake outlet after 2028 when ice velocity equals calving rate.  相似文献   

17.
The Bunger Hills in East Antarctica occupy a land area of approximately 400 km2. They have been exposed by Holocene retreat of the Antarctic ice sheet and its outlet glaciers. The accompanying sea level rise flooded the marine inlets that now separate the northern islands and peninsulas from the major part of the hills. During deglaciation the continental ice sheet margin retreated south‐eastwards with several temporary halts, during which ice‐dammed lakes were formed in some valleys. These lakes were maintained long enough to permit formation of beaches of sand and gravel, and for the erosion of shore platforms and low cliffs in bedrock. Around the western end of Fish Tail Bay impressive shoreline features 20 m above sea level define a former ice‐dammed lake that was 5.5 km long. A similar 7 km long former ice‐dammed lake was formed at Lake Dolgoe. The more extensive and deeper glacial lake is revealed by well‐developed and preserved shoreline features cut at 29 m which is 16 m above present lake level. In addition, several small ice‐dammed lakes existed temporarily near Lake Shchel and in the valley to the west. Lake Fish Tail existed more than 6,900 14C years ago and Lake Shchel probably more than 6,680 14C years ago. It is inferred that the shore platforms and beaches were formed by lake ice and wave action over considerable periods when the lakes were impounded by steep cold ice margins. There appears to have been a balance between meltwater input and evaporative loss from the lakes in the cold dry continental climate. There is no evidence for rapid lake level fluctuations, and there was very little input of clastic sediment. This resulted in poor development of deltaic and rhythmically laminated lake floor deposits. It is suggested that such deposits are more characteristic of ice‐dammed lakes formed in association with wet‐based temperate ice than those associated with dry‐based polar ice.  相似文献   

18.
Advance of part of the margin of the Greenland ice sheet across a proglacial moraine ridge between 1968 and 2002 caused progressive changes in moraine morphology, basal ice formation, debris release, ice‐marginal sediment storage, and sediment transfer to the distal proglacial zone. When the ice margin is behind the moraine, most of the sediment released from the glacier is stored close to the ice margin. As the margin advances across the moraine the potential for ice‐proximal sediment storage decreases and distal sediment flux is augmented by reactivation of moraine sediment. For six stages of advance associated with distinctive glacial and sedimentary processes we describe the ice margin, the debris‐rich basal ice, debris release from the glacier, sediment routing into the proglacial zone, and geomorphic processes on the moraine. The overtopping of a moraine ridge is a significant glaciological, geomorphological and sedimentological threshold in glacier advance, likely to cause a distinctive pulse in distal sediment accumulation rates that should be taken into account when glacial sediments are interpreted to reconstruct glacier fluctuations.  相似文献   

19.
Sediment cores recovered from Lago di Mezzano, central Italy, were petrographically and geochemically (dry densitity, total organic carbon) investigated. A floating chronology was established with sedimentation rates derived from varve thickness measurements, and this chronology was both supported and extrapolated with calibrated AMS-14C-datings. The profile has a length of 29.7 m and comprises a total of 34,000 years.Late Pleistocene sediments consist of minerogenic-organic mud with few benthic diatoms and an organic carbon content of 2%, thus suggesting a high allochthonous input. The onset of the Late Glacial at 14,580 cal BP is documented by a lithologic change to more organic-dominated sedimentation. The Younger Dryas cold event is recorded between 12,650 and 11,400 cal BP and exhibits higher dry densities and minerogenic input. These dates agree with records from other lacustrine archives in Europe and the Greenland ice cores.The early Holocene comprises a laminated organic diatom gyttja deposited at a time of climatic amelioration and increased primary productivity. The establishment of an anoxic hypolimnion enhanced the varve and organic matter preservation. Since 3700 varve years BP the sedimentation pattern has been strongly influenced by human impact, as documented by the increase in minerogenic sediments and turbidites as well as higher sedimention rates. The onset of this influence coincides with a Bronze Age settlement at the lake shore.  相似文献   

20.
Drumlin Formation Time: Evidence from Northern and Central Sweden   总被引:2,自引:0,他引:2  
Large‐scale drumlins occur abundantly throughout central and northern Sweden. Whereas many drumlins in the north are an integral part of a relict glacial landscape >100,000 years old, those to the south are generally interpreted as of last deglaciation age. Typically, the latter ones have not been overprinted by younger glacial landforms. Despite this apparent difference in formation history, drumlins in both regions have similar directional and morphological characteristics. A systematic analysis of >3000 drumlins in (i) areas within relict landscapes, (ii) areas with an ambiguous deglaciation age assignment, and (iii) areas within deglacial landscapes, indicates that these latter deglaciation drumlins differ clearly in both shape and size from drumlins in the other two types of landscapes. In addition, numerical modelling indicates that basal melting conditions, a prerequisite for drumlin formation, prevailed only for a very limited time over much of northern Sweden during the last deglaciation, but lasted for longer periods of time during earlier stages of the Weichselian. A reconnaissance radionuclide bedrock exposure date from the crag of a large drumlin in the relict landscape indicates that glacial erosion, and presumably drumlin formation, at this location predated Marine Isotope Stage 7. We conclude, therefore, that the large‐scale drumlins of central and northern Sweden did not form during the last deglaciation, or during any other specific ice flow event. Instead, we suggest that they were formed by successive phases of erosion and deposition by ice sheets of similar magnitude and configuration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号