首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Often extreme events, more than changes in mean conditions, have the greatest impact on the environment and human well-being. Here we examine changes in the occurrence of extremes in the timing of the annual formation and disappearance of lake ice in the Northern Hemisphere. Both changes in the mean condition and in variability around the mean condition can alter the probability of extreme events. Using long-term ice phenology data covering two periods 1855–6 to 2004–5 and 1905–6 to 2004–5 for a total of 75 lakes, we examined patterns in long-term trends and variability in the context of understanding the occurrence of extreme events. We also examined patterns in trends for a 30-year subset (1975–6 to 2004–5) of the 100-year data set. Trends for ice variables in the recent 30-year period were steeper than those in the 100- and 150-year periods, and trends in the 150-year period were steeper than in the 100-year period. Ranges of rates of change (days per decade) among time periods based on linear regression were 0.3−1.6 later for freeze, 0.5−1.9 earlier for breakup, and 0.7−4.3 shorter for duration. Mostly, standard deviation did not change, or it decreased in the 150-year and 100-year periods. During the recent 50-year period, standard deviation calculated in 10-year windows increased for all ice measures. For the 150-year and 100-year periods changes in the mean ice dates rather than changes in variability most strongly influenced the significant increases in the frequency of extreme lake ice events associated with warmer conditions and decreases in the frequency of extreme events associated with cooler conditions.  相似文献   

2.
Summary The present study is an analysis of the observed extreme temperature and precipitation trends over Yangtze from 1960 to 2002 on the basis of the daily data from 108 meteorological stations. The intention is to identify whether or not the frequency or intensity of extreme events has increased with climate warming over Yangtze River basin in the last 40 years. Both the Mann-Kendall (MK) trend test and simple linear regression were utilized to detect monotonic trends in annual and seasonal extremes. Trend tests reveal that the annual and seasonal mean maximum and minimum temperature trend is characterized by a positive trend and that the strongest trend is found in the winter mean minimum in the Yangtze. However, the observed significant trend on the upper Yangtze reaches is less than that found on the middle and lower Yangtze reaches and for the mean maximum is much less than that of the mean minimum. From the basin-wide point of view, significant increasing trends are observed in 1-day extreme temperature in summer and winter minimum, but there is no significant trend for 1-day maximum temperature. Moreover, the number of cold days ≤0 °C and ≤10 °C shows significant decrease, while the number of hot days (daily value ≥35 °C) shows only a minor decrease. The upward trends found in the winter minimum temperature in both the mean and the extreme value provide evidence of the warming-up of winter and of the weakening of temperature extremes in the Yangtze in last few decades. The monsoon climate implies that precipitation amount peaks in summer as does the occurrence of heavy rainfall events. While the trend test has revealed a significant trend in summer rainfall, no statistically significant change was observed in heavy rain intensity. The 1-day, 3-day and 7-day extremes show only a minor increase from a basin-wide point of view. However, a significant positive trend was found for the number of rainstorm days (daily rainfall ≥50 mm). The increase of rainstorm frequency, rather than intensity, on the middle and lower reaches contributes most to the positive trend in summer precipitation in the Yangtze.  相似文献   

3.
Spatial-temporal characteristics of temperature variation in China   总被引:5,自引:0,他引:5  
Summary Spatial-temporal characteristics of temperature variations were analyzed from China daily temperature based on 486 stations during the period 1960–2000. The method of hierarchical cluster analysis was used to divide the territory into sub-regional areas with a coherent evolution, both annually and seasonally. Areas numbering 7–9 are chosen to describe the regional features of air temperature in mainland China. All regions in mainland China experienced increasing trends of annual mean temperature. The trend of increasing temperature was about 0.2–0.3 °C/10 yr in northern China and less than 0.1 °C/10 yr in southern China. In the winter season, the increasing trend of temperature was about 0.5–0.7 °C/10 yr in northern China and about 0.2–0.3 °C/10 yr in southern China. The increasing trend of autumn temperature was mainly located in northwestern China and southwestern China including the Tibetan Plateau. In spring, the rising trend of temperature was concentrated in Northeast China and North China while there was a declining temperature trend of −0.13 °C/10 yr in the upper Yangtze River. In summer, the declining trend of temperature was only concentrated in the mid-low valley of the Yangtze and Yellow Rivers while surrounding this valley there were increasing trends in South China, Southwest China, Northwest China, and Northeast China. Rapid changes in temperature in various regions were detected by the multiple timescale t-test method. The year 1969 was a rapid change point from a high temperature to a low temperature along the Yangtze River and South China. In the years 1977–1979, temperature significantly increased from a lower level to a higher level in many places except for regions in North China and the Yangtze River. Another rapid increasing temperature trend was observed in 1987. In the years 1976–1979, a positive rapid change of summer temperature occurred in northwestern China and southwestern China while a decreasing temperature was found between the Yellow River and the Yangtze River. A rapid increase of winter temperature was found for 1977–1979 and 1985–1986 in many places. There were increasing events of extreme temperature in broad areas except in the north part of Northeast China and the north part of the Xinjiang region. In winter, increasing temperature of the climate state and weakening temperature extremes are observed in northern China. In summer, both increasing temperature of the climate state and enhancing temperature extremes were commonly exhibited in northern China. Present address: Linfen Meteorological Office, Linfen 041000, Shanxi Province, China.  相似文献   

4.
Summary Umkehr observations taken during the 1957–2000 period at 15 stations located between 19 and 52° N have been reanalyzed using a significantly improved algorithm-99, developed by DeLuisi and Petropavlovskikh et al. (2000a,b). The alg-99 utilizes new latitudinal and seasonally dependent first guess ozone and temperature profiles, new vector radiative transfer code, complete aerosol corrections, gravimetric corrections, and others. Before reprocessing, all total ozone values as well as the N-values (radiance) readings were thoroughly re-evaluated. For the first time, shifts in the N-values were detected and provisionally corrected. The re-evaluated Umkehr data set was validated against satellite and ground based measurements. The retrievals with alg-99 show much closer agreement with the lidar and SAGE than with the alg-92. Although the latitudinal coverage is limited, this Umkehr data set contains ∼ 44,000 profiles and represent the longest (∼ 40 years) coherent information on the ozone behavior in the stratosphere of the Northern Hemisphere. The 14-months periods following the El-Chichon and the Mt. Pinatubo eruptions were excluded from the analysis. Then the basic climatological characteristics of the vertical ozone distribution in the 44–52° N and more southern locations are described. Some of these characteristics are not well known or impossible to be determined from satellites or single stations. The absolute and relative variability reach their maximum during winter–spring at altitudes below 24 km; the lower stratospheric layers in the middle latitudes contain ∼ 62% of the total ozone and contribute ∼ 57% to its total variability. The layer-5 (between ∼ 24 and 29 km) although containing 20% of the total ozone shows the least fluctuations, no trend and contributes only ∼ 11% to the total ozone variability. Meridional cross-sections from 19 to 52° N of the vertical ozone distribution and its variability illustrate the changes, and show poleward-decreasing altitude of the ozone maximum. The deduced trends above 33 km confirm a strong ozone decline since the mid-1970s of over 5% per decade without significant seasonal differences. In the mid-latitude stations, the decline in the 15–24 km layer is nearly twice as strong in the winter-spring season but much smaller in the summer and fall. The effect of including 1998 and 1999 years with relatively high total ozone data reduces the overall-declining trend. The trends estimated from alg-99 retrievals are statistically not significantly different from those in WMO 1998a; however, they are stronger by about 1% per decade in the lower stratosphere and thus closer to the estimates by sondes. Comparisons of the integrated ozone loss from the Umkehr measurements with the total ozone changes for the same periods at stations with good records show complete concurrence. The altitude and latitude appearances of the long-term geophysical signals like solar (1–2%) and QBO (2–7%) are investigated. Received April 12, 2001 Revised September 19, 2001  相似文献   

5.
Recent changes in dry spell and extreme rainfall events in Ethiopia   总被引:2,自引:1,他引:2  
Summary This paper assesses recent changes in extremes of seasonal rainfall in Ethiopia based on daily rainfall data for 11 key stations over the period 1965–2002. The seasons considered are Kiremt (‘main rains’, June–September) and Belg (‘small rains’, February/March–May). The Mann-Kendall and linear regression trend tests show decreasing trends in the Kiremt and the Belg extreme intensity and maximum consecutive 5-day rains over eastern, southwestern and southern parts of Ethiopia whereas no trends are found in the remaining part of Ethiopia. In general, no trends are found in the yearly maximum length of Kiremt and Belg dry spells (days with rainfall below 1 mm) over Ethiopia.  相似文献   

6.
Changes in the severity of extreme weather events under the influence of the enhanced greenhouse effect could have disproportionally large effects compared to changes in the mean climate. Here, we explored the meteorological circumstances of extremes and changes therein using two 49-member climate model ensembles for reference (1961–1990) and scenario (2051–2080) greenhouse-gas concentrations. We have focused on daily-mean surface-air temperatures over the Northern Hemisphere in January. Over large parts of the continents, changes in the one-in-10-year temperature events are influenced at least as much by changes in the shape of the probability distribution functions (PDFs) as by shifts in the mean. In coastal areas, this is largely attributable to changes in the large-scale circulation, for those types of extremes linked to infrequent wind directions. In other areas, the inhomogeneous mean warming, increasing inland and polewards, affects the tails of the local temperature PDFs. Temperature extremes in widely different regions were found to be linked by a large-scale circulation anomaly pattern, which resembles the Arctic Oscillation. In the scenario ensemble, this anomaly pattern favors its positive phase, leading to enhanced probabilities of westerly winds in a belt around the Northern Hemisphere.  相似文献   

7.
Summary We analyze daily precipitation and temperature extremes over the Czech Republic in a regional climate simulation for the 40-year period of 1961–2000 carried out with the RegCM3 regional climate model. The model is run at 45 km grid interval and is driven by NCEP/NCAR reanalysis lateral boundary conditions. Comparison with station data shows that the model performs reasonably well in simulating the frequency of daily precipitation events of medium to high intensity as well as the precipitation intensities (return levels) of long return periods, with the exception of mountain stations. While this is attributed mainly to the relatively coarse representation of topography across the area of the Czech Republic, the parameterization of convection can be another reason. The model underestimates daily maximum temperature (especially in the warm seasons) and as a result the occurrence of heat waves (high temperature episodes). The performance of the model improves in the simulation of daily minimum temperature and cold wave events. In order to apply this regional model to the simulation of extreme events over the complex terrain as for Czech Republic we recommend that a higher resolution is used in order to better describe the topography of the Czech Republic and that the daily maximum temperature bias is reduced.  相似文献   

8.
This paper compares precipitation, maximum and minimum air temperature and solar radiation estimates from the Hadley Centre’s HadRM3 regional climate model (RCM), (50 × 50 km grid cells), with observed data from 15 meteorological station in the UK, for the period 1960–90. The aim was to investigate how well the HadRM3 is able to represent weather characteristics for a historical period (hindcast) for which validation data exist. The rationale was to determine if the HadRM3 data contain systematic errors and to investigate how suitable the data are for use in climate change impact studies at particular locations. Comparing modelled and observed data helps assess and quantify the uncertainty introduced to climate impact studies. The results show that the model performs very well for some locations and weather variable combinations, but poorly for others. Maximum temperature estimations are generally good, but minimum temperature is overestimated and extreme cold events are not represented well. For precipitation, the model produces too many small events leading to a serious under estimation of the number of dry days (zero precipitation), whilst also over- or underestimating the mean annual total. Estimates represent well the temporal distribution of precipitation events. The model systematically over-estimates solar radiation, but does produce good quality estimates at some locations. It is concluded that the HadRM3 data are unsuitable for detailed (i.e. daily time step simulation model based) site-specific impacts studies in their current form. However, the close similarity between modelled and observed data for the historical case raises the potential for using simple adjustment methods and applying these to future projection data.  相似文献   

9.
The study evaluated CORDEX RCMs’ ability to project future rainfall and extreme events in the Mzingwane catchment using an ensemble average of three RCMs (RCA4, REMO2009 and CRCM5). Model validation employed the statistical mean and Pearson correlation, while trends in projected rainfall and number of rainy days were computed using the Mann-Kendall trend test and the magnitudes of trends were determined by Sen’s slope estimator. Temporal and spatial distribution of future extreme dryness and wetness was established by using the Standard Precipitation Index (SPI). The results show that RCMs adequately represented annual and inter-annual rainfall variability and the ensemble average outperformed individual models. Trend results for the projected rainfall suggest a significant decreasing trend in future rainfall (2016–2100) for all stations at p < 0.05. In addition, a general decreasing trend in the number of rainy days is projected for future climate, although the significance and magnitude varied with station location. Model results suggest an increased occurrence of future extreme events, particularly towards the end of the century. The findings are important for developing proactive sustainable strategies for future climate change adaption and mitigation.  相似文献   

10.
A discussion of statistical methods used to estimate extreme wind speeds   总被引:1,自引:0,他引:1  
Summary Wind speeds in extra-tropical latitudes are known to be approximately Weibull distributed. Hence a Weibull distribution fitted to all available data is often used to predict extreme winds. The most extreme values then, however, have little influence on the estimated parent Weibull distribution, and the accuracy of the extreme value predictions obtained in this manner may be questioned. In the present paper such a “Weibull method” is compared to a method based on statistical extreme value theory, “the annual maxima method”. The comparison is based on 30 years of 10 minute wind speed averages measured hourly at 12 meteorological stations located at airports in Sweden. Results show that the Weibull method generates incorrect estimates of the tails of the distributions of wind speeds and of the distribution of yearly maximum wind speed, and that serial dependence of individual measurements has to be taken into account. In addition, it is inherent in the Weibull method that it does not provide any confidence bounds for the estimates. The annual maxima method avoids these problems. The measurements were rounded, first to entire knots, and then to m/s. A further, “technical”, result is that if this rounding were disregarded in the estimation procedure, then the computed standard errors of the parameter estimates would be erroneously low. Hence, if rounding is done, it should be taken into account in the estimation procedure. We also believe this to be a clear indication that rounding of the data decreases estimation accuracy.  相似文献   

11.
The possible changes in the frequency of extreme temperature events in Hong Kong in the 21st century were investigated by statistically downscaling 26 sets of the daily global climate model projections (a combination of 11 models and 3 greenhouse gas emission scenarios, namely A2, A1B, and B1) of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The models’ performance in simulating the past climate during 1971–2000 has also been verified and discussed. The verification revealed that the models in general have an acceptable skill in reproducing past statistics of extreme temperature events. Moreover, the models are more skillful in simulating the past climate of the hot nights and cold days than that of the very hot days. The projection results suggested that, in the 21st century, the frequency of occurrence of extremely high temperature events in Hong Kong would increase significantly while that of the extremely low temperature events is expected to drop significantly. Based on the multi-model scenario ensemble mean, the average annual numbers of very hot days and hot nights in Hong Kong are expected to increase significantly from 9 days and 16 nights in 1980–1999 to 89 days and 137 nights respectively in 2090–2099. On the other hand, the average annual number of cold days will drop from 17 days in 1980–1999 to about 1 day in 2090–2099. About 65 percent of the model-scenario combinations indicate that there will be on average less than one cold day in 2090–2099. While all the model-emission scenarios in general have projected consistent trends in the change of temperature extremes in the 21st century, there is a large divergence in the projections between difierent model/emission scenarios. This reflects that there are still large uncertainties in the model simulation of the future climate of extreme temperature events.  相似文献   

12.
Summary We analysed long-term temperature trends based on 12 homogenised series of monthly temperature data in Switzerland at elevations between 316 m.a.s.l. and 2490 m.a.s.l for the 20th century (1901–2000) and for the last thirty years (1975–2004). Comparisons were made between these two periods, with changes standardised to decadal trends. Our results show mean decadal trends of +0.135 °C during the 20th century and +0.57 °C based on the last three decades only. These trends are more than twice as high as the averaged temperature trends in the Northern Hemisphere. Most stations behave quite similarly, indicating that the increasing trends are linked to large-scale rather than local processes. Seasonal analyses show that the greatest temperature increase in the 1975–2004 period occurred during spring and summer whereas they were particularly weak in spring during the 20th century. Recent temperature increases are as much related to increases in maximum temperatures as to increases in minimum temperature, a trend that was not apparent in the 1901–2000 period. The different seasonal warming rates may have important consequences for vegetation, natural disasters, human health, and energy consumption, amongst others. The strong increase in summer temperatures helps to explain the accelerated glacier retreat in the Alps since 1980. Authors’ addresses: Martine Rebetez, WSL Swiss Federal Research Institute, 1015 Lausanne, Switzerland; Michael Reinhard, Laboratory of Ecological Systems (ECOS), EPFL Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland.  相似文献   

13.
The possible changes in the frequency of extreme rainfall events in Hong Kong in the 21st century wereinvestigated by statistically downscaling 30 sets of the daily global climate model projections (involvinga combination of 12 models and 3 greenhouse gas emission scenarios,namely,A2,A1B,and B1) of theFourth Assessment Report of the Intergovernmental Panel on Climate Change.To cater for the intermittentand skewed character of the daily rainfall,multiple stepwise logistic regression and multiple stepwise linearregression were employed to develop the downscaling models for predicting rainfall occurrence and rainfallamount,respectively.Verification of the simulation of the 1971-2000 climate reveals that the models ingeneral have an acceptable skill in reproducing past statistics of extreme rainfall events in Hong Kong.Theprojection results suggest that,in the 21st century,the annual number of rain days in Hong Kong is expectedto decrease while the daily rainfall intensity will increase,concurrent with the expected increase in annualrainfall.Based on the multi-model scenario ensemble mean,the annual number of rain day is expected todrop from 104 days in 1980-1999 to about 77 days in 2090-2099.For extreme rainfall events,about 90% ofthe model-scenario combinations indicate an increase in the annual number of days with daily rainfall 100mm (R100) towards the end of the 21st century.The mean number of R100 is expected to increase from 3.5days in 1980-1999 to about 5.3 days in 2090-2099.The projected changes in other extreme rainfall indicesalso suggest that the rainfall in Hong Kong in the 21st century may also become more extreme with moreuneven distributions of wet and dry periods.While most of the model-emission scenarios in general projectconsistent trends in the change of rainfall extremes in the 21st century,there is a large divergence in theprojections among different model/emission scenarios.This reflects that there are still large uncertainties inmodel simulations of future extreme rainfall events.  相似文献   

14.
Summary Statistical characteristics of extremely low and high daily mean temperatures in summer (June, July and August) in eastern China have been investigated. The extremely low temperatures are defined as those days with temperatures not exceeding the 10th percentile with respect to the reference period of 1961–90; similarly the extremely high temperatures are defined as those exceeding the 90th percentile. There are well-defined spatial structures in trends of the frequency of extremely low temperatures as well as of high temperature extremes. In the north region (i.e. northern and northeastern China) the linear trends of frequency of low and high temperature extremes are –1.09 and +1.23 days/10yr, respectively. For the southern portion of the study area, the trends are –1.32 and –2.32 days/10yr. Taking the study area as a whole, the linear trends are –0.76 days/10yr and +1.08 days/10yr, respectively. The changes of frequency of extreme temperatures are mainly related to the shift in the temperature means. There is a dominant anticyclonic pattern in the lower- to middle troposphere over East Asia in association with warmer conditions in the north region. For the south region there is a jump-like change in the summer mean temperature and the extreme temperature events in around 1976. The large-scale northwestern Pacific subtropical high plays an important role in the jump-like changes of the temperature extremes.  相似文献   

15.
Summary ?We have analyzed daily rainfall trends throughout the second half of the 20th century in the western Mediterranean basin (Valencia Region, E of Spain). The area is characterized by high torrentiality, and during the second half of the 20th century some of the highest daily rainfall values in the Mediterranean basin have been recorded. In this area, mean annual rainfall varies between 500 and 300 mm and is overwhelmingly dependent on just a few days of rain. Daily maximum rainfall varies on average from 120 mm day−1 to 50 mm day−1, and represents a mean of 17% (coastland) to 9% (inland) of annual rainfall. The 10 days in each year with the heaviest rainfall (called “higher events”) provide over 50% of the annual rainfall and can reach more than 400 mm on average. We compared the annual rainfall trend and the trend of higher and minor events defined by percentiles, both in volume and variability. We, therefore, tested whether annual rainfall changes depend on the trend of the higher (rainfall) events. To overlap spatial distribution of trends (i.e.: positive, no significant and negative trends) we have used cross-tab analysis. The results confirm the hypothesis that annual rainfall changes depend on changes found in just a few rainy events. Furthermore, in spite of their negative trend, higher events have increased their contribution to annual rainfall. As a consequence, although torrential events may have diminished in magnitude, future scenarios seem to be controlled by a limited number of rainy events which will become more and more variable year on year. The high spatial density of data used in this work, (97 observatories per 24.000 km2, overall mean 1 observatory per 200 km2), suggests to us that extreme caution should be applied when analyzing regional and sub-regional changes in rainfall using GCM output, especially in areas of high torrentiality. Received August 1, 2002; revised November 11, 2002; accepted December 1, 2002 Published online May 19, 2003  相似文献   

16.
Summary Climatological statistics of extreme temperature events over Kenya are established from the analysis of daily and monthly maximum temperatures for a representative station (Nairobi Dagoretti Corner) over the period 1956–1997. The months of June to August were shown to be the coldest with a mean monthly maximum temperature of less than 22 °C. Seasonal (June to August) mean maximum temperature was 21.5 °C. Using this seasonal mean temperature for the period 1967–1997 delineated 1968 as the coldest year in this series and 1983 as the warmest year. Spectral analysis of the seasonal data, for both the coldest and the warmest years, revealed that the major periods were the quasi-biweekly (10 days) and the Intraseasonal Oscillations (23 days). Secondary peaks occurred at periods of 4–6 and 2.5–3.5 days. A temperature threshold of 16.7 °C during July was used to define cold air outbreaks over Nairobi. This threshold temperature of 16.7 °C was obtained from the mean July maximum temperature (20.9 °C) minus two standard deviations. Notable trends include a decrease in the frequency of station-days, between 1956 and 1997, with temperatures less than 16.7 °C during July. Surface pressure patterns indicate that the origin of the cold air is near latitude 25° S and to the east of mainland South Africa. The cold air near 25° S is advected northwards ahead of the surface pressure ridge. Received July 19, 1999 Revised January 11, 2000  相似文献   

17.
Weather services base their operational definitions of “present” climate on past observations, using a 30-year normal period such as 1961–1990 or 1971–2000. In a world with ongoing global warming, however, past data give a biased estimate of the actual present-day climate. Here we propose to correct this bias with a “delta change” method, in which model-simulated climate changes and observed global mean temperature changes are used to extrapolate past observations forward in time, to make them representative of present or future climate conditions. In a hindcast test for the years 1991–2002, the method works well for temperature, with a clear improvement in verification statistics compared to the case in which the hindcast is formed directly from the observations for 1961–1990. However, no improvement is found for precipitation, for which the signal-to-noise ratio between expected anthropogenic changes and interannual variability is much lower than for temperature. An application of the method to the present (around the year 2007) climate suggests that, as a geographical average over land areas excluding Antarctica, 8–9 months per year and 8–9 years per decade can be expected to be warmer than the median for 1971–2000. Along with the overall warming, a substantial increase in the frequency of warm extremes at the expense of cold extremes of monthly-to-annual temperature is expected.  相似文献   

18.
Summary k-day extreme precipitation depths (k=1,2,3, … 30) for the climatological network of Belgium (165 stations) are analysed to detect a possible evolution in the occurrence of extreme rainfall events during the 1951–1995 reference period. The calendar year and the hydrological summer and winter are considered separately. Spearman’s rank correlation coefficient shows a strong spatial correlation between extreme k-day precipitation events, depending on the time of the year (lower during summer than during winter) and increasing with k. In some cases the distances of de-correlation exceed 200 km which is comparable to the size of the country. Due to this correlation, tests for trends have been carried out on the leading principal components (PC) derived from the covariance matrix. Various PC selection rules have been applied to identify the number of components to analyse. The number of components needed to reproduce a given proportion of the total variance varies, with larger values for summer than for winter and a decrease with growing k. The Fisher test is used as a global test. It combines the individual Mann-Kendall trend tests carried out on the selected PC scores. Significant trends have been found in extreme winter k-day precipitation for all the values of k and none in extreme summer precipitation. The results for the annual k-day precipitation depths are between those for the two seasons: no trend for small k because summer events dominate and a significant trend for k larger than 7 due to the winter events. Analysis of a few stations with long-term series shows no significant trend for the period 1910–1995, these series also reproduce almost the same trends as those found for the shorter 1951–1995 period. Received April 23, 1999 Revised December 6, 1999  相似文献   

19.
Summary Dubbed Ice Storm ’98, an extreme weather event characterized by two synoptic systems in succession dropped about 70–100 mm (in terms of water equivalent) of freezing precipitation over southeastern Ontario, southwestern Quebec and northeastern New York during a 6-day period from January 5 to 10 in 1998. Individually, the two synoptic systems were not dramatically more extreme in freezing precipitation than other major freezing rain events (4 since 1961) which occurred in the past over the affected area. Some regions in the target area, however, were impacted more by the second system. Based on an analysis of the 500 hPa vorticity field during the ’98 event, we suggest that the 1997/98 El Ni?o had a role in creating a flow environment conducive to the rapid formation of the second synoptic system. In contrast, other major freezing rain events in the last 30 years involved only one synoptic system per event lasting no more than 3 days, and producing 20–50 mm of precipitation. We have also found that, 3 out of 4 past major freezing rain events since 1958 were associated with the positive phase of the North Atlantic Oscillation (NAO). Consistent with this usual past association between the NAO and a major freezing rain event, Ice Storm ’98 also occurred when the phase of the NAO was positive. Analysis of these 3 past and the ’98 events also indicates an apparent connection between the positive phase of the NAO and the northern Quebec high pressure system, which is an essential synoptic feature of a major freezing rain occurrence over the southcentral region of Canada. As measured by their respective indices, the maximum positive NAO state leads the maximum northern Quebec high by about 2 days (5 days in the ’98 event). There is some suggestive evidence to indicate that the persistence of the northern Quebec high pressure system is connected to the persistence of the positive phase of the NAO. Received January 17, 2000  相似文献   

20.
Summary Daily pluviometric records of 43 meteorological stations across the Iberian Peninsula have permitted a detailed analysis of dry spell patterns for the period 1951–2000 by distinguishing daily amount thresholds of 0.1, 1.0, 5.0 and 10.0 mm/day. The analyses are based on three annual series, namely the number of dry spells, N, the average dry spell length, L, and the extreme dry spell length, L max. First, the statistical significance of local trends for the annual series of N, L and L max has been investigated by means of the Mann-Kendall test and significant field trends have been established by means of Monte Carlo simulations. Clear signs of negative field trends are detected for N (1.0 and 10.0 mm/day) and L (0.1 mm/day). Second, the Weibull model fits well the empirical distributions of dry spell lengths for all the rain gauges, whatever the daily amount threshold, with a well ranged spatial distribution of their parameters u and k. On the basis of the Weibull distribution, return period maps for 2, 5, 10, 25 and 50 years have been obtained for dry spell lengths with respect to the four daily threshold levels. While for 0.1 and 1.0 mm/day the longest dry spells are expected at the south of the Iberian Peninsula, for 5.0 and 10.0 mm/day they are mostly detected at the southeast. Finally, the elapsed time between consecutive dry spells has been analysed by considering the same rain amount thresholds and different dry spell lengths at increasing intervals of 10 days. This analysis makes evident a significant negative field trend of the elapsed time between consecutive dry spells of lengths ranging from 10 to 20 days for daily amount thresholds of 1.0, 5.0 and 10.0 mm/day. Authors’ addresses: X. Lana, C. Serra, Departament de Física i Enginyeria Nuclear, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647 planta 11, 08028 Barcelona, Spain; M. D. Marínez, Departament de Física Aplicada, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain; A. Burgue?o, Departament de Meteorologia i Astronomia, Universitat de Barcelona, 08028 Barcelona, Spain; J. Martín-Vide, L. Gómez, Grup de Climatologia, Universitat de Barcelona, 08028 Barcelona, Spain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号