首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The maximum height attained by a volcanic eruption cloud is principally determined by the convective buoyancy of the mixture of volcanic gas + entrained air + fine-sized pyroclasts within the cloud. The thermal energy supplied to convection processes within an eruption cloud is derived from the cooling of pyroclastic material and volcanic gases discharged by an explosive eruption. Observational data from six recent eruptions indicates that the maximum height attained by volcanic eruption clouds is positively correlated with the rate at which pyroclastic material is produced by an explosive eruption (correlation coefficient r = + 0.97). The ascent of industrial hot gas plumes is also governed by the thermal convection process. Empirical scaling relationships between plume height and thermal flux have been developed for industrial plumes. Applying these scaling relationships to volcanic eruption clouds suggests that the rate at which thermal energy is released into the atmosphere by an explosive eruption increases in an approximately linear manner as an eruption's pyroclastic production rate increases.  相似文献   

2.
Volcanic plumes interact with the wind at all scales. On smaller scales, wind affects local eddy structure; on larger scales, wind shapes the entire plume trajectory. The polar jets or jetstreams are regions of high [generally eastbound] winds that span the globe from 30 to 60° in latitude, centered at an altitude of about 10 km. They can be hundreds of kilometers wide, but as little as 1 km in thickness. Core windspeeds are up to 130 m/s. Modern transcontinental and transoceanic air routes are configured to take advantage of the jetstream. Eastbound commercial jets can save both time and fuel by flying within it; westbound aircraft generally seek to avoid it.Using both an integral model of plume motion that is formulated within a plume-centered coordinate system (BENT) as well as the Active Tracer High-resolution Atmospheric Model (ATHAM), we have calculated plume trajectories and rise heights under different wind conditions. Model plume trajectories compare well with the observed plume trajectory of the Sept 30/Oct 1, 1994, eruption of Kliuchevskoi Volcano, Kamchatka, Russia, for which measured maximum windspeed was 30–40 m/s at about 12 km. Tephra fall patterns for some prehistoric eruptions of Avachinsky Volcano, Kamchatka, and Inyo Craters, CA, USA, are anomalously elongated and inconsistent with simple models of tephra dispersal in a constant windfield. The Avachinsky deposit is modeled well by BENT using a windspeed that varies with height.Two potentially useful conclusions can be made about air routes and volcanic eruption plumes under jetstream conditions. The first is that by taking advantage of the jetstream, aircraft are flying within an airspace that is also preferentially occupied by volcanic eruption clouds and particles. The second is that, because eruptions with highly variable mass eruption rate pump volcanic particles into the jetstream under these conditions, it is difficult to constrain the tephra grain size distribution and mass loading present within a downwind volcanic plume or cloud that has interacted with the jetstream. Furthermore, anomalously large particles and high mass loadings could be present within the cloud, if it was in fact formed by an eruption with a high mass eruption rate. In terms of interpretation of tephra dispersal patterns, the results suggest that extremely elongated isopach or isopleth patterns may often be the result of eruption into the jetstream, and that estimation of the mass eruption rate from these elongated patterns should be considered cautiously.  相似文献   

3.
Volcanic gases such as SO 2, H 2S, HCl and COS emitted during explosive eruptions significantly affect atmospheric chemistry and therefore the Earth's climate. We have evaluated the dependence of volcanic gas emission into the atmosphere on altitude, latitude, and tectonic setting of volcanoes and on the season in which eruptions occurred. These parameters markedly influence final stratospheric gas loading. The latitudes and altitudes of 360 active volcanoes were compared to the height of the tropopause to calculate the potential quantity of volcanic gases injected into the stratosphere. We calculated a possible stratospheric gas loading based on different volcanic plume heights (6, 10, and 15 km) generated by moderate-scale explosive eruptions to show the importance of the actual plume height and volcano location. At a plume height of 15 km for moderate-scale explosive eruptions, a volcano at sea level can cause stratospheric gas loading because the maximum distance to the tropopause is 15–16 km in the equatorial region (0–30°). Eruptions in the tropics have to be more powerful to inject gas into the stratosphere than eruptions at high latitudes because the tropopause rises from ca. 9–11 km at the poles to 15–16 km in the equatorial region (0–30°N and S). The equatorial region is important for stratospheric gas injection because it is the area with the highest frequency of eruptions. Gas injected into the stratosphere in equatorial areas may spread globally into both hemispheres.  相似文献   

4.
Augustine, an island volcano in Lower Cook Inlet, southern Alaska, erupted in January, 1976, after 12 years of dormancy. By April, when the eruptions ended, a new lava dome had been extruded into the summit crater and about 0.1 km3 of pyroclastics had been deposited on the island, mainly as pyroclastic debris avalanches and pumice flows. The ventclearing phase in January was highly explosive and we have been able to document 13 major vulcanian eruptions.The timing, thermal energy, mass loading of fine particles and the horizontal dispersion of these eruption clouds were determined from radar measurements of cloud height, reports of pilots flying in plumes, satellite photography, seismic records and infrasonic detection of air waves. A lower estimate of the mass of fine (r < 68 μm) particles injected into the troposphere from the 13 main eruptions in January is 5.5–18 × 1012 g. The corresponding mass loading of fine particles within individual eruption clouds is 0.3–1 g m−3. We calculated thermal energies of 4 × 1014 to 35 × 1014 J for individual eruptions by applying convective plume rise theory to observed cloud heights and seismically determined eruption durations. This energy range compares favorably with the 4–16 × 1014 J of thermal energy, calculated from the cooling of juvenile material contained in a typical eruption cloud.The vulcanian eruption clouds stayed intact for at least 700 km downwind. Satellite images in both visible and infrared wavebands, showing the Gulf of Alaska just after sunrise on January 23, reveal a series of puffs strung out downwind from the volcano, 20–30 km in diameter and with their tops at altitudes of about 8 km, overlying a continuous plume at altitude 4 km. Each puff corresponded to a seismically and infrasonically timed eruption. A substantial portion of the material injected into the atmosphere between January 22 and 25 was rapidly transported by the subpolar jet stream through southwestern Canada and the western United States, then northeast across the States into the Atlantic. The clouds were observed passing over Tucson, Arizona, on January 25 at an elevation of 7 km.Several of the eruptions penetrated into the stratosphere. Sun photometer measurements, taken at Mauna Loa, Hawaii, six weeks after the eruption, showed an increased stratospheric optical thickness of 0.01 (wavelength 0.5 μm), which decayed in about 5 months. The maximum column mass loading of the veil was 4–10 × 10−7 g cm−2. The mass of the veil, spread-ever a fourth of the earth's surface, is 10 to 100 times larger than can be accounted for by assuming that injected ash and converted sulfate particles from the 13 main Augustine eruptions are the only components contributing to the stratospheric turbidity observed at Mauna Loa.  相似文献   

5.
A list of volcanic eruption plumes observed to ascend into or near the stratosphere since 1883 shows that the volcanoes divide readily into two groups, one at low and one at higher latitudes. A model for the rise of a buoyant volcanic plume rise as applied to volcanic eruptions is corrected for realistic temperature profiles and for the finite vertical extent of the resultant debris clouds. The utility of the model can be questioned, however, owing to the highly uncertain and variable nature of the efficiency of use of heat energy of buoyant rise. The observed correlation of stratospheric plumes with climatic effects indicates that those plumes nearer the equator have the largest impact on surface temperatures. Analysis of the observations also suggests that injection of debris into the stratosphere is more important in determining the effect on climate than either the total volcanic explosivity of the eruption or the actual height reached within the stratosphere.  相似文献   

6.
Turbulent volcanic plumes disperse fine ash particles and toxic gases in the atmosphere and can lead to significant temperature drops in the atmosphere. In the geological past, the emplacement of large continental flood basalts (CFB) has been associated with large changes in the global environment and extinctions of biological species. The variable intensity of environmental changes induced by otherwise similar CFB events, however, begs for a reevaluation of physical controls on the environmental impact of volcanic eruptions. The climatic impact of an eruption depends on its ability to inject gases in the stratosphere and on the eruption rate. Using integral models of turbulent plumes above line and point sources, we find that mass rate estimates for CFBs are in general not large enough for volcanic plumes to reach the stratosphere on their own. Basaltic eruptions, however, are also associated with widespread lava flows which lose large amounts of heat and generate convection in the atmosphere. This form of convection, known as penetrative convection, acts to erode the stably stratified lower atmosphere and generates a thick well-mixed heated atmospheric layer in a few hours. The added buoyancy provided by such a layer almost always ensures that volcanic gases get transported to the stratosphere. The environmental consequences of CFBs are therefore controlled not by the inputs to the atmosphere from individual volcanic plumes, but by the dynamic response of the climate system to a succession of short eruptive pulses within a longer-lasting eruption sequence.  相似文献   

7.
The Grímsv?tn eruption in November 2004 belongs to a class of small- to medium-sized phreatomagmatic eruptions which are common in Iceland. The eruption lasted 6?days, but the main phase, producing most of the 0.02?km3 of magma erupted, was visible for 33?h on the C-band weather radar of the Icelandic Meteorological Office located in Keflavík, 260?km to the west of the volcano. The plume rose to 8–12?km high over sea level during 33?h. The long distance between radar and source severely reduces the accuracy of the plume height determinations, causing 3.5-km steps in recorded heights. Moreover, an apparent height overestimate of ~1.5?km in the uncorrected radar records occurs, possibly caused by wave ducting or super-refraction in the atmosphere. The stepping and the height overestimate can be partly overcome by averaging the plume heights and by applying a height adjustment based on direct aircraft measurements. Adjusted weather radar data on plume height are used to estimate the total mass erupted using empirical plume models mostly based on magmatic eruptions and to compare it with detailed in situ measurements of the mass of erupted tephra. The errors arising because of the large radar plume distance limit the applicability of the data for detailed comparisons. However, the results indicate that the models overestimate the mass erupted by a factor of three to four. This supports theoretical models indicating that high steam content of phreatomagmatic (wet) plumes enhances their height compared to dry plumes.  相似文献   

8.
Volcanic lightning, perhaps the most spectacular consequence of the electrification of volcanic plumes, has been implicated in the origin of life on Earth, and may also exist in other planetary atmospheres. Recent years have seen volcanic lightning detection used as part of a portfolio of developing techniques to monitor volcanic eruptions. Remote sensing measurement techniques have been used to monitor volcanic lightning, but surface observations of the atmospheric electric Potential Gradient (PG) and the charge carried on volcanic ash also show that many volcanic plumes, whilst not sufficiently electrified to produce lightning, have detectable electrification exceeding that of their surrounding environment. Electrification has only been observed associated with ash-rich explosive plumes, but there is little evidence that the composition of the ash is critical to its occurrence. Different conceptual theories for charge generation and separation in volcanic plumes have been developed to explain the disparate observations obtained, but the ash fragmentation mechanism appears to be a key parameter. It is unclear which mechanisms or combinations of electrification mechanisms dominate in different circumstances. Electrostatic forces play an important role in modulating the dry fall-out of ash from a volcanic plume. Beyond the local electrification of plumes, the higher stratospheric particle concentrations following a large explosive eruption may affect the global atmospheric electrical circuit. It is possible that this might present another, if minor, way by which large volcanic eruptions affect global climate. The direct hazard of volcanic lightning to communities is generally low compared to other aspects of volcanic activity.  相似文献   

9.
In this paper, we use data obtained from LiDAR measurements during an ash emission event on 15 November 2010 at Mt. Etna, in Italy, in order to evaluate the spatial distribution of volcanic ash in the atmosphere. A scanning LiDAR system, located at 7?km distance from the summit craters, was directed toward the volcanic vents and moved in azimuth and elevation to analyse different volcanic plume sections. During the measurements, ash emission from the North East Crater and high degassing from the Bocca Nuova Crater were clearly visible. From our analysis we were able to: (1) evaluate the region affected by the volcanic plume presence; (2) distinguish volcanic plumes containing spherical aerosols from those having non-spherical ones; and (3) estimate the frequency of volcanic ash emissions. Moreover, the spatial distribution of ash mass concentration was evaluated with an uncertainty of about 50?%. We found that, even during ash emission episodes characterised by low intensity like the 15 November 2010 event, the region in proximity of the summit craters should be avoided by air traffic operations, the ash concentration being greater than 4?×?10?3?g/m3. The use of a scanning permanent LiDAR station may usefully monitor the volcanic activity and help to drastically reduce the risks to aviation operations during the frequent Etna eruptions.  相似文献   

10.
Pavlof Volcano (55° 25′N, 161° 54′W) exhibits two eruption styles: magmatic eruptions of one-to-two-days duration, and phreatic-phreatomagmatic activity lasting several days to two months. Thirty-four eruptions have occurred in historic times; of these the largest are Volcano Explosivity Index=3. Nine magmatic and 13 phreatomagmatic eruptions occurred between 1973–1983. All the magmatic eruptions occurred in the fall, between Sept. 9–Nov. 20. Four magmatic eruptions occurred during November 11–15, but in four different years. A 3-year-long period of eruptive activity between 1973–1976 bears striking resemblance to a period of activity between 1980–1983. No locatable shallow earthquakes (<50 km) have occurred within 30 km of Pavlof since 1973, which is quite unusual for an active island-arc volcano. Shallow events in the adjacent are segments have focal mechanisms with P-axes perpendicular to the arc (and parallel to plate convergence). Deep earthquakes (> 100 km) are clustered beneath Pavlof and several other volcanoes. Their T-axes show downdip tension within the slab. Deep teleseisms (> 160 km) mostly occurred between 1977–1979 when the volcano was not erupting. Catalogued volcanic activity throughout the Alaska/Aleutian arc shows a weak tendency to increase around the time of great (M > 7.8) earthquakes.  相似文献   

11.
Airborne correlation spectrometry (COSPEC) was used to measure the rate of SO2 emission at White Island on three dates, i.e., November 1983, 1230 ± 300 t/d; November 1984, 320 ± 120 t/d; and January 1985, 350 ± 150 t/d (t = metric tons). The lower emission rates are likely to reflect the long-term emission rates, whereas the November 1983 rate probably reflects conditions prior to the eruption of December 1983. The particle flux in the White Island plume, as determined with a quartz crystal microbalance/cascade in November 1983, was 1.3 t/d, unusually low for volcanic plumes. The observed plume particles, as shown from scanning electron microscopy, include halite, native sulfur, and silicates and are broadly similar to other volcanic plumes.Gas analyses from high-temperature volcanic fumaroles collected from June 1982 through November 1984 werde used together with the COSPEC data to estimate the flux of other gas species from White Island. The rates estimated are indicative of the long-term volcanic emission, i.e., 8000–9000 t/d H2O, 900–1000 t/d CO2, 70–80 t/d HCl, 1.5–2 t/d HF, and about 0.2 t/d NH3. The long-term thermal power output at White Island is estimated at about 400 MW.  相似文献   

12.
Lightning and electrification at volcanoes are important because they represent a hazard in their own right, they are a component of the global electrical circuit, and because they contribute to ash particle aggregation and modification within ash plumes. The role of water substance (water in all forms) in particular has not been well studied. Here data are presented from a comprehensive global database of volcanic lightning. Lightning has been documented at 80 volcanoes in association with 212 eruptions. The Volcanic Explosivity Index (VEI) could be determined for 177 eruptions. Eight percent of VEI = 3–5 eruptions have reported lightning, and 10% of VEI = 6, but less than 2% of those with VEI = 1–2. These findings suggest consistent reporting for larger eruptions but either less lightning or possible under-reporting for small eruptions. Ash plume heights (142 observations) show a bimodal distribution with main peaks at 7–12 km and 1–4 km. The former are similar to heights of typical thunderstorms and suggest involvement of water substance, whereas the latter suggest other factors contributing to electrical behavior closer to the vent. Reporting of lightning is more common at night (56%) and less common in daylight (44%). Reporting also varied substantially from year to year, suggesting that a more systematic observational strategy is needed. Several weak trends in lightning occurrence based on magma composition were found. The bimodal ash plume heights are obvious only for andesite to dacite; basalt and basaltic-andesite evenly span the range of heights; and rhyolites are poorly represented. The distributions of the latitudes of volcanoes with lightning and eruptions with lightning roughly mimic the distribution of all volcanoes, which is generally flat with latitude. Meteorological lightning, on the other hand, is common in the tropics and decreases markedly with increasing latitude as the ability of the atmosphere to hold water decreases poleward. This finding supports the idea that if lightning in large (deep) eruptions depends on water substance, then the origin of the water is primarily magma and not entrainment from the surrounding atmosphere. Seasonal effects show that more eruptions with lightning were reported in winter (bounded by the respective autumnal and vernal equinoxes) than in summer. This result also runs counter to the expectations based on entrainment of local water vapor.  相似文献   

13.
The AD 79 eruption of Vesuvius is certainly one of the most investigated explosive eruptions in the world. This makes it particularly suitable for the application of numerical models since we can be quite confident about input data, and the model predictions can be compared with field-based reconstruction of the eruption dynamics. Magma ascent along the volcanic conduit and the dispersal of pyroclasts in the atmosphere were simulated. The conduit and atmospheric domain were coupled through the flow conditions computed at the conduit exit. We simulated two different peak phases of the eruption which correspond to the emplacement of the white and gray magma types that produced Plinian fallout deposits with interlayered pyroclastic flow units during the gray phase. The input data, independently constrained and representative of each of the two eruptive phases, consist of liquid magma composition, crystal and water content, mass flow rate, and pressure–temperature–depth of the magma at the conduit entrance. A parametric study was performed on the less constrained variables such as microlite content of magma, pressure at the conduit entrance, and particle size representative of the eruptive mixture. Numerical results are substantially consistent with the reconstructed eruptive dynamics. In particular, the white eruption phase is found to lead to a fully buoyant eruption plume in all cases investigated, whereas the gray phase shows a more transitional character, i.e. the simultaneous production of a buoyant convective plume and pyroclastic surges, with a significant influence of the microlite content of magma in determining the partition of pyroclast mass between convective plumes and pyroclastic flows.  相似文献   

14.
The eruptions of Nevado del Ruiz in 1985 were unusually rich in sulfur dioxide. These eruptions were observed with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) which can quantitatively map volcanic sulfur dioxide plumes on a global scale. A small eruption, originally believed to be of phreatic origin, took place on September 11, 1985. However, substantial amounts of sulfur dioxide from this eruption were detected with TOMS on the following day. The total mass of SO2, approximately 9 ± 3 × 104 metric tons, was deposited in two clouds, one in the upper troposphere, the other possibly at 15 km near the stratosphere.The devastating November 13 eruptions were first observed with TOMS at 1150 EST on November 14. Large amounts of sulfur dioxide were found in an arc extending 1100 km from south of Ruiz northeastward to the Gulf of Venezuela and as an isolated cloud centered at 7°N on the Colombia-Venezuela border. On November 15 the plume extended over 2700 km from the Pacific Ocean off the Colombia coast to Barbados, while the isolated mass was located over the Brazil-Guyana border, approximately 1600 km due east of the volcano. Based on wind data from Panama, most of the sulfur dioxide was located at 10–16 km in the troposphere and a small amount was quite likely deposited in the stratosphere at an altitude above 24 km.The total mass of sulfur dioxide in the eruption clouds was approximately 6.6 ± 1.9 × 105 metric tons on November 14. When combined with quiescent sulfur dioxide emissions during this period, the ratio of sulfur dioxide to erupted magma from Ruiz was an order of magnitude greater than in the 1982 eruption of El Chichon or the 1980 eruption of Mount St. Helens.  相似文献   

15.
The early activity of the Sabatini Volcanic District (SVD; central Italy) was characterised by highly explosive eruptions that produced widespread subplinian and plinian fall deposits. In this study, four major eruptive units—informally named as units A, B, C and D—were recognised in the 514–449 ka age interval. In particular, unit D was emplaced during the early phase of the 449 ka Tufo Rosso a Scorie Nere pyroclastic flow-forming eruption, the most important event in the whole SVD activity history. Estimates of relevant eruptive parameters indicate tephra fall volumes up to 4 km3 for individual units, peak eruption column heights in the range of 14–29 km and corresponding mass eruption rates of 7.8×106–1.3×108 kg/s. Isopach and isopleth maps of fallout deposits—as well as the distribution of the proximal lag-breccia of the Tufo Rosso a Scorie Nere—consistently indicate a common vent area, which does not correspond to any volcanic centre identified up to now in the SVD. This was located along NE–SW-trending tectonic lineaments that also controlled the location of the other major volcanic centres of the SVD. The characterisation by means of field aspects, grain size, componentry and density and chemical composition of juvenile clasts, renders the studied fall deposits as valuable stratigraphic markers for the SVD and well beyond it. In fact, their wide areal dispersals toward the E and SE may allow correlations on a regional scale for the Quaternary successions of intermountain basins of the Central Apennine and the Adriatic Sea basin successions. Finally, the correct identification of distal tephra from plinian and co-ignimbrite plumes and their attribution to specific explosive eruptions of the SVD and the other volcanic districts of the Roman Province—rather than to local intra-Apennine centres—provides crucial implications for geodynamic reconstructions.  相似文献   

16.
During volcanic eruptions, volcanic ash transport and dispersion models (VATDs) are used to forecast the location and movement of ash clouds over hours to days in order to define hazards to aircraft and to communities downwind. Those models use input parameters, called “eruption source parameters”, such as plume height H, mass eruption rate , duration D, and the mass fraction m63 of erupted debris finer than about 4 or 63 μm, which can remain in the cloud for many hours or days. Observational constraints on the value of such parameters are frequently unavailable in the first minutes or hours after an eruption is detected. Moreover, observed plume height may change during an eruption, requiring rapid assignment of new parameters. This paper reports on a group effort to improve the accuracy of source parameters used by VATDs in the early hours of an eruption. We do so by first compiling a list of eruptions for which these parameters are well constrained, and then using these data to review and update previously studied parameter relationships. We find that the existing scatter in plots of H versus yields an uncertainty within the 50% confidence interval of plus or minus a factor of four in eruption rate for a given plume height. This scatter is not clearly attributable to biases in measurement techniques or to well-recognized processes such as elutriation from pyroclastic flows. Sparse data on total grain-size distribution suggest that the mass fraction of fine debris m63 could vary by nearly two orders of magnitude between small basaltic eruptions ( 0.01) and large silicic ones (> 0.5). We classify eleven eruption types; four types each for different sizes of silicic and mafic eruptions; submarine eruptions; “brief” or Vulcanian eruptions; and eruptions that generate co-ignimbrite or co-pyroclastic flow plumes. For each eruption type we assign source parameters. We then assign a characteristic eruption type to each of the world's  1500 Holocene volcanoes. These eruption types and associated parameters can be used for ash-cloud modeling in the event of an eruption, when no observational constraints on these parameters are available.  相似文献   

17.
In thirteen years (1973–1986) of seismic monitoring of Pavlof Volcano, 488 episodes of volcanic tremor have been recorded, only 26 of which have been previously described in the literature. This paper tabulates and describes all the tremor episodes and reports on the results of all analyses to date. Pavlof tremor durations range from 2 minutes to greater than 1 week; episodes accompanying magmatic eruptions have durations greater than 1 hour, and sustained amplitudes of greater than 6 mmP-P (=54 nanometers at 1.5 Hz) on station PVV, 8.5 km from the vent. Digital data provide much better amplitude resolution than helicorders do. Helicorders, however, provide continuous coverage, whereas digital data are intermittent. Correlations of tremor with visual eruption observations shows that tremor amplitudes are roughly correlated with heights of lava fountains, but the correlation of tremor amplitudes with plume heights is more problematic. Fast Fourier Transform (FFT) spectra show that Pavlof tremor is quite statinary for the entire time period, 1973–1983. All principal spectral peaks lie between 0.8 and 3.0 Hz, and may be caused by resonance of magma and gas, and resonance of the volcanic pile. Preliminary analysis of 2-and 3-component data shows thatP, S, PL, and Rayleigh waves may be present in Pavlof volcanic tremor. Other waveforms can be misidentified as tremor, most commonly those caused by storms orS-waves of regional earthquakes. A strategy is proposed to distinguish tremor from noise using automatic seismic data acquisition and analysis systems. Pavlof's volcanic tremor is briefly compared with a preliminary sample of over 1100 cases of tremor from 84 volcanoes worldwide. Finally, several recommendations for monitoring and reporting volcanic tremor are discussed.  相似文献   

18.
Bent-over buoyant jets distorted by a crosscurrent develop a vortex pair structure and can bifurcate to produce two distinct lobes which diverge from one another downwind. The region downwind of the source between the lobes has relatively low proportions of discharged fluid. Factors invoked by previous workers to cause or enhance bifurcation include buoyancy, release of latent heat at the plume edge by evaporating water droplets, geometry and orientation of the source, and the encounter with a density interface on the rising path of the plume. We suggest that the pressure distribution around the vortex pair of a rising plume may initially trigger bifurcation. We also report new experimental observations confirming that bifurcation becomes stronger for stronger bent-over plumes, identifying that bifurcation can also occur for straight-edged plumes but gradually disappears for stronger plumes which form a gravity current at their final level and spread for a significant distance against the current. Observations from satellites and the ground are reviewed and confirm that volcanic plumes can show bifurcation and a large range of bifurcation angles. Many of the bifurcating plumes spread out at the tropopause level and suggest the tropopause may act on the plumes as a density interface enhancing bifurcation. Even for quite moderate bifurcation angles, the two plume lobes become rapidly separated downwind by distances of tens of kilometers. Such bifurcating plumes drifting apart can only result in bilobate tephra fall deposits. The tephra fall deposit from the 16 km elevation, SE spreading, bifurcating volcanic plume erupted on 15 May 1981 from Mt Pagan was sampled by previous workers and clearly displayed bilobate characteristics. Examples of bilobate tephra fall deposits are reviewed and their origin briefly discussed. Bilobate deposits are common and may result from many causes. Plume bifurcation should be considered one of the possible mechanisms which can account for come examples of bilobate tephra fall deposits.  相似文献   

19.
Mantle plumes control magnetic reversal frequency   总被引:2,自引:0,他引:2  
Magnetic reversal frequency correlates inversely with mantle plume activity for the past 150 Ma, as measured by the volume production rate of oceanic plateaus, seamount chains, and continental flood basalts. This inverse correlation is especially striking during the long Cretaceous magnetic normal “superchron”, when mantle plume activity was at a maximum. We suggest that mantle plumes control magnetic reversal frequency by the following sequence of events. Mantle plumes rise from theD″ seismic layer just above the core/mantle boundary, thinningD″ to fuel the plumes. This increases core cooling by allowing heat to be conducted more rapidly across the core/mantle boundary. Outer core convective activity then increases to restore the abnormal heat loss, causing a decrease in magnetic reversal frequency in accord with model predictions for bothα2 andαω dynamos. When core convective activity increases above a critical level, a magnetic superchron results. The pulse of plume activity that caused the Cretaceous superchron resulted in a minimum increase in core heat loss of about 1200 GW over the present-day level, which corresponds to an increase in Joule heat production of about 120 GW within the core.  相似文献   

20.
Deep CTD/transmissometer tows and water bottle sampling were used during 1985 to map the regional distribution of the neutrally-buoyant plumes emanating from each of two major vent fields on the Southern Symmetrical Segment (SSS) and Endeavour Segment (ES) of the Juan de Fuca Ridge. At both vent fields, emissions from point and diffuse hydrothermal sources coalesced into a single 200-m-thick plume elongated in the direction of current flow and with characteristic temperature anomalies of 0.02–0.05°C and light-attenuation anomalies of 0.01–0.08 m−1 (10–80 μg/l above background). Temperature anomalies in the core of each plume were uniform as far downcurrent as the plumes were mapped (10–15 km). Downcurrent light-attenuation trends were non-uniform and differed between plumes, apparently because different vent fluid chemistries at each field cause significant differences in the settling characteristics of the hydrothermal precipitates. Vent fluids from the SSS are metal-dominated and mostly precipitate very fine-grained hydrous Fe-oxides that remain suspended in the plume. Vent fluids from the ES are sulfur-dominated and precipitate a high proportion of coarser-grained Fe-sulfides that rapidly settle from the plume. The integrated flux of each vent field was estimated from measurements of the advective transport of each plume. Heat flux was 1700 ± 1100 MW from the ES and 580 ± 351 MW from the SSS. Particle flux varied from 546 ± 312 g/s to 204 ± 116 g/s at the ES depending on distance from the vent field, and was 92 ± 48 g/s from the SSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号