首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In an active spreading area like Iceland, where the regional geothermal gradient is in the range 50–150°C/km, it is normally not a problem to find high enough temperature with deep drilling, but the difficulties arise with finding permeable layers at depth within the strata. Various volcanological methods can be applied in the search for aquifers and geothermal reservoir rocks. The flow pattern (as deduced from deuterium studies) indicates that the thermal water flows preferentially along high porosity stratiform horizons and dyke swarms from the recharge areas in the highlands to the hot spring areas in the lowlands. The primary porosity of the volcanic strata is dependent on the chemical composition and the mode of eruption of the volcanic units. Both the reservoir rocks and the flow channels forming the geothermal plumbing system are thought to vary from the Tertiary to the Quaternary provinces due to environmental conditions at the eruptive sites.  相似文献   

2.
A number of geothermal fields explored so far in the circum-Pacific area occur along spreading ridges and subduction zones in areas of young tectonism and volcanism. A preliminary analysis, however, suggests that these geothermal fields are not situated along entire segments of plate boundaries but only at certain locations. In convergent zones these locations are (i) near the ends of plate boundary segments or (ii) in transverse zones that divide plates into several blocks 100–1000 km long. The locations of geothermal fields therefore appear to be influenced by plate geometry and correspond to lateral breaks in the continuity of the underthrusting plate.  相似文献   

3.
The seismotectonic characteristics of 1983–1984, 1993 and 2005 swarms in Andaman Sea are analysed. These swarms are characterised by their typical pulsating nature, oval shaped geometry and higher b values. The migration path of the swarms from north to south along the Andaman Spreading Ridge is documented. While the first two swarms are located along existing mapped rift segments, the 2005 swarm appears to have generated a new rift basin along 8°N. The analysis and supporting evidences suggest that these swarms were generated by intruding magmatic dyke along the weak zones in the crust, followed by rifting, spreading and collapse of rift walls. CMT solutions for 2005 swarm activity indicate that intrusion of magmatic dyke in the crustal weak zone is documented by earthquakes showing strike slip solution. Subsequent events with normal fault mechanism corroborate the rift formation, collapse and its spreading.  相似文献   

4.
The western part of the Bohemian Massif has played an exceptional role in recent geodynamic activity of the region. It is characterised by repeated occurrences of earthquake swarms and by other manifestations of deep tectonic processes (CO 2 emissions, anomalous 3 He content, mineral waters, mofettes, etc.). The purpose of this paper is to introduce some other intraplate regions with earthquake swarm occurrence (French Massif Central; Colli Albani and Vulsini Mts., central Italy; Southern Apennines, Italy; the Danville and Long Valley regions, California; central Arkansas), and with artificially induced earthquake swarms (Larderello, Italy, geothermal field; Coso, California, geothermal field; NE Bavaria, Germany, deep drilling project). Although these areas represent different tectonic environments, the manifestations of recent geodynamic and/or man-made activity are similar in many aspects. This coincidence most probably issues from a common cause of both tectonic and artificially induced earthquake swarms – intrusions/injections of fluids. Since the regions with earthquake swarm occurrence of tectonic origin are situated as a rule in the close neighbourhood of Quaternary volcanoes, the intruding fluids seem to be derived from magma recently transported to upper crustal layers.  相似文献   

5.
The term « swarm » is used to describe a group of related earthquakes, concentrated in space and time, without an obvious principal event. Large shallow earthquakes are often followed by aftershocks, but the pattern in which aftershocks occur differs in detail from that of a swarm. Sequences of New Zealand earthquakes that have been called swarms differ markedly from one another. The most vigorous of them, near Taupo in 1922, appears to have been an ordinary tectonic earthquake accompanied by foreshocks and aftershocks, and by surface faulting. No fault movements accompanied the 1964 swarm in the same area. Other localities that have experienced swarms include Great Barrier Island, Matamata, Kawerau, and Opunake. Swarms are considered by some writers to be characteristic of volcanic regions. Although all New Zealand swarms have occurred in areas of Quaternary volcanism, there are still no observations showing what part, if any, volcanism plays in the generation of earthquake swarms.  相似文献   

6.
Cenozoic volcanism in the Great Basin is characterized by an outward migration of volcanic centers with time from a centrally located core region, a gradational decrease in the initial Sr87/Sr86 ratio with decreasing age and increasing distance from the core, and a progressive change from calc-alkalic core rocks to more alkalic basin margin rocks. Generally each volcanic center erupted copious silicic ignimbrites followed by small amounts of basalt and andesite. The Sr82/Sr86 ratio for old core rocks is about 0.709 and the ratio for young basin margin rocks is about 0.705. Spatially and temporally related silicic and mafic suites have essentially the same Sr87/Sr86 ratios. The locus of older volcanism of the core region was the intersection of a north-south trending axis of crustal extension and high heat flow with the northeast trending relic thermal ridge of the Mesozoic metamorphic hinterland of the Sevier Orogenic Belt. Derivation of the Great Basin magmas directly from mantle with modification by crustal contamination seems unlikely. Initial melting of lower crustal rocks probably occurred as a response to decrease in confining pressure related to crustal extension. Volcanism was probably also a consequence of the regional increase in the geothermal gradient that is now responsible for the high heat flow of the Basin and Range Province. High Sr isotopic ratios of the older core volcanic rocks suggests that conditions suitable for the production of silicic magmas by partial fusion of the crust reached higher levels within the crust during initial volcanism than during production of later magmas with lower isotopic ratios and more alkaline chemistry. As the Great Basin became increasingly attenuated, progressively lower portions of the crust along basin margins were exposed to conditions suitable for magma genesis. The core region became exhausted in low temperature melting components, and volcanism ceased in the core before nearby areas had completed the silicic-mafic eruption cycle leading to their own exhaustion of crustal magma sources.  相似文献   

7.
We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992–1999 and 2003–2008 as well as GPS data from 2000–2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10 cm is observed during the first 2 years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction.  相似文献   

8.
The 1977–1978 eruption of Usu volcano is discussed from the geophysical standpoint as a classic example of dacite volcanism. The activities of dacitic volcanoes are characterized by persistent earthquake swarms and remarkable crustal deformations due to the high viscosity of the magmas; the former include shocks felt near the volcanoes and the latter accompany formation of lava domes or cryptodomes.The hypocenters of the earthquakes occurring beneath Usu volcano have been located precisely. Their distribution defines an earthquake-free zone which underlies the area of doming within the summit crater. This zone is regarded as occupied by viscous magma. The domings within the summit crater forming the cryptodomes have amounted to about 160 m. In addition to uplift they showed thrusting towards the northeast. As a result, the northeastern foot of the volcano has contracted by about 150 m. The relation between crustal deformation and earthquake occurrence is examined, and it is found that the abrupt domings are accompanied by the larger earthquakes (M = 3–4.3). Both the seismic activity and the ground deformation are shown to have a unique and common energy source.The energy of activities of Usu volcano consists of the explosive type, the deformation type and the seismic type; the second and the third are in parallel with each other in discharges, and both energies are complementary to the explosive energy. The explosive energy and the seismic energy have been calculated for an explosion sequence, and it is concluded that the deformation energy is about 10 times greater than the seismic energy. The discharge rate of the seismic energy and the upheaval rates of the cryptodomes have continued to decrease since the outburst of the eruption, except for a small increase at the end of January 1978. Eruptions are governed not only by the supply of the energies but also by the depth of the magma, which has gradually approached the surface. The last eruption occurred in October 1978; however, the crustal deformations and the earthquake swarms are still proceeding as of January 1980, albeit at a lower rate of activity.  相似文献   

9.
Previously unreported depth anomalies in the central and eastern Pacific are described. Some of these depth anomalies exist over hot spots and propagating spreading ridges; they are not limited to the area of active volcanism but extend beyond it, into the areas toward which the volcanism is propagating. These areas may be “precursor” topographic features, showing up areas of impending or potential mid-plate volcanism or spreading. A distinction can be made between active depth anomalies and fossil ones. Gravity anomalies and high heat flow values can be correlated with active depth anomalies in one area, supporting the arguments favoring a thinning of the lithosphere as their underlying cause.  相似文献   

10.
震群活动和地震预报综述   总被引:1,自引:0,他引:1  
研究震群和大地震的关系、用前兆震群预报未来地震的发生,是世界范围内比较活跃的课题之一。文章例举了震群的一些指标以说明前兆性震群的预报意义,并从大范围的众多震群活动阐述大震前震群活动的一些特征。根据震群的分布可确定未来大震的发生地点,并解释不同类型震群的力学成因。  相似文献   

11.
An introduction to the flood basalt volcanism of the Columbia Plateau and Eastern Iceland is followed by more detailed comparative notes. These stress that the volcanism in the two areas was of the same general type. In both regions sub-aerial fissure eruptions gave rise to very extensive basalt flows, particularly on the Columbia Plateau, where some individual lavas cover more than 10,000 km2. The feeding fissures were localized in swarms, and this led in each case to the development of thick, low, shield-like accumulations of flows over the source areas. Progressive (isostatic?) subsidence of the central parts of the basalt pile accentuated the natural tendency for the succession to be thickest in the neighborhood of the feeding fissure swarms. Related differentiates were erupted from the central parts of the fissure vent areas, while olivine-rich basalt flows were apparently often erupted from the edges of the main swarm. Volcanism in Iceland is clearly directly related to the tensional stresses associated with part of the world ridge-rift system. However, this does not appear to be the case on the Columbia Plateau. Consequently it is suggested that flood basalt volcanism of the type described above is simply related to tensional zones in the crust and not directly to the ridge-rift system.  相似文献   

12.
The conditions of transformation of the primary material of extrusive rocks and the synthesis of secondary products during post-eruptive processes have been considered using the example of three large areas of presentday volcanism and hydrothermal activity in Kamchatka, viz., the Great Tolbachik Fissure Eruption of 1975–1976 (GTFE), the Karymskii Volcanic Center (eruption of 1996 in Lake Karymskii), and the Uzon volcanic-hydrothermal system. Post-eruptive transformation of rocks causes volcanic-hydrothermal lithogenesis and low-middle-temperature mineralization in areas of present-day contrast (basalt-andesite) volcanism in zones of crustal extension. Based on the permanent presence of a wide range of acid rocks, such as dacites, rhyolites, and pumices in the areas of Holocene basalt volcanism of Kamchatka, we concluded that in conditions of pre-rift crustal extension, acid volcanism is preceded by deep-seated differentiation (similar to liquation) of primary mantle melts with separation of fluids enriched in ore-forming elements, first of all Cu, Zn, Pb, As, Sb, and Hg. During volcanogenic-hydrothermal lithogenesis in the discharge areas of those fluid systems, the destruction and replacement of primary minerals of igneous rocks and formation of complex-composition metasomatites take place. Clay minerals are major components of metasomatites in subaqueous conditions. The role of microbiota in processes of volcanogenic-hydrothermal lithogenesis and occurrences of local mineralization was studied.  相似文献   

13.
《Journal of Geodynamics》2003,35(1-2):157-172
The temporal clustering of swarm activity differs significantly from characteristics of aftershock sequences accompanying mainshocks. This is often assumed to be caused by crustal structure complexities and fluid migration. However, the underlying mechanism is not yet fully understood, especially, the processes and conditions which lead to the apparent differences between the swarm patterns and typical mainshock–aftershock sequences. In previous works, we have shown that the most conspicuous characteristics of tectonic earthquakes can be reproduced by stick-slip block models incorporating visco-elastic interactions. Now, the same model is shown to reproduce an almost periodical occurrence of earthquake swarms in the case of an enlarged postseismic response. The simulated swarms respect not only the Gutenberg-Richter law for the event sizes, they also reproduce several observations regarding their spatio-temporal patterns. In particular, the comparison with the January 1997 and the year 2000 swarm in Vogtland/NW-Bohemia shows a good agreement in the interevent-time distributions and the spatio-temporal spreading of the swarm activity. The simulated seismicity patterns result from self-organization within the swarm due to local stress transfers and viscous coupling. Consequently, the agreement with the Vogtland swarm activity do not allow any decision about the preparatory process of the swarms; in particular, the question whether the swarms are initially triggered by fluid intrusion or tectonic motion cannot be answered. However, the model investigations suggest that the process of self-organization is very important for understanding the activity patterns of earthquake swarms.  相似文献   

14.
Volcanic history and tectonics of the Southwest Japan Arc   总被引:1,自引:0,他引:1  
Abstract Remarkable changes in volcanism and tectonism have occurred in a synchronous manner since 1.5–2 Ma at the junction of the Southwest Japan Arc and the Ryukyu Arc. Although extensive volcanism occurred in Kyushu before 2 Ma, the subduction-related volcanism started at ca 1.5 Ma, forming a NE–SW trend volcanic front, preceded by significant changes in whole-rock chemistry and mode of eruptions at ca 2 Ma. The Median Tectonic Line has intensified dextral motion since 2 Ma, with a northward shift of its active trace of as much as 10 km, accompanied by the formation of rhomboidal basins in Central Kyushu. Crustal rotation and incipient rifting has also occurred in South Kyushu and the northern Okinawa Trough over the past 2 million years. We emphasize that the commencement age of these events coincides with that of the transition to the westward convergence of the Philippine Sea plate, which we interpret as a primary cause of these synchronous episodes. We assume that the shift in subduction direction led to an increase of fluid component contamination from subducted oceanic slab, which then produced island-arc type volcanism along the volcanic front. Accelerated trench retreat along the Ryukyu Trench may have caused rifting and crustal rotation in the northern Ryukyu Arc.  相似文献   

15.
Plate boundary geometry likely has an important influence on crustal production at mid-ocean ridges. Many studies have explored the effects of geometrical features such as transform offsets and oblique ridge segments on mantle flow and melting. This study investigates how triple junction (TJ) geometry may influence mantle dynamics. An earlier study [Georgen, J.E., Lin, J., 2002. Three-dimensional passive flow and temperature structure beneath oceanic ridge-ridge-ridge triple junctions. Earth Planet. Sci. Lett. 204, 115–132.] suggested that the effects of a ridge–ridge–ridge configuration are most pronounced under the branch with the slowest spreading rate. Thus, we create a three-dimensional, finite element, variable viscosity model that focuses on the slowest-diverging ridge of a triple junction with geometry similar to the Rodrigues TJ. This spreading axis may be considered to be analogous to the Southwest Indian Ridge. Within 100 km of the TJ, temperatures at depths within the partial melting zone and crustal thickness are predicted to increase by ~ 40 °C and 1 km, respectively. We also investigate the effects of differential motion of the TJ with respect to the underlying mantle, by imposing bottom model boundary conditions replicating (a) absolute plate motion and (b) a three-dimensional solution for plate-driven and density-driven asthenospheric flow in the African region. Neither of these basal boundary conditions significantly affects the model solutions, suggesting that the system is dominated by the divergence of the surface places. Finally, we explore how varying spreading rate magnitudes affects TJ geodynamics. When ridge divergence rates are all relatively slow (i.e., with plate kinematics similar to the Azores TJ), significant along-axis increases in mantle temperature and crustal thickness are calculated. At depths within the partial melting zone, temperatures are predicted to increase by ~ 150 °C, similar to the excess temperatures associated with mantle plumes. Likewise, crustal thickness is calculated to increase by approximately 6 km over the 200 km of ridge closest to the TJ. These results could imply that some component of the excess volcanism observed in geologic settings such as the Terceira Rift may be attributed to the effects of TJ geometry, although the important influence of features like nearby hotspots (e.g., the Azores hotspot) cannot be evaluated without additional numerical modeling.  相似文献   

16.
西南印度洋岩浆补给特征研究:来自洋壳厚度的证据   总被引:1,自引:0,他引:1       下载免费PDF全文
西南印度洋中脊为典型的超慢速扩张洋中脊,其岩浆补给具有不均匀分布的特征.洋壳厚度是洋中脊和热点岩浆补给的综合反映,因此反演洋壳厚度是研究大尺度洋中脊和洋盆岩浆补给过程的一种有效方法.本文通过对全球公开的自由空气重力异常、水深、沉积物厚度和洋壳年龄数据处理得到剩余地幔布格重力异常,并反演西南印度洋地区洋壳厚度,定量地分析了西南印度洋的洋壳厚度分布及其岩浆补给特征.研究发现,西南印度洋洋壳平均厚度7.5 km,但变化较大,标准差可达3.5 km,洋壳厚度的频率分布具有双峰式的混合偏态分布特征.通过分离双峰统计的结果,将西南印度洋洋壳厚度分为0~4.8 km的薄洋壳、4.8~9.8 km的正常洋壳和9.8~24 km的厚洋壳三种类型,洋中脊地区按洋壳厚度变化特征可划分为7个洋脊段.西南印度洋地区薄洋壳受转换断层控制明显,转换断层位移量越大,引起的洋壳减薄厚度越大,减薄范围与转换断层位移量不存在明显相关性.厚洋壳主要受控于该区众多的热点活动,其中布维热点、马里昂热点和克洛泽热点的影响范围分别约340 km,550 km和900 km.Andrew Bain转换断层北部外角形成厚的洋壳,具有与快速扩张洋中脊相似的转换断层厚洋壳特征.  相似文献   

17.
内蒙古喀喇沁旗历史上曾多次发生典型震群活动,2008年8月19日至9月14日再次发生震群活动.本文分析了本区历史震群活动与周围中强地震的发生的关系.结果表明喀喇沁地区的震群活动与周围地区的中强地震有一定的呼应关系.因此本次震群活动对周围地区未来中强地震的发生具有一定的预测意义.  相似文献   

18.
A detailed aeromagnetic anomaly map of the Mesozoic seafloor-spreading lineations southwest of Bermuda reveals the dominant magnetic grain of the oceanic crust and the character of the accreting boundary at the time of crustal formation. The magnetic anomaly pattern is that of a series of elongate lobes perpendicular to the fracture zone (flowline) trends. The linear sets of magnetic anomaly peaks and troughs have narrow regions of reduced amplitude anomalies associated with the fracture zones. During the period of Mesozoic geomagnetic polarity reversals (when 1200 km of central North Atlantic seafloor formed), the Atlantic accreting boundary consisted of stationary, elongate, spreading center cells that maintained their independence even though sometimes only minor spatial offsets existed between cells. Normal oceanic crustal structure was formed in the spreading center cells, but structural anomalies and discontinuities characteristic of fracture zones were formed at their boundaries, which parallel flowlines of Mesozoic relative plate motion in the central North Atlantic. We suggest that the memory for a stationary pattern of independent spreading center cells resides in the young brittle lithosphere at the accreting boundary where the lithosphere is weakest; here, each spreading center cell independently goes through its cylce of stress buildup, stress release, and crustal accretion, after which its memory is refreshed. The temporal offset between the peaks of the accretionary activity that takes place within each cell may provide the mechanism for maintaining the independence of adjacent spreading center cells through times when no spatial offset between the cells exists.  相似文献   

19.
The segmentation of the Mid-Atlantic Ridge between 29°N and 31°30′ N during the last 10 Ma was studied. Within our survey area the spreading center is segmented at a scale of 25–100 km by non-transform discontinuities and by the 70 km offset Atlantis Transform. The morphology of the spreading center differs north and south of the Atlantis Transform. The spreading axis between 30°30′N and 31°30′N consists of enéchelon volcanic ridges, located within a rift valley with a regional trend of 040°. South of the transform, the spreading center is associated with a well-defined rift valley trending 015°. Magnetic anomalies and the bathymetric traces left by non-transform discontinuities on the flanks of the Mid-Atlantic Ridge provide a record of the evolution of this slow-spreading center over the last 10 Ma. Migration of non-transform offsets was predominantly to the south, except perhaps in the last 2 Ma. The discontinuity traces and the pattern of crustal thickness variations calculated from gravity data suggest that focused mantle upwelling has been maintained for at least 10 Ma south of 30°30′ N. In contrast, north of 30°30′N, the present segmentation configuration and the mantle upwelling centers inferred from gravity data appear to have been established more recently. The orientation of the bathymetric traces suggests that the migration of non-transform offsets is not controlled by the motion of the ridge axis with respect to the mantle. The evolution of the spreading center and the pattern of segmentation is influenced by relative plate motion changes, and by local processes, perhaps related to the amount of melt delivered to spreading segments. Relative plate motion changes over the last 10 Ma in our survey area have included a decrease in spreading rate from 32 mm a−1 to 24 mm a−1, as well as a clockwise change in spreading direction of 13° between anomalies 5 and 4, followed by a counterclockwise change of 4° between anomaly 4 and the present. Interpretation of magnetic anomalies indicates that there are significant variations in spreading asymmetry and rate within and between segments for a given anomaly time. These differences, as well as variations in crustal thickness inferred from gravity data on the flanks of spreading segments, indicate that magmatic and tectonic activity are, in general, not coordinated between adjacent spreading segments.  相似文献   

20.
We report a comprehensive morphological, gravity and magnetic survey of the oblique- and slow-spreading Reykjanes Ridge near the Iceland mantle plume. The survey extends from 57.9°N to 62.1°N and from the spreading axis to between 30 km (3 Ma) and 100 km (10 Ma) off-axis; it includes 100 km of one arm of a diachronous ‘V-shaped' or ‘chevron' ridge. Observed isochrons are extremely linear and 28° oblique to the spreading normal with no significant offsets. Along-axis there are ubiquitous, en-echelon axial volcanic ridges (AVRs), sub-normal to the spreading direction, with average spacing of 14 km and overlap of about one third of their lengths. Relict AVRs occur off-axis, but are most obvious where there has been least axial faulting, suggesting that elsewhere they are rapidly eroded tectonically. AVRs maintain similar plan views but have reduced heights nearer Iceland. They are flanked by normal faults sub-parallel to the ridge axis, the innermost of which occur slightly closer to the axis towards Iceland, suggesting a gradual reduction of the effective lithospheric thickness there. Generally, the amplitude of faulting decreases towards Iceland. We interpret this pattern of AVRs and faults as the response of the lithosphere to oblique spreading, as suggested by theory and physical modelling. An axial, 10–15 km wide zone of high acoustic backscatter marks the most recent volcanic activity. The zone's width is independent of the presence of a median valley, so axial volcanism is not primarily delimited by median valley walls, but is probably controlled by the lateral distance that the oblique AVRs can propagate into off-axis lithosphere. The mantle Bouguer anomaly (MBA) exhibits little mid- to short-wavelength variation above a few milliGals, and along-axis variations are small compared with other parts of the Mid-Atlantic Ridge. Nevertheless, there are small axial deeps and MBA highs spaced some 130 km along-axis that may represent subdued third-order segment boundaries. They lack coherent off-axis traces and cannot be linked to Oligocene fracture zones on the ridge flanks. The surveyed chevron ridge is morphologically discontinuous, comprising several parallel bands of closely spaced, elevated blocks. These reflect the surrounding tectonic fabric but have higher fault scarps. There is no evidence for off-axis volcanism or greater abundance of seamounts on the chevron. Free-air gravity over it is greater than expected from the observed bathymetry, suggesting compensation via regional rather than pointwise isostasy. Most of the observed variation along the ridge can be ascribed to varying distance from the mantle plume, reflecting changes in mantle temperature and consequently in crustal thickness and lithospheric strength. However, a second-order variation is superimposed. In particular, between 59°30′N and 61°30′N there is a minimum of large-scale faulting and crustal magnetisation, maximum density of seamounts, and maximum axial free-air gravity high. To the north the scale of faulting increases slightly, seamounts are less common, and there is a relative axial free-air low. We interpret the 59°30′N to 61°30′N region as where the latest chevron ridge intersects the Reykjanes Ridge axis, and suggest that the morphological changes that culminate there reflect a local temperature high associated with a transient pulse of high plume output at its apex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号