首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Solonker Suture Zone is thought to record the terminal evolution of the Central Asian Orogenic Belt (CAOB) in Inner Mongolia. However, two contrasting interpretations of the timing of suturing of the Solonker Suture Zone exist: (i) Permian to Early Triassic; and (ii) Middle Devonian or Late Devonian to Carboniferous. The Shuangjing Schist is exposed in the Linxi area along the Xar Moron Fault Zone, which marks the southern boundary of the Solonker Suture Zone in the eastern section of the CAOB, and thus provides insight into the timing of suturing of the Solonker Suture Zone. Detailed and systematic analysis of the petrology and geochemistry of the Shuangjing Schist shows that the Shuangjing Schist developed by greenschist facies prograde metamorphism of a volcanisedimentary rock series protolith. The volcanic parts of the Shuangjing Schist are a calc‐alkaline series with large volumes of intermediate members and subordinate acidic members. Volcanism occurred in a magmatic arc on the continental margin and was induced by subduction‐related magmatism resulting from mantle metasomatism. The sedimentary parts of the Shuangjing Schist reflect a transition from continental shelf to abyssal plain sedimentation. The formation of the Shuangjing Schist is suggested to be related to closure of an arc/forearc‐related ocean basin. The timing is constrained by a laser ablation inductively coupled plasma–mass spectrometry (LA‐ICP–MS) U–Pb magmatic zircon age of 298 ± 2 Ma from a carbonaceous biotite–plagioclase schist that was intruded by granite at 272 ± 2 Ma. In the Linxi area, southward subduction of the arc/forearc basin led to uplift, thickening, collapse, and erosion of the overriding continental crust. Collapse induced extension and widespread magmatism along the volcanic arc at the northern margin of the North China Craton. The closure of the arc/forearc‐related oceanic basin led to the formation of Late Permian to Middle Triassic collisional granites and the subsequent end of the collision of the Solonker Suture Zone.  相似文献   

2.
NRM directions measured from 32 sites in Middle Cambrian, Upper Silurian/Lower Devonian and Lower Carboniferous redbeds follow the trend of the Variscan arc in North Spain. Thermal demagnetisation does not significantly alter this pattern. Fold tests show that the NRM is earlier than the ?1 folds which form the arc; consistency of angle between bedding and the tilt-corrected NRM inclination (22–28°), similarity of the corresponding palaeolatitudes to Carboniferous values and microscopic evidence of Variscan redistribution of hematite indicates that the magnetisation is post-Lower Carboniferous. A statistical plot of the orientation of ?1 fold traces against angle between ?1 fold traces and declination of NRM shows that where these folds curve through 165° the NRM has been rotated through 110°: the arc is an orocline. Restoration of this rotation, and that needed to close the Bay of Biscay, brings the calculated mean palaeomagnetic pole reasonably close to the Upper Carboniferous part of the apparent polar wander path for Europe.  相似文献   

3.
The stratigraphy and radiolarian age of the Mizuyagadani Formation in the Fukuji area of the Hida‐gaien terrane, central Japan, represent those of Lower Permian clastic‐rock sequences of the Paleozoic non‐accretionary‐wedge terranes of Southwest Japan that formed in island arc–forearc/back‐arc basin settings. The Mizuyagadani Formation consists of calcareous clastic rocks, felsic tuff, tuffaceous sandstone, tuffaceous mudstone, sandstone, mudstone, conglomerate, and lenticular limestone. Two distinctive radiolarian faunas that are newly reported from the Lower Member correspond to the zonal faunas of the Pseudoalbaillella u‐forma morphotype I assemblage zone to the Pseudoalbaillella lomentaria range zone (Asselian to Sakmarian) and the Albaillella sinuata range zone (Kungurian). In spite of a previous interpretation that the Mizuyagadani Formation is of late Middle Permian age, it consists of Asselian to Kungurian tuffaceous clastic strata in its lower part and is conformably overlain by the Middle Permian Sorayama Formation. An inter‐terrane correlation of the Mizuyagadani Formation with Lower Permian tuffaceous clastic strata in the Kurosegawa terrane and the Nagato tectonic zone of Southwest Japan indicates the presence of an extensive Early Permian magmatic arc(s) that involved almost all of the Paleozoic non‐accretionary‐wedge terranes in Japan. These new biostratigraphic data provide the key to understanding the original relationships among highly disrupted Paleozoic terranes in Japan and northeast Asia.  相似文献   

4.
Ion microprobe dating of zircon from meta‐igneous samples of the Hitachi metamorphic terrane of eastern Japan yields Cambrian magmatic ages. Tuffaceous schist from the Nishidohira Formation contains ca 510 Ma zircon, overlapping in age with hornblende gneiss from the Tamadare Formation (ca 507 Ma), and meta‐andesite (ca 507 Ma) and metaporphyry (ca 505 Ma) from the Akazawa Formation. The latter is unconformably overlain by the Carboniferous Daioin Formation, in which a granite boulder from metaconglomerate yields a magmatic age of ca 500 Ma. This date overlaps a previous estimate for granite that intrudes the Akazawa Formation. Intrusive, volcanic, and volcaniclastic lithologies are products of a Cambrian volcanic arc associated with a continental shelf, as demonstrated by the presence of arkose and conglomerate in the lowermost Nishidohira Formation. Granitic magmatism of Cambrian age is unknown elsewhere in Japan, except for a single locality in far western Japan with a similar geological context. Such magmatism is also unknown on the adjacent Asian continental margin, with the exception of the Khanka block in far northeastern China. A ‘great hiatus’ in the Paleozoic stratigraphy of the Sino–Korean block also exists in the Hitachi terrane between Cambrian volcanic arc rocks and Early Carboniferous conglomerate, and may indicate a common paleogeographic provenance.  相似文献   

5.
Guo-Can  Wang  Robert P.  Wintsch  John I.  Garver  Mary  Roden-Tice  She-Fa  Chen  Ke-Xin  Zhang  Qi-Xiang  Lin  Yun-Hai  Zhu  Shu-Yuan  Xiang  De-Wei  Li 《Island Arc》2009,18(3):444-466
Triassic turbidites dominate the Songpan–Ganzi–Bayan Har (SGBH) terrane of the northern Tibetan Plateau. U‐Pb dating on single detrital zircon grains from the Triassic Bayan Har Group turbidites yield peaks at 400–500 m.y., 900–1000 m.y., 1800–1900 m.y., and 2400–2500 m.y., These results are consistent with recently published U‐Pb zircon ages of pre‐Triassic bedrock in the East Kunlun, Altyn, Qaidam, Qilian and Alaxa areas to the north, suggesting that provenance of the Bayan Har Group may include these rocks. The similarities in the compositions of the lithic arkosic sandstones of the Bayan Har Group with the sandstones of the Lower‐Middle Triassic formations in the East Kunlun terrane to the north also suggests a common northern provenance for both. A well exposed angular unconformity between the Carboniferous–Middle Permian mélange sequences and the overlying Upper Permian or Triassic strata indicates that regional deformation occurred between the Middle and Late Permian. This deformation may have been the result of a soft collision between the Qiangtang terrane and the North China Plate and the closure of the Paleo‐Tethyan oceanic basin. The Bayan Har Group turbidites were then deposited in a re‐opened marine basin on a shelf environment. Fission‐track dating of detrital zircons from the Bayan Har Group sandstones revealed pre‐ and post‐depositional age components, suggesting that the temperatures did not reach the temperatures necessary to anneal retentive zircon fission tracks (250–300°C). A 282–292 m.y. peak age defined by low U concentration, retentive zircons likely reflects a northern granitic source. Euhedral zircons from two lithic arkoses with abundant volcanic fragments in the southern area yielded a ~237 m.y. zircon fission track (ZFT) peak age, likely recording the maximum age of deposition. A dominant post‐depositional 170–185 m.y. ZFT peak age suggests peak temperatures were reached in the Early Jurassic. Some samples appear to record a younger thermal event at ~140 m.y., a short lived event that apparently affected only the least retentive zircons.  相似文献   

6.
Piera  Spadea  Massimo  D'Antonio 《Island Arc》2006,15(1):7-25
Abstract The Southern Uralides are a collisional orogen generated in the Late Devonian–Early Carboniferous by the collision of the Magnitogorsk island arc (MA) generated in the Early to Middle Devonian by intra‐oceanic convergence opposite to the continental margin, and the continental margin of the East European craton. A suture zone of the arc to the continental margin, the Main Uralian Fault (MUF), is marked by ophiolites and exhumed high‐pressure–low‐temperature metamorphic rocks of continental origin. The pre‐orogenic events of the Southern Urals and their geodynamic setting are traced by means of fluid‐immobile incompatible trace elements (rare earth elements and high field strength elements) and Sr–Nd–Pb isotope geochemistry of the MA suites, in particular the protoarc suite with boninites and probably ankaramites, and the mature arc comprised of island arc tholeiitic (IAT) suites, transitional IAT to calc‐alkaline (CA), and CA suites. The MA volcanics result in genetically distinct magmatic source components. In particular, depleted normal‐mid‐oceanic ridge basalt‐type mantle sources with various enrichments in a slab‐derived aqueous fluid component are evident. The enriched component is not involved in significant amounts, as testified by the rather radiogenic Nd isotopes and unradiogenic Pb isotopes. Further information on the pre‐orogenic events is provided by the Mindyak Massif metagabbros derived from diverse gabbroic protoliths that were affected by oceanic rodingitization, and subsequently by a high‐temperature (HT) metamorphism related to the development of a metamorphic sole. The HT metamorphism has the same age as the protoarc volcanism, and constrains the initiation of subduction at approximately 410 Ma. Consequently, the maximum timespan between initial intra‐oceanic convergence and final collision is approximately 31 my, a duration consistent with that of present‐day ongoing collisions in the western Pacific. The characteristics of early volcanism and the traces of a metamorphic sole provide useful criteria to attribute most MUF ophiolites to the Tethyan type with a complex pre‐orogenic evolution.  相似文献   

7.
Deformation of the Circum-Rhodope Belt Mesozoic (Middle Triassic to earliest Lower Cretaceous) low-grade schists underneath an arc-related ophiolitic magmatic suite and associated sedimentary successions in the eastern Rhodope-Thrace region occurred as a two-episode tectonic process: (i) Late Jurassic deformation of arc to margin units resulting from the eastern Rhodope-Evros arc–Rhodope terrane continental margin collision and accretion to that margin, and (ii) Middle Eocene deformation related to the Tertiary crustal extension and final collision resulting in the closure of the Vardar ocean south of the Rhodope terrane. The first deformational event D1 is expressed by Late Jurassic NW-N vergent fold generations and the main and subsidiary planar-linear structures. Although overprinting, these structural elements depict uniform bulk north-directed thrust kinematics and are geometrically compatible with the increments of progressive deformation that develops in same greenschist-facies metamorphic grade. It followed the Early-Middle Jurassic magmatic evolution of the eastern Rhodope-Evros arc established on the upper plate of the southward subducting Maliac-Meliata oceanic lithosphere that established the Vardar Ocean in a supra-subduction back-arc setting. This first event resulted in the thrust-related tectonic emplacement of the Mesozoic schists in a supra-crustal level onto the Rhodope continental margin. This Late Jurassic-Early Cretaceous tectonic event related to N-vergent Balkan orogeny is well-constrained by geochronological data and traced at a regional-scale within distinct units of the Carpatho-Balkan Belt. Following subduction reversal towards the north whereby the Vardar Ocean was subducted beneath the Rhodope margin by latest Cretaceous times, the low-grade schists aquired a new position in the upper plate, and hence, the Mesozoic schists are lacking the Cretaceous S-directed tectono-metamorphic episode whose effects are widespread in the underlying high-grade basement. The subduction of the remnant Vardar Ocean located behind the colliding arc since the middle Cretaceous was responsible for its ultimate closure, Early Tertiary collision with the Pelagonian block and extension in the region caused the extensional collapse related to the second deformational event D2. This extensional episode was experienced passively by the Mesozoic schists located in the hanging wall of the extensional detachments in Eocene times. It resulted in NE-SW oriented open folds representing corrugation antiforms of the extensional detachment surfaces, brittle faulting and burial history beneath thick Eocene sediments as indicated by 42.1–39.7 Ma 40Ar/39Ar mica plateau ages obtained in the study. The results provide structural constraints for the involvement components of Jurassic paleo-subduction zone in a Late Jurassic arc-continental margin collisional history that contributed to accretion-related crustal growth of the Rhodope terrane.  相似文献   

8.
On the basis of new paleontological data,the sequence and distributions of the Middle Devonian-Tournaisian rocks on Hainan Island have been sorted out for the first time.The Devonian rocks include the Middle Devonian Jinbo Formation and the Upper Devonian Changjiang Formation,which are distributed in northwestern Hainan Island.The Jinbo Formation is represented by631 m of littoral facies deposits,and was intruded by the Yanshanian granite in the base.The presence of chitinozoans Eisenackitina caster,Funsochitina pilosa,and Lagenochitina amottensis indicates the Givetian in age.The Changjiang Formation is made up of 140 m of neritic facies rocks,and contains the Famennian conodonts Palmatolepis gracilis sigmoidalis,Polygnathus germanus,and corals Cystophrentis kalaohoensis.The Devonian-Tournaisian transition beds,the lower part of the Jishi Formation,are composed of 61–129 m sandstone and siltstone,with gastropods Euomphalus spp.and brachiopods,and marked by conglomerate with the underlying Devonian rocks.The middle-upper part of the Tournaisian Jishi Formation consists of 100–251 m clastic and carbonate rocks,containing abundant corals Pseudoularinia irregularis,conodonts Siphonodella isosticha,trilobites Weberiphillipsia linguiformis,and brachiopods.On the basis of the occurrence of Xinanosprifer flabellum and Homotoma sp.,the Nanhao Formation in southern Hainan Island is now regarded as the Lower Silurian,instead of the previously designated Lower Carboniferous.It is confirmed that no Carboniferous rocks occurred in the area south to the Gancheng-Wanning Fault.  相似文献   

9.
The Gangdese magmatic belt is located in the southern margin of the Lhasa terrane, south Tibet. Here zircon U–Pb ages and Hf isotopic data, as well as whole‐rock geochemistry and Sr–Nd isotopes on andesites from the Bima Formation with a view to evaluating the history of the Gangdese magmatism and the evolution of the Neotethys Ocean. Zircon U–Pb dating yields an age of ca 170 Ma from six samples, representing the eruptive time of these volcanic rocks. Zircon Hf isotopes show highly positive εHf(t) values of +13 to +16 with a mean of +15.2. Whole‐rock geochemical and Sr–Nd isotopic results suggest that the magma source of these andesites was controlled by partial melting of a depleted mantle source with addition of continental‐derived sediments, similar to those in the southern arcs of the Lesser Antilles arc belt. In combination with published data, the volcanic rocks of the Bima Formation are proposed to have been generated in an intra‐oceanic arc system, closely associated with northward subduction of the Neotethyan oceanic lithosphere.  相似文献   

10.
Petrographic analysis and chemical analysis of major and trace elements including rare earth elements of the Neoproterozoic sandstones from the Chandarpur Group and the Tiratgarh Formation have been carried out to determine their provenance, tectonic setting and weathering conditions. All sandstone samples are highly enriched in quartz but very poor in feldspar and lithic fragments. Petrographically and geochemically these sandstones are classified as subarkose, sublitharenite and arenite. The Chemical Index of Alteration (CIA mean 68) and Th/U ratios (mean 4.2) for these sandstones suggest their moderate weathering nature. Generally, all sandstone samples are strongly depleted in major elements (except SiO2), trace elements (except Zr) and REE in comparison with Post Archean Australian Shale (PAAS) and Upper Continental Crust (UCC). Their mineralogy and mean of elemental ratios suitable for determination of provenance and tectonic setting, e.g. Al2O3/SiO2 (0.02), K2O/Na2O (10), Eu/Eu* (0.67), (La/Lu)n (10.4), La/Sc (3), Th/Sc (1.2), La/Co (0.22), Th/Co (0.08), and Cr/Th (7.2), support a felsic source and a passive margin tectonic setting for these sandstones. Also these key elemental ratios do not show much variation over a range of SiO2. Thus we attest their significance in determining source rock characteristics of quartz rich sandstones. Chondrite‐normalized REE patterns with LREE enrichment and a strong negative Eu anomaly are also attributed to felsic source rock characteristics for these sandstones. The source rocks identified are granite and gneiss of the Bastar craton. Minor amounts may have been derived from older supracrustals of the Bastar craton. However, the major element data of the Paleoproterozoic Sakoli schists when compared with those of the Neoproterozoic sandstones indicate that the schists were derived from a mafic source and deposited in an active continental margin tectonic setting. There is, however, little difference in CIA values between the Paleoproterozoic Sakoli schists and Neoproterozoic sandstones, indicating prevailing of similar (moderate‐intense) weathering conditions throughout the Proterozoic in the Bastar craton. Our study also suggests a change in the provenance and tectonic setting of deposition of sediments from dominantly a mafic source and an active continental margin in the Paleoproterozoic to dominantly granite and gneiss (felsic source) and a passive continental margin in the Neoproterozoic in the Bastar craton.  相似文献   

11.
JUN-ICHI  TAZAWA 《Island Arc》2002,11(4):287-301
Abstract    Late Paleozoic (Middle Devonian, Early Carboniferous and Middle Permian) brachiopod faunas of the South Kitakami Belt, northeast Japan, are closely related paleobiogeographically to those of the Xinjiang–Inner Mongolia–Jilin region, northwest–northeast China. This relationship suggests that the South Kitakami Belt was part of the trench or continental shelf bordering the northern and eastern margins of North China (Sino-Korea) during the Middle Devonian to Middle Permian times. Among the three models on the origin and tectonic development of the South Kitakami Belt, the strike–slip model is most consistent, but both the microcontinent model and the nappe model have considerable inconsistencies with the above paleobiogeographic and paleogeographic evidence.  相似文献   

12.
Yong Il  Lee  Dong Hyun  Lim 《Island Arc》2008,17(1):152-171
Abstract The Gyeongsang Basin is a non‐marine sedimentary basin formed by extensional tectonism during the Early Cretaceous in the southeastern Korean Peninsula. The sediment fill starts with the Sindong Group distributed along the western margin of the basin. It consists of three lithostratigraphic units: the Nakdong (alluvial fan), Hasandong (fluvial) and Jinju (lacustrine) formations with decreasing age. Sindong Group sandstones are classified into four petrofacies (PF) based on their detrital composition: PF‐A consists of the lower Nakdong Formation with average Q73F12R15; PF‐B the upper Nakdong and lower Hasandong formations with Q66F15R18; PF‐C the middle Hasandong to middle Jinju formations with Q49F29R22; and PF‐D the upper Jinju Formation with Q26F34R41. The variations of detrital composition influenced the diagenetic mineral assemblage in the Sindong Group sandstones. Illite and dolomite/ankerite are important diagenetic minerals in PF‐A and PF‐B, whereas calcite and chlorite are dominant diagenetic minerals in PF‐C and PF‐D. Most of the diagenetic minerals can be divided into early and late diagenetic stages of formation. Early diagenetic calcites occur mostly in PF‐C, probably controlled by arid to semiarid climatic conditions during the sandstone deposition, no early calcite being found in PF‐A and PF‐B. Late‐stage calcites are present in all Sindong Group sandstones. The calcium ions may have been derived from shale diagenesis and dissolution of early stage calcites in the Hasandong and Jinju sandstones. Illite, the only diagenetic clay mineral in PF‐A and lower PF‐B, is inferred to be a product of kaolinite transformation during deep burial, and the former presence of kaolinite is inferred from the humid paleoclimatic conditions during the deposition of the Nakdong Formation. Chlorites in PF‐C and PF‐D are interpreted to be the products of transformation of smectitic clay or of precipitation from alkaline pore water under arid to semiarid climatic conditions. The occurrence of late‐stage diagenetic minerals largely depended on the distribution of early diagenetic minerals, which was controlled initially by the sediment composition and paleoclimate.  相似文献   

13.
Summary In the Rügen area of northern Germany, Old Red Sandstones, ranging from Late Emsian to Givetian in age, unconformably overlie deformed Ordovician strata. The Middle Devonian Old Red passes conformably up into a Late Devonian carbonate facies and then into the Lower Carboniferous, apparently without a break.  相似文献   

14.
Detailed petrography and modal analysis of 35 sandstone thin sections was carried out to determine petrotectonic setting of the provenance of the Lower Siwalik molasse of southeastern Kumaun Himalaya. The sandstones are fine‐ to coarse‐grained (0.14–0.63 mm), poorly‐ to moderately‐sorted and comprise lithic arenites, sublithic arenites and lithic greywackes. The sandstones invariably belong to the quartzolithic QtFL (Qt, total quartz; F, feldspar; L, lithic grains) and QmFLt (Qm, monocrystalline quartz; Lt, lithic grains plus polycrystalline quartz) petrofacies, and indicate their derivation from a quartzose‐ and transitional‐recycled orogen provenance under sub‐humid climatic conditions. The framework composition of the sandstones comprises abundant monocrystalline and polycrystalline quartz and low‐ to high‐grade metamorphic rock fragments, along with subordinate feldspar, characterized by low ratios of plagioclase to total feldspar, and accessory minerals. The framework composition and petrofacies characters of these texturally submature sandstones suggest their derivation mainly from the nearby located Great Himalaya terrane and subordinately from the Tethys and Lesser Himalayan terranes. A comparison of the data presented here with the previous similar data from Lower Siwalik of northwestern Pakistan, northwestern India, south‐central Kumaun, western Nepal and southeastern Nepal reveals that like the Lower Siwalik rivers in other sections, the Lower Siwalik rivers of the southeastern Kumaun too drained large parts of the Great Himalayan terrane and some parts of the Tethys and Lesser Himalayan terranes.  相似文献   

15.
Abstract The Lesnaya Group is part of a thick, poorly dated turbidite assemblage that sits in the footwall of a regionally extensive collision zone in which the Cretaceous–Paleocene Olutorsky island arc terrane was obducted onto continental margin basin strata. Nannoplankton from 18 samples from the upper part of the Lesnaya Group yield Paleocene through Middle Eocene assemblages. Detrital zircons from nine sandstone samples have a young population of fission-track ages that range from 43.7 ± 3.4 to 55.5 ± 3.5 Ma (uppermost Paleocene to Middle Eocene). The deformed footwall rocks of the Lesnaya Group and the overlying thrusts of the Olutorsky arc terrane, are unconformably overlain by neoautochthonous deposits which are Lutetian (lower Middle Eocene) and younger. Together, these new data indicate that thrusting, which is inferred to have been driven by collision of the Cretaceous–Paleocene island arc with north-eastern Asia, took place in the mid-Lutetian, at about 45 Ma.  相似文献   

16.
The dating of radiolarian biostratigraphic zones from the Silurian to Devonian is only partially understood. Dating the zircons in radiolarian‐bearing tuffaceous rocks has enabled us to ascribe practical ages to the radiolarian zones. To extend knowledge in this area, radiometric dating of magmatic zircons within the radiolarian‐bearing Hitoegane Formation, Japan, was undertaken. The Hitoegane Formation is mainly composed of alternating beds of tuffaceous sandstones, tuffaceous mudstones and felsic tuff. The felsic tuff and tuffaceous mudstone yield well‐preserved radiolarian fossils. Zircon grains showing a U–Pb laser ablation–inductively coupled plasma–mass spectrometry age of 426.6 ± 3.7 Ma were collected from four horizons of the Hitoegane Formation, which is the boundary between the Pseudospongoprunum tauversi to Futobari solidus–Zadrappolus tenuis radiolarian assemblage zones. This fact strongly suggests that the boundary of these assemblage zones is around the Ludlowian to Pridolian. The last occurrence of F. solidus is considered to be Pragian based on the reinterpretation of a U–Pb sensitive high mass‐resolution ion microprobe (SHRIMP) zircon age of 408.9 ± 7.6 Ma for a felsic tuff of the Kurosegawa belt, Southwest Japan. Thus the F. solidus–Z. tenuis assemblage can be assigned to the Ludlowian or Pridolian to Pragian. The present data also contribute to establishing overall stratigraphy of the Paleozoic rocks of the Fukuji–Hitoegane area. According to the Ordovician to Carboniferous stratigraphy in this area, Ordovician to Silurian volcanism was gradually reduced to change the sedimentary environment into a tropical lagoon in the early Devonian. And the quiet Carboniferous environment was subsequently interrupted, throwing it once more into the volcanic conditions in the Middle Permian.  相似文献   

17.
Lower Carboniferous lavas from the Midland Valley and adjacent regions of Scotland are mildly alkaline and intraplate in nature. The sequence is dominated by basalt and hawaiite, although mugearite, benmoreite, trachyte and rhyolite are also present. Basic volcanic rocks display the LIL element and LREE enrichment typical of intraplate alkali basalt terrains. Low initial87Sr/86Sr (0.7029–0.7046), high εNd (−0.4 to +5.6) and moderately radiogenic206Pb/204Pb (17.77–18.89) ratios are also comparable with alkali basalts from other continental rifts and oceanic islands.When the Carboniferous lavas are compared with subduction-related lavas of Old Red Sandstone age, erupted in and around the Midland Valley ca. 50 Ma earlier (at 410 Ma) remarkable similarities are apparent. Significant overlap occurs in Nd and Pb isotopic compositions. Sr isotopic compositions are, however, more radiogenic in the older subduction-related lavas. This, combined with high K and Rb concentrations in ORS lavas may be explained by the incorporation of a sediment component derived from the subducted slab, which by Lower Carboniferous times had been lost from the mantle source region by convection. A pronounced negative Nb anomaly in the ORS subduction-related lavas may be explained by the retention of a Nb-bearing phase in the mantle during hydrous melting of the mantle wedge above the subduction zone.Allowing for the effects of the added component from the subducted slab, there appears to be no necessity to invoke separate mantle source regions for the two suites of lavas: both may have been derived from chemically similar portions of mantle. If volcanic arc lavas are derived from the mantle wedge, the implication is that such a source lies at relatively shallow depth within the upper mantle: the same may therefore apply to the Carboniferous continental rift basalts. This evidence, combined with the fact that there is no evident hot-spot trail across the Midland Valley despite a long period of within-plate volcanism and rapid plate movements during the Carboniferous, suggests that the alkali basalt magmatism is not the product of a deep-seated mantle plume. Rather, the volcanism appears to owe more to passive rifting and to diapiric upwelling from a source region within the uppermost mantle.  相似文献   

18.
The formation of hematite and goethite concretions in different sedimentary rocks including sandstones is an important diagenetic process in the geologic history of the Earth. Its interpretation can also contribute to understanding the diagenetic history of Martian iron hydroxide concretions. A case study of iron-rich concretions from Estonian Middle Devonian sandstones exposed in ancient river valleys in southeastern Estonia was carried out based on the results of mineralogical, petrographical, geochemical, petrophysical and magnetic analyses. It was found that the high Fe2O3(total) content (25.0–39.5%), high magnetic susceptibility, bulk and grain density, very low porosity, corrosion and fracturing of the quartz grains of the platy iron concretions are in contrast with properties of the Devonian host sandstones. However the ferrous iron content (measured as FeO) of iron-rich concretions was as low as in the other Devonian rocks, suggesting an oxidizing environment and arid climate during the cementation by iron-hydroxides. The fracturing of quartz grains cemented by iron hydroxides could take place at near-surface conditions including vadose and phreatic zones in arid climate with high evaporation rates. Such climatic conditions have been reported for the Baltic region during Devonian, Upper Permian and Triassic times. We have found that goethite is prevalent in the cement, replacing clay and carbonate minerals. We assume that this iron-rich cement is originated from the mobilization of iron in host sandstones by groundwater, associated with tectonic activity at the end of the Middle Devonian, evidenced by fracturing in Devonian outcrops and caves. Although this mobilization could occur under reducing conditions, precipitation of goethite and hematite for the cementation could take place in oxidizing environment along bedding planes close to the surface during short sedimentation breaks. Another possible time for the formation of iron concretions could be Permian, under the condition of both arid climate and tectonic activity.  相似文献   

19.
MAKOTO TAKEUCHI 《Island Arc》2011,20(2):221-247
Detrital chloritoids were extracted from the Lower Jurassic sandstones in the Joetsu area of central Japan. The discovery of detrital chloritoids in the Joetsu area, in addition to two previous reports, confirms their limited occurrence in the Jurassic strata of the Japanese islands. This finding emphasizes the importance of the denudation of chloritoid‐yielding metamorphic belts in Jurassic provenance evolution, in addition to a change from an active volcanic arc to a dissected arc that has already been described. Possible sources for the detrital chloritoids from the Jurassic sandstones are the Permo–Triassic chloritoid‐yielding metamorphic rocks distributed in dispersed tectonic zones (Hida, Unazuki, Ryuhozan and Hitachi Metamorphic Rocks), which are in fault contact with Permian to Jurassic accretionary complexes in the Japanese islands. This is because all of these pre‐Jurassic chloritoid‐yielding metamorphic rocks have a Carboniferous–Permian depositional age and a Permo–Triassic metamorphic age, whereas a Permian–Triassic metamorphic age on the Hitachi Metamorphic Rocks remains unreported. In addition, most metamorphic chloritoids imply a former stable land surface that has evolved into an unstable orogenic area. Therefore, the chloritoid‐yielding metamorphic rocks might form a continuous metamorphic belt originating from a passive continental margin in East Asia. Evidence from paleontological and petrological studies indicates that the Permo–Triassic metamorphic belt relates to a collision between the Central Asian Orogenic Belt and the North China Craton. The evolution of the Permian–Jurassic provenance of Japanese detrital rocks indicates that the temporal changes in detritus should result from sequences of collision‐related uplifting processes.  相似文献   

20.
The Hangenberg Crisis at the Devonian–Carboniferous boundary is known as a polyphase extinction event that affected more than 45 % of marine and terrestrial genera. As the cause of this event is still debated, analyses were carried out on sedimentary samples from the Devonian–Carboniferous Pho Han Formation in northeastern Vietnam to reconstruct the paleoenvironment around the time of this event using stable carbon isotopes; total sulfur; manganese; vanadium; molybdenum; and sedimentary organic matter, such as dibenzothiophenes, cadalene, and regular steranes. These geochemical signatures provide a high‐resolution redox history for this section and show that transgression‐driven high primary productivity, possibly enhanced by terrestrial input, caused severe oxygen depletion along the continental margin of the South China block during the Hangenberg Crisis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号