首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper concerns the evaporite units, depositional systems, cyclicity, diagenetic products and anhydritization patterns of the Calatayud Basin (nonmarine, Miocene, central Spain). In outcrop, the sulphate minerals of these shallow lacustrine evaporites consist of primary and secondary gypsum, the latter originating from the replacement of anhydrite and glauberite. In the evaporative systems of this basin, gypsiferous marshes of low salinity can be distinguished from central, saline lakes of higher salinity. In the gypsiferous marsh facies, the dominant, massive, bioturbated gypsum was partly replaced by synsedimentary chert nodules and siliceous crusts. In the saline lake facies, either cycles of gypsiferous lutite‐laminated gypsarenite or irregular alternations of laminated gypsum, nodular and banded glauberite, thenardite and nodular anhydrite precipitated. Early replacement of part of the glauberite by anhydrite also occurred. Episodes of subaerial exposure are represented by: (1) pedogenic carbonates (with nodular magnesite) and gypsiferous crusts composed of poikilitic crystals; and (2) nodular anhydrite, which formed in a sabkha. Additionally, meganodular anhydrite occurs, which presumably precipitated from ascending, highly saline solutions. The timing of anhydritization was mainly controlled by the salinity of the pore solutions, and occurred from the onset of deposition to moderate burial. Locally, a thick (>200 m) sequence of gypsum cycles developed, which was probably controlled by climatic variation. A trend of upward‐decreasing salinity is deduced from the base to the top of the evaporite succession.  相似文献   

2.
Calcium-borates, mainly pandermite (priceite) and howlite, but also bakerite and colemanite, are intercalated within the Sultançayir Gypsum (Miocene, Sultançayir Basin, western Anatolia). This lacustrine unit, represented by secondary gypsum in outcrop, is characterized by: (1) a clear facies distribution of depocentral laminated lithofacies and debris-flow deposits, a wide marginal zone of sabkha deposits, and at least one selenitic shoal located toward the basin margin; (2) evaporitic cycles displaying a shallowing-upward trend; and (3) a diagenetic evolution of primary gypsum to (burial) anhydrite followed by its final re-hydration. The calcium borates precipitated only in the depocentre of the lake and were partly affected by synsedimentary reworking, indicating that they formed during very early diagenesis. The lithofacies, which are made up of a host gypsum (finely laminated) and borates (nodules, irregular masses and discontinuous bands; also fine laminations), indicate that the borates grew interstitially because of the inflow and mixing of borate-rich solutions with basinal brines. Borate growth displaced and replaced primary gypsum beneath a relatively deep depositional floor. Borate formation as free precipitates was much less common. The anhydritization of primary gypsum took place during early to late diagenesis (burial <250 m deep). This process also resulted in partial replacement of pandermite and accompanying borates (bakerite and howlite) as well as other early diagenetic minerals (celestite) by anhydrite. Final exhumation resulted in the replacement of anhydrite by secondary gypsum, and in the partial transformation of pandermite and howlite into secondary calcite.  相似文献   

3.
Development of a diagenetic anhydrite bed at the base of the Cretaceous Maha Sarakham Saline Formation (the `Basal Anhydrite' member) of the Khorat Plateau in north-eastern Thailand took place due to leaching and/or pressure dissolution of salt at the contact between an underlying active sandstone aquifer system and an overlying massive halite-dominated evaporite sequence. Basal evaporites composed of halite with intercalated anhydrite of the latter sequence are undergoing dissolution as a result of subsurface flushing, with anhydrite produced as the insoluble residue. The result is a 1·1 m thick interval of nodular anhydrite displaying unique, basin-wide continuity. Observed textures, petrographic features and chemical data from the anhydrite and associated authigenic minerals support the origin of the Basal Anhydrite Member as an accumulation residue from the dissolution of the Maha Sarakham salts. Petrographically, the anhydrite in this unit is made up of crystals that are blocky and recrystallized, sheared, generally elongated and broken, and is bounded at the bottom by organic-rich stylolite surfaces. Authigenic and euhedral dolomite and calcite crystals are associated with the anhydrite. Traces of pyrite, galena and chalcopyrite are present along the stylolite surfaces suggesting supply of fresh water from the underlying sandstone at highly reducing conditions of burial. The δ34S of sulphate in the Basal Anhydrite averages 15 ‰ (CDT) and falls within the isotopic composition of the anhydrite in the Cretaceous Maha Sarakham Formation proper and the Cretaceous values of marine evaporites. Measured δ18O in dolomite range from ?4·37 to ?14·26‰ (PDB) suggesting a re-equilibration of dolomite with basinal water depleted in 18O and possible recrystallization of dolomite under relatively elevated temperatures. The δ13C, however, varies from +1·57 to ?2·53‰ (PDB) suggesting a contribution of carbon from oxidation of organic matter. This basal anhydrite bed, similar to basinwide beds found at the bottom of many giant evaporite sequences, has always been considered to be depositional. Here, at the base of the Maha Sarakham Formation, we demonstrate that the anhydrite is diagenetic in origin and was formed by accumulation of original anhydrite by dissolution of interbedded halite from waters circulating though the underlying aquifer: it represents an `upside-down' caprock.  相似文献   

4.
The Badenian (Middle Miocene) Ca-sulphate deposits of the fore-Carpathian basin – including the shelf and adjacent salt depocentre – have undergone varying degrees of diagenetic change: they are preserved mainly as primary gypsum in the peripheral part of the platform, whereas toward the centre of the basin, where great subsidence occurred during the Miocene, they have been totally transformed into anhydrite. The facies variation and sequence of Badenian anhydrites reflect different genetic patterns of two members of the Ca-sulphate formation. In the lower member (restricted to the platform), anhydrite formed mainly by synsedimentary anhydritization (via nodule formation), whereas in the upper member (distributed throughout the platform and depocentre) the various gypsum/anhydrite lithofacies display a continuum of distinctive anhydrite type-fabrics. These fabrics are based on petrographic features and show from the centre to the margin: (1) syndepositional, interstitial growth of displacive anhydrite; (2) early diagenetic, displacive to replacive (by replacement of former gypsum) anhydrite formation near the depositional surface; (3) early diagenetic, displacive to replacive anhydrite formation during shallow burial; and (4) late-diagenetic (and only partial) replacement of gypsum at deeper burial. The cross-shelf lateral relations of anhydrite lithofacies and fabrics suggest that the diagenesis developed as a diachronous process. These fabrics of the upper member reflect both palaeogeographic (linked to different parts of the basin) and burial controls. Anhydrite growth started very early in the basin centre, presumably related to high-salinity pore fluids; anhydritization prograded updip toward the shelf (landward in a generalized cross-section through the basin). The intensity of gypsum replacement by anhydrite was progressively attenuated landward by a decrease in the salinity of the pore fluids. In each part of the basin, the anhydrite fabric was also controlled by the texture and degree of lithification of the fine-grained primary gypsum lithofacies. Recrystallization of these anhydrite fabrics during late diagenesis, linked to deeper burial conditions, is insignificant, allowing reconstruction of the original anhydritization pattern.  相似文献   

5.
Limestone consisting of finely to medium crystalline calcite mosaics is present in the upper part of the Winnipegosis Formation on the east‐central margin of the Elk Point Basin where the overlying Prairie Evaporite deposits have been removed. This type of crystalline limestone is interpreted as dedolomite, based on petrographic observations. The δ18O and δ13C values of the Winnipegosis dedolomite vary from ?12·8‰ to ?11·9‰ VPDB (Vienna Pee Dee Belemnite) and from ?0·5‰ to +1·7‰ VPDB, respectively; both values are significantly lower than those for the corresponding dolomite. The 87Sr/86Sr ratios of the dedolomite are significantly higher, between 0·7082 and 0·7087. The spatial distribution and geochemical data of the Winnipegosis dedolomite suggest that dedolomitization was related to an influx of fresh groundwater and dissolution of the Prairie Evaporite anhydrite during the latest Mississippian to the Early Cretaceous when the basin was subjected to uplift and erosion. The Winnipegosis dedolomite displays a series of replacement fabrics showing progressive calcitization of dolomite, including the occurrence of dedolomite restricted along fractures and adjacent areas, dolomite patches ‘floating’ in the dedolomite masses and massive dedolomite with sparsely scattered dolomite relicts. However, the characteristic fabrics resulting from dedolomitization documented in the literature have not been observed in the Winnipegosis dedolomite. Coarsely to very coarsely crystalline, subhedral to euhedral calcite cement is restricted in the dedolomite. The petrographic features, isotopic compositions and homogenization temperatures, coupled with the burial history of the Winnipegosis Formation, constrain the precipitation of the calcite cement from a mixing of basinal brines and fresh groundwater during Late Cretaceous to Neogene time. The more negative C‐isotopic signatures of the calcite cement (?5·3‰ to ?2·3‰ VPDB) probably reflect a hydrocarbon‐derived carbon.  相似文献   

6.
The black limestone widely used in Slovenian monuments, particularly in the baroque architecture, is deteriorating extensively due to salt crystallization. Samples of soluble salts from two important historical monuments (in Ljubljana, Slovenia) were investigated in terms of their mineral and isotopic (S and O) compositions. Results revealed the presence of gypsum and soluble salts of the MgSO4·nH2O series, such as starkeyite (MgSO4·4H2O), pentahydrite (MgSO4·5H2O) and hexahydrite (MgSO4·6H2O). Whereas black crusts and subflorescences consisted of gypsum, efflorescences appeared to be an assemblage of gypsum and MgSO4 hydrates. Sample δ18Osulfate values varied from ?1.9‰ to +5.5‰ vs. V-SMOW and δ34Ssulfate values from ?19.8‰ to +3.2‰ vs. V-CDT. The respective isotopic composition of analysed outdoor and indoor monument samples indicated different sources of contamination.  相似文献   

7.
The Upper Miocene and Pliocene evaporite deposits of the Atacama Desert of northern Chile (Hilaricos and Soledad Formations) are among the few non‐marine evaporites in which aridity not only formed the deposits, but has also preserved them almost unaltered under near‐surface conditions. These deposits are largely composed of displacive Ca sulphate and halite together with minor amounts of glauberite, thenardite and polyhalite. However, at the base and top of these deposits, there are also beds of gypsum crystal pseudomorphs that originally formed as free‐growth forms within shallow brine bodies, rather than as displacive sediments. The halite is present as interstitial cement, displacive cubes and shallow‐water, bottom‐growth chevron crusts. Most of the calcium sulphate is presently anhydrite, pseudomorphous after gypsum, that was the primary depositional sulphate mineral. The secondary anhydrite formed under early diagenetic conditions after slight burial (some metres) resulting from the effect of strongly evolved pore brines. The anhydrite has been preserved without rehydration during late diagenetic and exhumation stages on account of the arid environment of the Atacama Desert. Both the Hilaricos and the Soledad Formations contain geochemical markers indicating that these Neogene evaporites had a largely non‐marine origin. Bromine content in the halite is very low (few p.p.m.), indicating neither a sedimentological relation with sea water nor the likelihood of direct recycling of prior marine halites. Moreover, the δ34S of sulphates (+4·5‰ to +9‰) also reflects a non‐marine origin, with a strong volcanic influence, although some recycling of Mesozoic marine sulphates cannot be ruled out. δ34S of dissolved sulphate from hot springs and streams in the area commonly displays positive values (+2‰ to +10‰). Leaching of oxidized sulphur and chlorine compounds from volcanoes and epithermal ore bodies, very common in the associated drainage areas, have been the main contribution to the accumulation of evaporites. The sedimentary and diagenetic evolution of the Hilaricos and Soledad evaporites (based on lithofacies analysis) provides information about the palaeohydrological conditions in the Central Depression of northern Chile during the Neogene. In addition, the diagenesis and exhumation history of these evaporites confirms the persistence of strongly arid conditions from Late Miocene until the present. A final phase of tectonism took place permitting the internal drainage to change and open to the sea, resulting in dissolution and removal of a significant portion of these deposits. Despite the extensive dissolution, the remaining evaporites have undergone little late exhumational hydration.  相似文献   

8.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

9.
Dolomites from the productive Osa horizon (upper subformation of the Lower Cambrian Bilir Formation) in the Talakan petroleum field show a prominent 1–2‰ decrease in δ18O (from 23–24 to 21–22‰), which presumably marks a zone of relatively high water/rock ratios. Productive boreholes are characterized by moderate δ34S values (from 25.1 to 30.6‰) and negative correlation between δ34S in anhydrite and δ18O in associated dolomite, which points to a partial sulfate reduction during catagenesis. In nonproductive borehole, δ34S values increase significantly (from 31.4 to 35.6‰) and show positive correlation with δ18O in dolomite. Rocks recovered by nonproductive borehole possibly recrystallized during early diagenesis, and, correspondingly lost their permeability and capacity to form pores. Limestones and dolomites of the Osa horizon have a carbon isotopic composition within the range of normal marine carbonates (δ13C = 0 ± 1 ‰), which does not indicate a significant role of organic matter in postsedimentary recrystallization of carbonate sediments. A positive δ13C excursion up to 4.5‰ recorded in the lower subformation of the Bilir Formation presumably occurred at the sedimentation stage under conditions of high rates of bioproductivity and organic matter burial in sediments.  相似文献   

10.
Fluid inclusion studies in combination with hydrogen, oxygen and sulphur isotope data provide novel insights into the genesis of giant amethyst-bearing geodes in Early Cretaceous Paraná continental flood basalts at Amestita do Sul, Brazil. Monophase liquid inclusions in colourless quartz, amethyst, calcite, barite and gypsum were analysed by microthermometry after stimulating bubble nucleation using single femtosecond laser pulses. The salinity of the fluid inclusions was determined from ice-melting temperatures and a combination of prograde and retrograde homogenisation temperatures via the density maximum of the aqueous solutions. Four mineralisation stages are distinguished. In stage I, celadonite, chalcedony and pyrite formed under reducing conditions in a thermally stable environment. Low δ34SV-CDT values of pyrite (?25 to ?32?‰) suggest biogenic sulphate reduction by organotrophic bacteria. During the subsequent stages II (amethyst, goethite and anhydrite), III (early subhedral calcite) and IV (barite, late subhedral calcite and gypsum), the oxidation state of the fluid changed towards more oxidising conditions and microbial sulphate reduction ceased. Three distinct modes of fluid salinities around 5.3, 3.4 and 0.3 wt% NaCl-equivalent characterise the mineralisation stages II, III and IV, respectively. The salinity of the stage I fluid is unknown due to lack of fluid inclusions. Variation in homogenisation temperatures and in δ18O values of amethyst show evidence of repeated pulses of ascending hydrothermal fluids of up to 80–90 °C infiltrating a basaltic host rock of less than 45 °C. Colourless quartz and amethyst formed at temperatures between 40 and 80 °C, while the different calcite generations and late gypsum precipitated at temperatures below 45 °C. Calculated oxygen isotope composition of the amethyst-precipitating fluid in combination with δD values of amethyst-hosted fluid inclusions (?59 to ?51?‰) show a significant 18O-shift from the meteoric water line. This 18O-shift, high salinities of the fluid inclusions with chloride-sulphate composition, and high δ34S values of anhydrite and barite (7.5 to 9.9?‰) suggest that sedimentary brines from deeper parts of the Guaraní aquifer system must have been responsible for the amethyst mineralisation.  相似文献   

11.
Early concretionary and non-concretionary siderites are common in subsurface Triassic sandstones and mudrocks of the Rewan Group, southern Bowen Basin. A detailed petrological and stable isotopic study was carried out on these siderites in order to provide information on the depositional environment of the host rocks. The siderites are extremely pure, containing 85–97 mol% FeCO3, and are commonly enriched in manganese. δ13C (PDB) values are highly variable, ranging from - 18·4 to +2·9‰, whereas δ18O (PDB) values are very consistent, ranging from - 14·0 to - 10·2‰ (mean= - 11·9 ± 1·0‰). The elemental and oxygen isotopic composition of the siderites indicates that only meteoric porewaters were involved in siderite formation, implying that host rocks accumulated in totally non-marine environments. The carbon isotopic composition of the siderites is interpreted to reflect mixing of bicarbonate/carbon dioxide generated by methane oxidation and methanogenesis. Very low δ13C values demonstrate that, contrary to current views, highly 13C-depleted siderite can be produced at shallow burial depths in anoxic non-marine sediments.  相似文献   

12.
《Sedimentary Geology》1999,123(3-4):255-273
This study investigates the sulphur source of gypsum sulphate and dissolved groundwater sulphate in the Central Namib Desert, home to one of Africa's most extensive gypsum (CaSO4·2H2O) accumulations. It investigates previously suggested sulphate precursors such as bedrock sulphides and decompositional marine biogenic H2S and studies the importance of other potential sources in order to determine the origin of gypsum and dissolved sulphate in the region. An attempt has been made to sample all possible sulphur sources, pathways and types of gypsum accumulations in the Central Namib Desert. We have subjected those samples to sulphur isotopic analyses and have compiled existing results. In addition, ionic ratios of Cl/SO4 are used to determine the presence of non-sea-salt (NSS) sulphur in groundwater and to investigate processes affecting groundwater sulphate. In contrast to previous work, this study proposes that the sulphur cycle, and the formation of gypsum, in the Namib Desert appears to be dominated by the deposition of atmospheric sulphates of phytoplanktonic origin, part of the primary marine production of the Benguela upwelling cells. The aerosol sulphates are subjected to terrestrial storage within the gypsum deposits on the hyper-arid gravel plain and are traceable in groundwater including coastal sabkhas. The hypothesis of decompositional marine biogenic H2S or bedrock sulphide sources, as considered previously for the Namib Desert, cannot account for the widespread accumulation of gypsum in the region. The study area in the Central Namib Desert, between the Kuiseb and Omaruru rivers, features extensive gypsum accumulations in a ca. 50–70 km wide band, parallel to the shore. They consist of surficial or shallow pedogenic gypsum crusts in the desert pavement, hydromorphic playa or sabkha gypsum, as thin isolated pockets on bedrock ridges and as discrete masses of gypsum selenite along some faults. The sulphur isotopic values (δ34S ‰CDT) of these occurrences are between δ34S +13.0 and +18.8‰, with lower values in proximity to sulphuric ore bodies (δ34S +3.1 and +3.4‰). Damaran bedrock sulphides have a wide range from δ34S −4.1 to +13.8‰ but seem to be significant sources on a local scale at the most. Dissolved sulphate at playas, sabkhas, springs, boreholes and ephemeral rivers have an overall range between δ34S +9.8 and +20.8‰. However, they do not show a systematic geographical trend. The Kalahari waters have lower values, between δ34S +5.9 and +12.3‰. Authigenic gypsum from submarine sediments in the upwelling zone of the Benguela Current between Oranjemund and Walvis Bay ranges between δ34S −34.6 to −4.6‰. A single dry atmospheric deposition sample produced a value of δ34S +15.9‰. These sulphur isotopic results, complemented by meteorological, hydrological and geological information, suggest that sulphate in the Namib Desert is mainly derived from NSS sulphur, in particular oxidation products of marine dimethyl sulphide CH3SCH3 (DMS). The hyper-arid conditions prevailing along the Namibian coast since Miocene times favour the overall preservation of the sulphate minerals. However, sporadic and relatively wetter periods have promoted gypsum formation: the segregation of sulphates from the more soluble halite, and the gradual seaward redistribution of sulphate. This study suggests that the extreme productivity of the Benguela Current contributes towards the sulphur budget in the adjacent Namib Desert.  相似文献   

13.
Petrography demonstrates the presence of three types of fibrous calcite cement in buildup deposits of the Kullsberg Limestone (middle Caradoc), central Sweden. Translucent fibrous calcite has intrinsic blue luminescence (CL) indicative of pure calcite. This cement has 2–5 mol% MgCO3, low Mn and Fe (≤ 100 p.p.m.), and is considered to be slightly altered to unaltered, primary low- to intermediate-Mg calcite. Grey turbid fibrous calcite has variable but generally low MgCO3 content (most analyses <2 mol%) and variable CL response, with Mn and Fe concentrations up to 1200 and 500 p.p.m., respectively. The heterogeneous characteristics of this variety of fibrous calcite are caused by diagenetic alteration of a translucent fibrous calcite precursor. Light-brown turbid fibrous calcite has low MgCO3 (near 1 mol%) and variable Mn (up to 800 p.p.m.) and Fe (up to 500 p.p.m.) concentrations, with an abundance of bright luminescent patches, which formed during alteration caused by reducing diagenetic fluids. The δ13C and δ18O values of all fibrous calcite form a tight field (δ13C=1·7 to 3·1‰ PDB, δ18O= ? 2·6 to ? 4·1‰ PDB) compared with fibrous calcite isotope values from other units. Fibrous calcite δ18O values are larger than adjacent meteoric or burial cements, which have δ18O δ ? 8‰ PDB. Consequently, most diagenetic alteration of Kullsberg fibrous calcite is interpreted to have occurred in the marine diagenetic realm. First-generation equant and bladed calcite cements, which pre-date fibrous calcite, are interpreted as unaltered, low-Mg calcite marine cements based on δ13C and δ18O data (δ13C = 2·3 to 2·7‰ PDB, δ18O= ? 2·8 to ? 3·5‰ PDB). Unlike fibrous cement, which reflects global sea water chemistry, first-generation equant and bladed calcite are indicators of localized modification of seawater chemistry in restricted settings. Kullsberg abiotic marine cements have larger δ18O values than most Caradoc marine precipitates from equatorial Laurentia. Positive Kullsberg δ18O values are attributed to lower seawater temperatures and/or slightly elevated salinity on the Baltic platform relative to seawater from which other marine precipitates formed.  相似文献   

14.
The fluvial Triassic reservoir subarkoses and arkoses (2409·5–2519·45 m) of the El Borma oilfield, southern Tunisia, were subjected to cementation by haematite, anatase, infiltrated clays, kaolinite and K-feldspar at shallow burial depths from meteoric waters. Subsequently, basinal brines controlled the diagenetic evolution of the sandstones and resulted initially in the precipitation of quartz overgrowths, magnesian siderite, minor ferroan magnesite and anhydrite. The enrichment of siderite in 12C isotope (δ13CPDB= - 14·5 to - 9‰) results from derivation of carbon from the thermal decarboxylation of organic matter. During further burial, the precipitation of dickite and pervasive transformation of kaolinite into dickite occurred, followed by the formation of microcrystalline K-feldspar and quartz, chlorite and illite, prior to the emplacement of oil. Present day formation waters are Na-Ca-Cl brines evolved by the evaporation of seawater and water/mineral interaction and are in equilibrium with the deep burial (≤ 3·1 km) minerals. These waters are suggested to be derived from the underlying Silurian and Devonian dolomitic mudstones.  相似文献   

15.
Upper Pliocene dolomites (‘white earth’) from La Roda, Spain, offer a good opportunity to evaluate the process of dolomite formation in lakes. The relatively young nature of the deposits could allow a link between dolomites precipitated in modern lake systems and those present in older lacustrine formations. The La Roda Mg‐carbonates (dolomite unit) occur as a 3·5‐ to 4‐m‐thick package of poorly indurated, white, massive dolomite beds with interbedded thin deposits of porous carbonate displaying root and desiccation traces as well as local lenticular gypsum moulds. The massive dolomite beds consist mainly of loosely packed 1‐ to 2‐μm‐sized aggregates of dolomite crystals exhibiting poorly developed faces, which usually results in a subrounded morphology of the crystals. Minute rhombs of dolomite are sparse within the aggregates. Both knobbly textures and clumps of spherical bodies covering the crystal surfaces indicate that bacteria were involved in the formation of the dolomites. In addition, aggregates of euhedral dolomite crystals are usually present in some more clayey (sepiolite) interbeds. The thin porous carbonate (mostly dolomite) beds exhibit both euhedral and subrounded, bacterially induced dolomite crystals. The carbonate is mainly Ca‐dolomite (51–54 mol% CaCO3), showing a low degree of ordering (degree of ordering ranges from 0·27 to 0·48). Calcite is present as a subordinate mineral in some samples. Sr, Mn and Fe contents show very low correlation coefficients with Mg/Ca ratios, whereas SiO2 and K contents are highly correlated. δ18O‐ and δ13C‐values in dolomites range from ?3·07‰ to 5·40‰ PDB (mean=0·06, σ=1·75) and from ?6·34‰ to ?0·39‰ PDB (mean=?3·55, σ=1·33) respectively. Samples containing significant amounts of both dolomite and calcite do not in general show significant enrichment or depletion in 18O and 13C between the two minerals. The correlation coefficient between δ18O and δ13C for dolomite is extremely low and negative (r=?0·05), whereas it is higher and positive (r=0·47) for calcite. The lacustrine dolomite deposit from La Roda is interpreted mainly as a result of primary precipitation of dolomite in a shallow, hydrologically closed perennial lake. The lake was supplied by highly saturated HCO3?/CO32? groundwater that leached dolomitic Mesozoic formations. Precipitation of dolomite from alkaline lake waters took place under a semi‐arid to arid climate. However, according to our isotopic data, strong evaporative conditions were not required for the formation of the La Roda dolomite. A significant contribution by bacteria to the formation of the dolomites is assumed in view of both petrographic and geochemical evidence.  相似文献   

16.
This paper describes and interprets the mineral and facies assemblages that occur in carbonate–evaporite shallow lacustrine deposits, considering the importance of the processes pathway (i.e. dolomitization, gypsum calcitization and silicification). The Palaeogene deposits of the Deza Formation (Almazán Basin, central‐northern Spain) are selected as a case study to determine the variety of physicochemical processes taking place in carbonate–evaporite shallow lakes and their resulting diagenetic features. Dolostones are the predominant lithology and are composed mainly of dolomite with variable amounts of secondary calcite (5 to 50%), which mainly mimic lenticular gypsum (pseudomorphs). Five morphological types of dolomite crystal were identified as follows: dolomite tubes, dolomite cylinders, rhombohedral dolomite, spheroidal and quasi‐rhombohedral dolomite, and cocoon‐shaped dolomite. The dolomite cylinders and tubes are interpreted as the dolomitized cells of a widespread microbial community. The sequence of diagenetic processes started with growth of microlenticular interstitial gypsum in a calcareous mud deposited on the playa margin mudflats, and that sometimes included microbial sediments. Immediately following growth of gypsum, dolomite replaced the original calcite (or possibly aragonite) muds, the microbial community and the gypsum. Partial or total replacement of gypsum by dolomite was related mainly to the biomineralization of endolithic microbial communities on gypsum crystals. Later calcitization took place under vadose, subaerial exposure conditions. The development of calcrete in distal alluvial settings favoured the release of silica and subsequent silicification on the playa margin mudflats. Stable isotope compositions of calcite range from ?9·02 to ?5·83‰ δ13CPDB and ?7·10 to 1·22‰ δ18OPDB; for the dolomite, these values vary from ?8·93 to ?3·96‰ δ13CPDB and ?5·53 to 2·4‰ δ18OPDB. Quartz from the cherts has δ18OSMOW values ranging from 27·1 to 31·1‰. Wide variation and relatively high δ18OSMOW values for dolomite indicate evaporitic and closed hydrological conditions; increased influx of meteoric waters reigned during the formation of secondary calcite spar.  相似文献   

17.
Gypsum and anhydrite fabrics observed in trenches and deep (500 m) cores from Bristol Dry Lake, California, USA, exhibit a vertical alignment of crystals similar to the fabric seen in bottom-nucleated brine pond gypsum. However, geochemical and sedimentological evidence indicate that the gypsum formed in Bristol Dry Lake precipitated displacively within the sediment where groundwater saturated with respect to gypsum recharges around the playa margin (groundwater-seepage gypsum). Evidence for displacive growth of gypsum is: (i) the geometry of the deposit, (ii) stable isotopic data and the water chemistry of the brine, and (iii) inclusions of matrix which follow twin planes and completely surround crystals as they grow. The bulk of the gypsum precipitated in the playa occurs around the edges of the playa in the playamargin facies and completely rings the lake. Sulphate concentrations in the groundwater increase toward the gypsum zone in the playa margin. Basinward of this zone, sulphate concentrations decrease sharply to trace element levels in the basin centre brine. Authigenic gypsum is rare in the centre of the playa. Stable (δ18O values measured for gypsum waters of crystallization (GWC) are similar to the values calculated for groundwater in the playa margin and alluvial fan sediments (?– 6%0), whereas measured brine δ18O values range from + 0·5 to + 3·7%0. Deuterium values measured for groundwater are ?– 70%0, GWC are ?– 60 to – 65%0 and brine values are ?– 57%0. The geometry of the deposit and the chemical data suggest that the water precipitating the gypsum is more closely associated with the groundwater than the brine. However, some mixing between groundwater and brine is likely. Within 100 m of the surface, the gypsum dehydrates to anhydrite, although the same vertically aligned fabric is retained through the diagenetic process. The similarity of displacive vertically aligned gypsum and anhydrite fabrics seen in Bristol Dry Lake to subaqueously deposited gypsum in modern brine ponds indicates that the criteria used to define subaqueous fabrics must be better constrained.  相似文献   

18.
Dolomites from the upper calcareous-siliceous member of the Miocene Monterey Formation exposed west of Santa Barbara, California, were analysed for geochemical, isotopic and crystallographic variation. The data clearly document the progressive recrystallization of dolomite during burial diagenesis in marine pore fluids. Recrystallization is recognized by the following compositional and crystallographic variations. Dolomites have decreasing δ18O and δ13C compositions, decreasing Sr contents and increasing Mg contents with increasing burial depths and temperatures from east to west in the study area. δ18O values vary from 5·3‰ in the east to − 5·5‰ PDB in the west and are interpreted to reflect the greater extent and higher temperature of dolomite recrystallization in the west. δ13C values correlate with δ18O and decrease from 13·6‰ in the east to − 8·7‰ PDB in the west. Sr concentrations correlate positively with δ18O values and decrease from a mean of 750 ppm in the east to a mean of 250 ppm in the west. Mol% MgCO3 values inversely correlate with δ18O values and increase from a minimum of 41·0 in the east to a maximum of 51·4 in the west. Rietveld refinements of powder X-ray diffraction data indicate that the more recrystallized dolomites have more contracted unit cells and increased cation ordering. The fraction of the Ca sites in the dolomites that are occupied by Ca atoms increases slightly with the approach to stoichiometry. The fraction of the Mg sites occupied by Mg atoms strongly correlates with mol% MgCO3. Even in early diagenetic, non-stoichiometric dolomites, there is little substitution of Mg in Ca sites. During recrystallization, the amount of Mg substituting for Ca in Ca sites decreases even further. Most of the disorder in the least recrystallized, non-stoichiometric dolomites is related to substitution of excess Ca on Mg sites.  相似文献   

19.
The estimated depth of formation of authigenic dolomite concretions in the Middle Ordovician Cloridorme Formation, Quebec, ranges from < 1 m to 150–200 m below sea floor (mbsf) (mostly between < 1 and 25 mbsf), based on centre‐to‐margin variations in minus‐cement porosity (80–90% to 45–75%). Formation depths are > 350 mbsf (25–17% porosity) in the Lower Ordovician Levis Formation. Outward‐decreasing δ13CVPDB values (10·2–0·8‰) suggest precipitation in the methane generation zone with an increasing contribution of light carbonate derived by advection from thermocatalytic reactions at depth. Anomalously low δ18OVPDB values (centre‐to‐margin variations of ?0·4 to ?7·5‰) give reasonable temperatures for the concretion centres only if the δ18O of Ordovician sea water was negative (?6‰) and the bottom water was warm (> 15 °C). The 3–5‰ lower values for the concretion margins compared with the centres can be explained if, in addition, volcanic‐ash alteration, organic‐matter decomposition and/or advection of 18O‐depleted water lowered the δ18O of the pore water further by 2·0–4·0‰ during the first 25–200 m of burial. Reasonable growth temperatures for the margins of 17–20 °C are compatible with a lowering of the isotopic ratios by 1 to < 1·3‰ as a temperature effect. The systematic concentric isotope zonation of the concretions suggests that the well‐ordered near‐stoichiometric dolomite is a primary feature and not the result of recrystallization. Diagenetic dolomite beds of the Cloridorme Formation appear to have formed by coalescence of concretions, as shown by randomly sampled traverses that indicate formation at different subsurface depths. Growth of the Cloridorme dolomites was probably limited by calcium availability, at least 50% of which was derived from connate water, and the remainder by diffusion from sea water. Dolomite precipitation was favoured over calcite by very high sedimentation rates, the abundance of marine organic matter in the host sediment and a correspondingly thin sulphate reduction zone. Deep‐seated concretion growth in the Levis Formation required either internal sources for the participating ions (carbonate dissolution event) or porewater advection along faults.  相似文献   

20.
Quartz geodes and nodular chert have been found within middle–upper Campanian carbonate sediments from the Laño and Tubilla del Agua sections of the Basque‐Cantabrian Basin, northern Spain. The morphology of geodes together with the presence of anhydrite laths included in megaquartz crystals and spherulitic fibrous quartz (quartzine‐lutecite), suggest an origin from previous anhydrite nodules. The anhydrite nodules at Laño were produced by the percolation of marine brines, during a period corresponding to a sedimentary gap, with δ34S and δ18O mean values of 18.8‰ and 13.6‰ respectively, consistent with Upper Cretaceous seawater sulphate values. Higher δ34S and δ18O mean values of 21.2‰ and 21.8‰ recorded in the Tubilla del Agua section are interpreted as being due to a partial bacterial sulphate reduction process in a more restricted marine environment. The idea that sulphates may have originated from the leaching of previously deposited Keuper sulphate evaporites with subsequent precipitation as anhydrite, is rejected because the δ34S, δ18O and 87Sr/86Sr values of anhydrite laths observed at both the Tubilla del Agua and Laño sections suggest an origin from younger marine brines. Later calcite replacement and precipitation of geode‐filling calcite is recorded in both sections, with δ13C and δ18O values indicating the participation of meteoric waters. Synsedimentary activity of the Peñacerrada diapir, which lies close to the Laño section, played a significant role in the local shallowing of the basin and the formation of quartz geodes. In contrast, eustatic shallowing of the inner marine series of the Tubilla del Agua section led to the generation of morphologically similar quartz geodes. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号