首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 230 毫秒
1.
Common‐midpoint moveout of converted waves is generally asymmetric with respect to zero offset and cannot be described by the traveltime series t2(x2) conventionally used for pure modes. Here, we present concise parametric expressions for both common‐midpoint (CMP) and common‐conversion‐point (CCP) gathers of PS‐waves for arbitrary anisotropic, horizontally layered media above a plane dipping reflector. This analytic representation can be used to model 3D (multi‐azimuth) CMP gathers without time‐consuming two‐point ray tracing and to compute attributes of PS moveout such as the slope of the traveltime surface at zero offset and the coordinates of the moveout minimum. In addition to providing an efficient tool for forward modelling, our formalism helps to carry out joint inversion of P and PS data for transverse isotropy with a vertical symmetry axis (VTI media). If the medium above the reflector is laterally homogeneous, P‐wave reflection moveout cannot constrain the depth scale of the model needed for depth migration. Extending our previous results for a single VTI layer, we show that the interval vertical velocities of the P‐ and S‐waves (VP0 and VS0) and the Thomsen parameters ε and δ can be found from surface data alone by combining P‐wave moveout with the traveltimes of the converted PS(PSV)‐wave. If the data are acquired only on the dip line (i.e. in 2D), stable parameter estimation requires including the moveout of P‐ and PS‐waves from both a horizontal and a dipping interface. At the first stage of the velocity‐analysis procedure, we build an initial anisotropic model by applying a layer‐stripping algorithm to CMP moveout of P‐ and PS‐waves. To overcome the distorting influence of conversion‐point dispersal on CMP gathers, the interval VTI parameters are refined by collecting the PS data into CCP gathers and repeating the inversion. For 3D surveys with a sufficiently wide range of source–receiver azimuths, it is possible to estimate all four relevant parameters (VP0, VS0, ε and δ) using reflections from a single mildly dipping interface. In this case, the P‐wave NMO ellipse determined by 3D (azimuthal) velocity analysis is combined with azimuthally dependent traveltimes of the PS‐wave. On the whole, the joint inversion of P and PS data yields a VTI model suitable for depth migration of P‐waves, as well as processing (e.g. transformation to zero offset) of converted waves.  相似文献   

2.
3.
The reflection operator for a simple flat‐lying interface can be thought of as the set of all its plane‐wave reflection coefficients or as the set of virtual surveys with sources and receivers along the interface. When there is dip, however, it is necessary to include the varying effects of propagation between the virtual‐survey level and the interface. Hence, step one in this paper is to derive the reflection operator for a dipping plane interface as observed at a datum level some distance away. The key assumption is that the aperture at the datum level is sufficient to characterize the reflector properties around a particular point. This translates into an assumption that the dip is moderate, though no explicit small‐angle approximation is required. The second step is to find the apparent reflection operator that would relate data that have been extrapolated from the datum towards and possibly beyond the reflector using an assumed migration velocity. This apparent reflection operator is closely related to extended common‐image gathers. The apparent reflection operator may be analysed asymptotically in terms of rays and other signals, shedding light on the structure of extended image gathers. In keeping with the virtual‐survey idea, the results are considered in a subsurface space‐time or slowness‐time domain at various extrapolation levels around the interface. An important distinction is drawn between using subsurface midpoint‐offset coordinates and the wavefield coordinates of the incident and reflected waves. The latter reveal more clearly the effects of dip, because they lead to a more asymmetric apparent reflection operator. Properties such as an up‐dip shift of a traveltime minimum and its associated curvature theoretically provide information about the reflector location and dip and the migration‐velocity error. The space‐time form of the reflection operator can be highly intricate around the offset‐time origin and it was described for a simple flat interface in a background paper. To avoid a layer of mathematics, the reflection‐operator formulas presented here are in the intermediate space‐frequency domain. They are analysed by considering their stationary‐phase and branch‐point high‐frequency contributions. There is no Born‐like assumption of weak reflector contrast and so wide‐angle, total reflection and head‐wave effects are included. Snell’s law is an explicit part of the theory. It is hoped that the work will therefore be a step towards the goal of unifying amplitude‐versus‐offset, imaging and waveform inversion.  相似文献   

4.
Most amplitude versus offset (AVO) analysis and inversion techniques are based on the Zoeppritz equations for plane‐wave reflection coefficients or their approximations. Real seismic surveys use localized sources that produce spherical waves, rather than plane waves. In the far‐field, the AVO response for a spherical wave reflected from a plane interface can be well approximated by a plane‐wave response. However this approximation breaks down in the vicinity of the critical angle. Conventional AVO analysis ignores this problem and always utilizes the plane‐wave response. This approach is sufficiently accurate as long as the angles of incidence are much smaller than the critical angle. Such moderate angles are more than sufficient for the standard estimation of the AVO intercept and gradient. However, when independent estimation of the formation density is required, it may be important to use large incidence angles close to the critical angle, where spherical wave effects become important. For the amplitude of a spherical wave reflected from a plane fluid‐fluid interface, an analytical approximation is known, which provides a correction to the plane‐wave reflection coefficients for all angles. For the amplitude of a spherical wave reflected from a solid/solid interface, we propose a formula that combines this analytical approximation with the linearized plane‐wave AVO equation. The proposed approximation shows reasonable agreement with numerical simulations for a range of frequencies. Using this solution, we constructed a two‐layer three‐parameter least‐squares inversion algorithm. Application of this algorithm to synthetic data for a single plane interface shows an improvement compared to the use of plane‐wave reflection coefficients.  相似文献   

5.
6.
The receiver function method was originally developed to analyse earthquake data recorded by multicomponent (3C) sensors and consists in deconvolving the horizontal component by the vertical component. The deconvolution process removes travel path effects from the source to the base of the target as well as the earthquake source signature. In addition, it provides the possibility of separating the emergent P and PS waves based on adaptive subtraction between recorded components if plane waves of constant ray parameters are considered. The resulting receiver function signal is the local PS wave's impulse response generated at impedance contrasts below the 3C receiver.We propose to adapt this technique to the wide‐angle multi‐component reflection acquisition geometry. We focus on the simplest case of land data reflection acquisition. Our adapted version of the receiver function approach consists in a multi‐step procedure that first removes the P wavefield recorded on the horizontal component and next removes the source signature. The separation step is performed in the τ?p domain while the source designature can be achieved in either the τ?p or the t?x domain. Our technique does not require any a priori knowledge of the subsurface. The resulting receiver function is a pure PS‐wave reflectivity response, which can be used for amplitude versus slowness or offset analysis. Stack of the receiver function leads to a high‐quality S wave image.  相似文献   

7.
The reflectivity method plays an important role in seismic modelling. It has been used to model different types of waves propagating in elastic and anelastic media. The diffusive–viscous wave equation was proposed to investigate the relationship between frequency dependence of reflections and fluid saturation. It is also used to describe the attenuation property of seismic wave in a fluid‐saturated medium. The attenuation of diffusive–viscous wave is mainly characterised by the effective attenuation parameters in the equation. Thus, it is essential to obtain those parameters and further characterise the features of the diffusive–viscous wave. In this work, we use inversion method to obtain the effective attenuation parameters through quality factor to investigate the characteristics of diffusive–viscous wave by comparing with those of the viscoacoustic wave. Then, the reflection/transmission coefficients in a dip plane‐layered medium are studied through coordinate transform and plane‐wave theory. Consequently, the reflectivity method is extended to compute seismograms of diffusive–viscous wave in a dip plane multi‐layered medium. Finally, we present two models to simulate the propagation of diffusive–viscous wave in a dip plane multi‐layered medium by comparing the results with those in a viscoacoustic medium. The numerical results demonstrate the validity of our extension of reflectivity method to the diffusive–viscous medium. The numerical examples in both time domain and time–frequency domain show that the reflections from a dip plane interface have significant phase shift and amplitude change compared with the results of horizontal plane interface due to the differences in reflection/transmission coefficients. Moreover, the modelling results show strong attenuation and phase shift in the diffusive–viscous wave compared to those of the viscoacoustic wave.  相似文献   

8.
In this paper, we have considered the reflection and refraction of a plane wave at an interface between two half-spaces. The lower half-spaces is composed of highly anisotropic triclinic crystalline material and the upper half-space is homogeneous and isotropic. It has been assumed that due to incidence of a plane quasi-P (qP) wave, three types of waves, namely, quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH), will be generated in the lower half space whereas P and S waves will be generated in the upper half space. The phase velocities of all the quasi waves have been calculated. It has been assumed that the direction of particle motion is neither parallel nor perpendicular to the direction of propagation. Some specific relations have been established between directions of motion and propagation, respectively. The expressions for reflection coefficients of qP, qSV, qSH and refracted coefficients of P and SV waves are obtained. Results of reflection and refraction coefficients are presented.  相似文献   

9.
The azimuthally varying non‐hyperbolic moveout of P‐waves in orthorhombic media can provide valuable information for characterization of fractured reservoirs and seismic processing. Here, we present a technique to invert long‐spread, wide‐azimuth P‐wave data for the orientation of the vertical symmetry planes and five key moveout parameters: the symmetry‐plane NMO velocities, V(1)nmo and V(2)nmo , and the anellipticity parameters, η(1), η(2) and η(3) . The inversion algorithm is based on a coherence operator that computes the semblance for the full range of offsets and azimuths using a generalized version of the Alkhalifah–Tsvankin non‐hyperbolic moveout equation. The moveout equation provides a close approximation to the reflection traveltimes in layered anisotropic media with a uniform orientation of the vertical symmetry planes. Numerical tests on noise‐contaminated data for a single orthorhombic layer show that the best‐constrained parameters are the azimuth ? of one of the symmetry planes and the velocities V(1)nmo and V(2)nmo , while the resolution in η(1) and η(2) is somewhat compromised by the trade‐off between the quadratic and quartic moveout terms. The largest uncertainty is observed in the parameter η(3) , which influences only long‐spread moveout in off‐symmetry directions. For stratified orthorhombic models with depth‐dependent symmetry‐plane azimuths, the moveout equation has to be modified by allowing the orientation of the effective NMO ellipse to differ from the principal azimuthal direction of the effective quartic moveout term. The algorithm was successfully tested on wide‐azimuth P‐wave reflections recorded at the Weyburn Field in Canada. Taking azimuthal anisotropy into account increased the semblance values for most long‐offset reflection events in the overburden, which indicates that fracturing is not limited to the reservoir level. The inverted symmetry‐plane directions are close to the azimuths of the off‐trend fracture sets determined from borehole data and shear‐wave splitting analysis. The effective moveout parameters estimated by our algorithm provide input for P‐wave time imaging and geometrical‐spreading correction in layered orthorhombic media.  相似文献   

10.
The theme of the 2003 EAGE/SEG imaging workshop concerned the contrast between different philosophies of ‘model building’: whether an explicit, user‐determined model should be imposed throughout the processing, with user updates at each step; or alternatively, whether user intervention should be kept to a minimum so as to avoid preconceived bias, and instead to allow the data itself to guide some heuristic process to converge to an optimal solution. Here we consider a North Sea study where our initial approach was to build the subsurface model using interpreted horizons as a guide to the velocity update. This is common practice in the North Sea, where the geology ‘lends itself’ to a layer‐based model representation. In other words, we encourage preconceived bias, as we consider it to be a meaningful geological constraint on the solution. However, in this instance we had a thick chalk sequence, wherein the vertical compaction gradient changed subtly, in a way not readily discernible from the seismic reflection data. As a consequence, imposing the explicit top and bottom chalk horizons, with an intervening vertical compaction gradient (of the form v(x, y, z) =v0(x, y) +k(x, y).z), led to a misrepresentation of the subsurface. To address this issue, a gridded model building approach was also tried. This relied on dense continuous automatic picking of residual moveout in common‐reflection point gathers at each iteration of the model update, followed by gridded tomography, resulting in a smoothly varying velocity field which was able to reveal the underlying local changes within the chalk.  相似文献   

11.
We present a parsimonious wave‐equation travel‐time inversion technique for refraction waves. A dense virtual refraction dataset can be generated from just two reciprocal shot gathers for the sources at the endpoints of the survey line, with N geophones evenly deployed along the line. These two reciprocal shots contain approximately 2N refraction travel times, which can be spawned into refraction travel times by an interferometric transformation. Then, these virtual refraction travel times are used with a source wavelet to create N virtual refraction shot gathers, which are the input data for wave‐equation travel‐time inversion. Numerical results show that the parsimonious wave‐equation travel‐time tomogram has about the same accuracy as the tomogram computed by standard wave‐equation travel‐time inversion. The most significant benefit is that a reciprocal survey is far less time consuming than the standard refraction survey where a source is excited at each geophone location.  相似文献   

12.
Waveform inversion is a velocity‐model‐building technique based on full waveforms as the input and seismic wavefields as the information carrier. Conventional waveform inversion is implemented in the data domain. However, similar techniques referred to as image‐domain wavefield tomography can be formulated in the image domain and use a seismic image as the input and seismic wavefields as the information carrier. The objective function for the image‐domain approach is designed to optimize the coherency of reflections in extended common‐image gathers. The function applies a penalty operator to the gathers, thus highlighting image inaccuracies arising from the velocity model error. Minimizing the objective function optimizes the model and improves the image quality. The gradient of the objective function is computed using the adjoint state method in a way similar to that in the analogous data‐domain implementation. We propose an image‐domain velocity‐model building method using extended common‐image‐point space‐ and time‐lag gathers constructed sparsely at reflections in the image. The gathers are effective in reconstructing the velocity model in complex geologic environments and can be used as an economical replacement for conventional common‐image gathers in wave‐equation tomography. A test on the Marmousi model illustrates successful updating of the velocity model using common‐image‐point gathers and resulting improved image quality.  相似文献   

13.
Wave‐equation based shot‐record migration provides accurate images but is computationally expensive because every shot must be migrated separately. Shot‐encoding migration, such as random shot‐encoding or plane‐wave migration, aims to reduce the computational cost of the imaging process by combining the original data into synthesized common‐source gathers. Random shot‐encoding migration and plane‐wave migration have different and complementary features: the first recovers the full spatial bandwidth of the image but introduces strong artefacts, which are due to the interference between the different shot wavefields; the second provides an image with limited spatial detail but is free of crosstalk noise. We design a hybrid scheme that combines linear and random shot‐encoding in order to limit the drawbacks and merge the advantages of these two techniques. We advocate mixed shot‐encoding migration through dithering of plane waves. This approach reduces the crosstalk noise relative to random shot‐encoding migration and increases the spatial bandwidth relative to conventional plane‐wave migration when the take‐off angle is limited to reduce the duration of the plane‐wave gather. In turn, this decreases the migration cost. Migration with dithered plane waves operates as a hybrid encoding scheme in‐between the end members represented by plane‐wave migration and random shot‐encoding. Migration with dithered plane waves has several advantages: every synthesized common‐source gather images in a larger aperture, the crosstalk noise is limited and higher spatial resolution is achievable compared to shot‐record migration, random shot‐encoding and linear shot‐encoding, respectively. Computational cost is also reduced relative to both random and linear shot‐encoding migration since fewer synthesized common‐source gathers are necessary to obtain a high signal‐to‐noise ratio and high spatial resolution in the final image.  相似文献   

14.
The dispersion of inertial particles continuously emitted from a point source is analytically investigated in the limit of small but finite inertia. Our focus is on the evolution equation of the particle joint probability density function p(x,?v,?t), x and v being the particle position and velocity, respectively. For arbitrary inertia, position and velocity variables are coupled, with the result that p(x,?v,?t) can be determined by solving a partial differential equation in a 2d-dimensional space, d being the physical-space dimensionality. For small (but nevertheless finite) inertia, (x,?v)-variables decouple and the determination of p(x,?v,?t) is reduced to solve a system of two standard forced advection–diffusion equations in the space variables x. The latter equations are derived here from first principles, i.e., from the well-known Lagrangian evolution equations for position and particle velocity.  相似文献   

15.
Using two-dimensional linear water wave theory, we consider the problem of normal water wave (internal wave) propagation over small undulations in a channel flow consisting of a two-layer fluid in which the upper layer is bounded by a fixed wall, an approximation to the free surface, and the lower one is bounded by a bottom surface that has small undulations. The effects of surface tension at the surface of separation is neglected. Assuming irrotational motion, a perturbation analysis is employed to calculate the first-order corrections to the velocity potentials in the two-layer fluid by using Green’s integral theorem in a suitable manner and the reflection and transmission coefficients in terms of integrals involving the shape function c(x) representing the bottom undulation. Two special forms of the shape function are considered for which explicit expressions for reflection and transmission coefficients are evaluated. For the specific case of a patch of sinusoidal ripples having the same wave number throughout, the reflection coefficient up to the first order is an oscillatory function in the quotient of twice the interface wave number and the ripple wave number. When this quotient approaches one, the theory predicts a resonant interaction between the bed and the interface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of the incident wave energy occurs if this number is large. Again, when a patch of sinusoidal ripples having two different wave numbers for two consecutive stretches is considered, the interaction between the bed and the interface near resonance attains in the neighborhood of two (singular) points along the x-axis (when the ripple wave number of the bottom undulation become approximately twice as large as the interface wave number). The theoretical observations are presented in graphical form.  相似文献   

16.
The quantification of debris‐flow hazard requires estimates of debris‐flow frequency and magnitude. Several methods have been proposed to determine the probable volume of future debris flows from a given basin, but most have neglected to account for debris recharge rates over time, which may lead to underestimation of debris‐flow volumes in basins with rare debris flows. This paper deals with the determination of debris recharge rates in debris‐flow channels based on knowledge of debris storage and the elapsed time since the last debris flow. Data are obtained from coastal British Columbia and a relation is obtained across a sample of basins with similar terrain and climatic conditions. For Rennell Sound on the west coast of the Queen Charlotte Islands, the power‐law relation for area‐normalized recharge rate, Rt, versus elapsed time, te was Rt = 0·23te?0·58 with an explained variance of 75 per cent. A difference in recharge rates may exist between creeks in logged and unlogged forested terrain. The power function for undisturbed terrain was Rt = 0·20te?0·49, while the function for logged areas was Rt = 0·30te?0·77. This result suggests that for the same elapsed time since the last debris flow, clearcut gullies tend to recharge at a slower rate than creeks in old growth forest. This finding requires verification, particularly for longer elapsed times since debris flow, but would have important implications for forest resource management in steep coastal terrain. This study demonstrates that commonly used encounter probability equations are inappropriate for recharge‐limited debris flow channels. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
The problem of oblique water wave diffraction by small undulation of the bottom of a laterally unbounded ocean is considered using linear water wave theory. A perturbation analysis is employed to obtain the velocity potential, the reflection and the transmission coefficients up to the first order in terms of integrals involving the shape functions c(x) representing the bottom undulation. Finite cosine transform is used to find the first order potential, and this potential is utilised in obtaining the first order reflection and transmission coefficients. Some particular forms of the shape function representing an exponentially damped undulation, a single hump and a patch of sinusoidal ripples are considered and the integrals for the reflection and transmission coefficients are evaluated. For the exponentially damped undulation, it is observed that the reflection ceases much before transmission while for the single hump, reflection and transmission go hand in hand up to a certain value of the wavenumber, after which they vanish. For the patch of sinusoidal ripples having the same wavenumber, the reflection coefficient up to the first order is found to be an oscillatory function in the quotient of twice the component of the wavenumber along x-axis and the ripple wavenumber. When this quotient becomes one, the theory predicts a resonant interaction between the bed and free surface, and the reflection coefficient becomes a multiple of the number of ripples. High reflection of the incident wave energy occurs if this number is large. Also, when a patch of ripples having different wavenumbers is considered the same result follows. Known results for the normal incidence are recovered as special cases for the patch of sinusoidal ripples. The theoretical observations are shown computationally.  相似文献   

18.
To enhance the understanding of solute dynamics within the stream‐to‐riparian continuum during flood event‐driven water fluctuation (i.e., flood wave), a variable saturated groundwater flow and solute transport model were developed and calibrated against in situ measurements of the Inbuk stream, Korea, where seasonal flooding prevails. The solute dynamics were further investigated for flood waves (varying by amplitude [A], duration [T], roundness [r], and skewness [tp]) that were parameterised by real‐time stream stage fluctuations. We found that the solute transferred faster and farther in the riparian zone, especially within the phreatic zone, above which in the variable saturated zone the concentration required a significantly longer time, particularly at higher altitudes, to return to the initial state. By comparison, solute transferred shallowly in the streambed where the solute plume exhibited an exponential growth trend from the centre to the bank. The dynamic changes of solute flux and mass along the stream–aquifer interface and stream concentration were linked to the shape of flood wave. As the flood wave became higher (A↗), wider (T↗), rounder (r↘), and less skewed (tp↗), the maximum solute storage in aquifer increased. Maximum stream concentration (Cstr?max) not only presented a positive linear relationship with A or tp but also showed a negative logarithmic trend with increasing T or r. The sensitivity of Cstr_max to A was approximately two times that of tp, and between these values, the r was slightly more sensitive than T. Cstr?max linearly increased as hydraulic conductivity increased and logarithmically increased as longitudinal dispersivity increased. The former relationship was more sensitive than the latter.  相似文献   

19.
We develop a new time‐domain reverse‐time migration method called double plane‐wave reverse‐time migration that uses plane‐wave transformed gathers. Original shot gathers with appropriate data acquisition geometry are double slant stacked into the double plane‐wave domain with minimal slant stacking artefacts. The range of plane‐wave components needed for migration can be determined by estimating the maximum time dips present in shot gathers. This reduces the total number of input traces for migration and increases migration efficiency. Unlike the pre‐stack shot‐profile reverse‐time migration where the number of forward propagations is proportional to the number of shots, the number of forward propagations needed for the proposed method remains constant and is relatively small even for large seismic datasets. Therefore, the proposed method can improve the efficiency of the migration and be suitable for migrating large datasets. Double plane‐wave reverse‐time migration can be performed for selected plane‐wave components to obtain subsurface interfaces with different dips, which makes the migration method target oriented. This feature also makes the method a useful tool for migration velocity analysis. For example, we are able to promptly obtain trial images with nearly horizontal interfaces and adjust velocity models according to common image gathers. Seismic signal coming from steeply dipping interfaces can be included into the migration to build images with more detailed structures and higher spatial resolution as better velocity models become available. Illumination compensation imaging conditions for the proposed method are also introduced to obtain images with balanced amplitudes.  相似文献   

20.
Abstract

Bayly (1993) introduced and investigated the equation (? t + ▽-η ▽2)S = RS as a scalar analogue of the magnetic induction equation. Here, S(r, t) is a scalar function and the flow field v(r, t) and “stretching” function R(r, t) are given independently. This equation is much easier to handle than the corresponding vector equation and, although not of much relevance to the (vector) kinematic dynamo problem, it helps to study some features of the fast dynamo problem. In this note the scalar equation is considered for linear flow and a harmonic potential as stretching function. The steady equation separates into one-dimensional equations, which can be completely solved and therefore allow one to monitor the behaviour of the spectrum in the limit of vanishing diffusivity. For more general homogeneous flows a scaling argument is given which ensures fast dynamo action for certain powers of the harmonic potential. Our results stress the singular behaviour of eigenfunctions in the limit of vanishing diffusivity and the importance of stagnation points in the flow for fast dynamo action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号