首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The C. S. A. Mine is located near Cobar, central New South Wales. The copper-zinc-lead ores occur in Early Devonian rocks of the Cobar Super-Group. Lower greenschist (slate-grade) metamorphism has developed elongate lenticular ore systems parallel to the extension (down-dip) lineation in cleavage. FeS contents of sphalerites coexisting with pyrite and pyrrhotite outside and inside pressure shadows indicate much higher pressures (7.7 to 9.0 kbar) than those inferred from stratigraphic reasoning and the low metamorphic grade. The homogeneous distribution of Fe in sphalerites suggests equilibration with pyrite-pyrrhotite; and concentrations of Co and Ni in iron sulphides, and Mn, Cd and Cu in sphalerite are too low to have influenced phase relations in the FeS-ZnS pseudobinary system. The anomalously high pressures are therefore ascribed to reequilibration of sphalerite compositions with a monoclinic pyrrhotite-pyrite buffer. The FeS contents of the reequilibrated sphalerites apparently reflect the differing mean stress domains that exist outside and inside pressure shadows. This suggests that reequilibration occurred under the same stress distribution as produced the original pressure shadows, and implies FeS dissolution during the decay of the cleavage-producing structuro-metamorphic event. The commonly observed scatter of sphalerite compositions in low grade assemblages appears to record micro-scale mean stress domains, and thereby testifies to the pressure sensitivity of the mole percent FeS contents.  相似文献   

2.
Oxidation of mackinawite (FeS) and concurrent mobilization of arsenic were investigated as a function of pH under oxidizing conditions. At acidic pH, FeS oxidation is mainly initiated by the proton-promoted dissolution, which results in the release of Fe(II) and sulfide in the solution. While most of dissolved sulfide is volatilized before being oxidized, dissolved Fe(II) is oxidized into green rust-like precipitates and goethite (α-FeOOH). At basic pH, the development of Fe(III) (oxyhydr)oxide coating on the FeS surface inhibits the solution-phase oxidation following FeS dissolution. Instead, FeS is mostly oxidized into lepidocrocite (γ-FeOOH) via the surface-mediated oxidation without dissolution. At neutral pH, FeS is oxidized via both the solution-phase oxidation following FeS dissolution and the surface-mediated oxidation mechanisms. The mobilization of arsenic during FeS oxidation is strongly affected by FeS oxidation mechanisms. At acidic pH (and to some extent at neutral pH), the rapid FeS dissolution and the slow precipitation of Fe (oxyhydr)oxides results in arsenic accumulation in water. In contrast, the surface-mediated oxidation of FeS at basic pH leads to the direct formation of Fe (oxyhydr)oxides, which provides effective adsorbents for As under oxic conditions. At acidic and neutral pH, the solution-phase oxidation of dissolved Fe(II) accelerates the oxidation of the less adsorbing As(III) to the more adsorbing As(V). This study reveals that the oxidative mobilization of As may be a significant pathway for arsenic enrichment of porewaters in sulfidic sediments.  相似文献   

3.
A new polymorph of FeS has been observed at pressures above 30 GPa at 1,300 K by in situ synchrotron X-ray diffraction measurements in a laser-heated diamond anvil cell. It is stable up to, at least, 170 GPa at 1,300 K. The new phase (here called FeS VI) has an orthorhombic unit cell with lattice parameters a = 4.8322 (17) Å, b = 3.0321 (6) Å, and c = 5.0209 (8) Å at 85 GPa and 300 K. Its topological framework is based on the NiAs-type structure as is the case for the other reported polymorphs (FeS I-V). The unit cell of FeS VI is, however, more distorted (contracted) along the [010] direction of the original NiAs-type cell. For example, the c/b axial ratio is ~1.66 at 85 GPa and 300 K, which is considerably smaller than that of orthorhombic FeS II (~1.72) and NiAs-type hexagonal FeS V (=√3 ≈ 1.73). The phase boundary between FeS IV and VI is expected to be located around 30 GPa at 1,300 K. The phase transition is accompanied by gradual and continuous changes in volume and axial ratios and may be second order. At room temperature, FeS VI becomes stable over FeS III at pressures above 36 GPa. It is, therefore, suggested that the phase boundary of FeS III–VI and/or FeS IV–VI has negative pressure dependence.  相似文献   

4.
在山西耿庄金矿区含金隐爆角砾岩体的晶洞内,发现了含FeS2晶须环带重晶石巨晶,用扫描电镜、电子探针、X射线粉晶衍射等手段系统研究了重晶石及其所含FeS2晶须的矿物特征。结果表明,重晶石化学成分单一;晶体结构标准;发育完好;晶须为FeS2 Fe(Ni, Co)S2的类质同象系列。根据地质背景,结合包裹体研究成果,运用晶体生长和地球化学理论,讨论了重晶石巨晶及所含晶须的成因。认为重晶石巨晶是该区燕山期花岗岩浆活动的期后热液演化到后期阶段时,SO2-4与围岩中的钡反应而形成;所含的FeS2晶须是持续进行的火山隐爆作用所产生的大量H2S、SO2等与热液中分解出的Fe2+、Ni2+、Co2+反应而形成的;富碱、H2S溶解度增大,S2-增高有利于晶须的生长;重晶石和晶须生长的地质环境具有宏观上的一致性和具体条件的差异性。当pH值为1~8.5、lgfO2为-31~-38时,优先进入FeS2生长的优势场,形成FeS2晶须矿物。当pH值为5.5~10、lgfO2在-25~-36时形成重晶石;FeS2环带和重晶石的共生现象是两者共结晶交互生长的结果;重晶石的套叠生长和晶须环带特征,是耿庄地区隐爆作用脉动性和周期性作用的结果。耿庄含晶须重晶石巨晶,明确标示出所形成的地质条件和地质作用过程,为深入研究隐爆作用和理解该区成矿作用提供了矿物学证据。  相似文献   

5.
Voltammetric methods using direct insertion of a gold-amalgam microelectrode with a sensitive, computercontrolled voltammeter detected soluble iron(II) sulfide, [FeS]aq, in the porewaters of anoxic, sulfidic, fine-grained sediments from the Loughor Estuary, Wales. The voltammetric results are reproducible. Studies of cores stored in sealed, refrigerated containers for up to 21 d reveal no measurable oxidation. [FeS]aq forms in this estuarine environment as a result of the dissolution of amorphous FeS, and appears to be involved in the formation of pyrite. [FeS]aq makes no significant contribution to the total sulfide and iron contents of the sediment but could constitute an important component of the dissolved Fe(II) and S(−II) contents of the porewater. Mass balance calculations show pyrite forms in this system by the addition of sulfur to FeS rather than by the loss of iron from FeS. The overall process appears to involve [FeS]aq as an intermediary. Although the porewaters of the Loughor Estuary sediments are iron-rich relative to seawater, the iron sulfide-forming process is iron-limited rather than sulfide-limited. Reactive iron is bound to sulfide rapidly in the sediment. After the reactive iron is bound to sulfide, additional sulfide produced is fixed as pyrite.  相似文献   

6.
Trichloroethylene (TCE) is one of the most common and persistent groundwater contaminants encountered at hazardous waste sites around the world. A growing body of evidence indicates that iron sulfides play an important role in degrading TCE in natural environments and in engineered systems designed for groundwater cleanup. In this study, we investigate transformation processes of iron sulfides and consequent impacts on TCE degradation using batch experimental techniques, transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray absorption spectroscopy (XAS). Our results show that mackinawite is highly reactive toward TCE and no detectable mineralogical changes were detected during the course of reaction. However, freeze-dried FeS transformed to a mixture of mackinawite and greigite during the freeze drying process, with further mineralogical changes during reaction with TCE to lepidocrocite, goethite and pyrite. Newly formed lepidocrocite is a transient phase, with conversion to goethite over time. TCE transformation kinetics show that freeze-dried FeS is 20-50 times less reactive in degrading TCE than non-freeze-dried FeS, and the TCE degradation rate increases with pH (from 5.4 to 8.3), possibly due to an increase of surface deprotonation or electron transfer at higher pH. Results suggest that freeze drying could cause FeS particle aggregation, decreased surface area and availability of reactive sites; it also could change FeS mineralogy and accelerate mineral transformation. These aspects could contribute to the lower reactivity of freeze-dried FeS toward TCE degradation. Modeling results show that FeS transformation in natural environments depends on specific biogeochemical conditions, and natural FeS transformation may affect mineral reactivity in a similar way as compared to the freeze drying process. Rapid transformation of FeS to FeS2 could significantly slow down TCE degradation in both natural and engineered systems.  相似文献   

7.
57Fe Mössbauer spectra of (Mg,Fe)S solid solutions (niningerite) quenched from 1,000° C exhibit a singlet only within the composition range 8.4 to 50.0 mol. percent FeS. The isomer shift decreases progressively with increasing FeS content (from 0.99 to 0.95 mm/s) and extrapolates to a value of about 0.9 mm/s for FeS (halite structure), in close agreement with the isomer shift for FeS (troilite). Line width increases progressively with increasing FeS content (from 0.32 to 0.47 mm/s) and with decreasing temperature. The broadened singlet spectrum is interpreted as an unresolved composite quadrupole split doublet, which is attributed to local site distortion by next-nearest neighbor cation substitution. The ground state splitting is estimated to be 40 cm?1 in (Mg0.5Fe0.5)S. The next-nearest neighbor effect in niningerite is anomalously small compared to that observed in spinel and (Mg,Fe)O compositions.  相似文献   

8.
喀斯特坡地石灰土硫形态分布及其同位素组成特征   总被引:2,自引:0,他引:2  
土壤中S形态及各形态硫化物的稳定S同位素组成的分布特征对于土壤S循环研究具有重要意义。利用S形态连续提取方法测定了喀斯特坡地石灰土总S、SO4^2- -S、S^0-S、FeS—S、FeS2-S和有机S含量及其δ^34S值。有机S是石灰土主要的S形态,占总S的76.5%~93.6%。总S和有机S含量随土壤深度加深而降低,这与有机S矿化有关,对应有机S的δ^34S值逐渐增大。总体来看,FeS2是石灰土主要的无机S形态,其次为SO4^2-、FeS和S^0。石灰土表层以下深度FeS2-S增加与SO4^2-异化还原反应速率增大有关,对应SO4^2-和FeS2的δ^34S值平行增大。深层土壤FeS2-S降低则主要与SO4^2-异化还原反应速率减小及无机S厌氧氧化有关。土壤各形态S含量及其δ^34S值的分布特征,可以记录与深度相关的S形态转化过程。值得注意的是,受石灰土类型、植被状况及地形特征等因素的影响,喀斯特坡地石灰土中SO4^2-、FeS2和有机S组分容易迁移,这也是石灰土中各形态S分布变异的主要原因。  相似文献   

9.
《Chemical Geology》2007,236(3-4):217-227
The association of arsenate, As(V), and arsenite, As(III), with disordered mackinawite, FeS, was studied in sulfide-limited (Fe:S = 1:1) and excess-sulfide (Fe:S = 1:2) batch experiments. In the absence of arsenic, the sulfide-limited experiments produce disordered mackinawite while the excess-sulfide experiments yield pyrite with trace amounts of mackinawite. With increasing initially added As(V) concentrations the transformation of FeS to mackinawite and pyrite is retarded. At S:As = 1:1 and 2:1, elemental sulfur and green rust are the end products. As(V) oxidizes S(-II) in FeS and (or) in solution to S(0), and Fe(II) in the solid phase to Fe(III). Increasing initially added As(III) concentrations inhibit the transformation of FeS to mackinawite and pyrite and no oxidation products of FeS or sulfide, other than pyrite, were observed. At low arsenic concentrations, sorption onto the FeS surface may be the reaction controlling the uptake of arsenic into the solid phase. Inhibition of iron(II) sulfide transformations due to arsenic sorption suggests that the sorption sites are crucial not only as sorption sites, but also in iron(II) sulfide transformation mechanisms.  相似文献   

10.
本文采用羧甲基纤维素钠(CMC)、瓜尔胶(Guar gum)对硫化亚铁(FeS)进行了改性,以增强FeS的稳定性和迁移性。通过实验考察了3种FeS(CMC-FeS、GG-FeS、Nano-FeS)的沉降性能及其在粗、中、细砂3种介质中的迁移性能,并根据胶体过滤理论计算了3种FeS在中砂中的沉积速率及在不同介质中的最大迁移距离。结果表明:改性后FeS的稳定性较高,抗沉降性能CMC-FeS > GG-FeS >> Nano-FeS;由穿透曲线看出,3种FeS在粗、中、细砂中的穿透能力(即出流质量浓度ρi与注入质量浓度ρ0的比值)均为CMC-FeS > GG-FeS > Nano-FeS。粗砂和中砂中CMC-FeS的穿透能力明显高于GG-FeS,但细砂中二者的穿透能力相近,说明瓜尔胶的剪切稀化特性更利于GG-FeS在细颗粒介质中的迁移;FeS注入质量浓度的增加会导致更多的FeS沉积到介质中,但聚合物改性可以显著降低沉积速率,沉积速率CMC-FeS < GG-FeS < Nano-FeS;改性后CMC-FeS和GG-FeS在中砂的最大迁移距离分别是Nano-FeS的6.4倍和2.6倍,增加GG-FeS注入质量浓度对其最大迁移距离影响较小。  相似文献   

11.
Summary Sphalerite is the major ore mineral in the Zn-rich, volcanic-hosted massive sulphide deposits of western Tasmania. These deposits have been affected by regional metamorphism to upper greenschist facies, and associated tectonic deformation related to the Devonian Tabberabberan Orogeny. The southern end of the Rosebery deposit has undergone metasomatic replacement related to a post-orogenic Devonian granite intrusion.Sphalerite from VHMS deposits in the Rosebery district varies widely in colour, grain size and texture. Compositional variation of the sphalerites was studied for three purposes (1) to investigate effects of the Devonian overprinting, (2) to provide pressure (depth) estimates at the time of Fe-S-O replacement during the Devonian, and (3) to deduce the effect ofa FeS(a S 2) on gold deposition and subsequent remobilisation.Sphalerite from the Rosebery deposit shows an FeS range from 2.0 to 20.0 mole%, with a bimodal distribution; a mode of 16.0 mole% FeS was noted for the F(J) lens where Devonian metasomatism prevailed, whereas a mode of 2.4–4.0 mol% FeS was found for the other lenses. Sphalerite from the Hercules deposit has a range of 2.0–10.0 mole% FeS, whereas sphalerite from the South Hercules deposit ranges from 4.0-12.0 mole% FeS. VHMS sphalerites also contain minor copper, manganese and cadmium.The bimodal distribution of FeS content in Rosebery sphalerite suggests that the primary VHMS mineralisation underwent at least two periods of post-depositional re-equilibration. The FeS content in sphalerite in equilibrium with hexagonal pyrrhotite and pyrite indicates that the Devonian replacement occurred at a pressure off 3.0 ± 0.5 kb, corresponding to 8.0 ± 0.1 km depth.The relationship between FeS content in sphalerite and gold grades at Rosebery, Hercules and South Hercules displays complex patterns that reflect either variations in the initial depositional conditions an the seafloor (pH, temperature anda S 2), or later Devonian metamorphic and metasomatic recrystallisation.Zusammenfassung Zinkblende ist das dominierende Erzmineral in den Zn-reichen, in vulkanischen Gesteinen beheimateten, massiven Sulfidlagerstätten West-Tasmaniens. Diese Lagerstätten sind von einer Regionalmetamorphose der oberen Grünschieferfazies und einer assoziierten Deformation, die der devonischen Tabberabberan Orogenese zuzuschreiben ist, überprägt worden. Das Südende der Rosebery Lagerstätte ist von einer metasomatischen Verdrängung, die mit einer post-orogenen, devonischen Granitintrusion im Zusammenhang steht, erfaßt worden.Die Zinkblende von VHMS Lagerstätten des Rosebery Distriktes variiert weitgehend in ihrer Farbe, Korngröße und Textur. Die Variation der chemischen Zusammensetzung der Zinkblende wurde aus drei Gründen untersucht: (1) um die Effekte der devonischen Überprägung zu studieren, (2) um zu Abschätzungen des Druckes (Tiefe) zur Zeit der Fe-S-O Verdrängung während des Devons zu gelangen, und (3) um die Auswirkung vonaFeS (aS2) auf die Goldablagerung und folgende Remobilisation abzuleiten.Der FeS Gehalt der Zinkblende der Rosebery Lagerstätte reicht von 2.0 bis 20.0 Mol%, mit einer bimodalen Verteilung; ein Maximum bei 16.0 Mol% FeS ist für die F(J) Linse charakteristisch, wo devonische Metasomatose vorherrscht, während ein zweites Maximum bei 2.0–4.0 Mol% FeS bei den anderen Linsen festgestellt wurde. Der FeS Gehalt der Zinkblende der Süd-Hercules Lagerstätte reicht von 4.0 bis 12.0 Mol%. Die VHMS Zinkblenden führen auch untergeordnet Kupfer, Mangan und Cadmium.Die bimodale Verteilung des FeS Gehaltes in der Rosebery Zinkblende läßt vermuten, daß die VHMS Mineralisation, nach ihrer Bildung, von mindestens zwei Perioden der Reequilibrierung erfaßt worden ist. Der FeS Gehalt in der Zinkblende im Gleichgewicht mit hexagonalem Pyrrhotin und Pyrit weist darauf hin, daß die devonische Verdrängung bei einem Druck von 3.0 ± 0.5 kb, vergleichbar mit 8.0 ± 0.1 km Tiefe, stattgefunden hat.Der Zusammenhang des FeS Gehalt in der Zinkblende mit den Goldgehalten in Rosebery, Hercules und Süd-Hercules ist komplex und spiegelt entweder unterschiedliche, primäre Bildungsbedingungen am Meeresboden (pH, Temperatur undaS2), oder spätere, devonische metamorphe und metasomatische Rekristallisation wider.
Petrologie und Geochemie der Zinkblende aus der kambrischen VHMS Lagerstätte im Roseberry-Hercules Distrikt, West-Tasmanien: Hinweise für Goldmineralisation und devonische, metamorphe-metasomatische Prozesse

With 14 Figures  相似文献   

12.
The acid-volatile sulfide (AVS) pool in anoxic sediments is believed to play an important role in the sequestration of heavy metals, forming less soluble mineral sulfides via replacement and coprecipitation reactions. In this study, novel sediment gel probes containing immobilized FeS or MnS particles were evaluated for their ability to concentrate and detect reactive heavy metals in solution. MnS-containing gels were more effective than FeS gels at concentrating most metals in solution external to the gels, but they were more difficult to prepare and use. Copper reacted with FeS in gel probes to form one or more secondary sulfide minerals insoluble in 1 N HCl. The pixel density of digital images of these gels was highly correlated with the concentration of copper in gels and total copper in solution, suggesting a method for rapid screening of bioavailable heavy metals. Copper added to Youghiogheny River (PA, USA) sediments could be detected using this approach.  相似文献   

13.
Surface chemistry of disordered mackinawite (FeS)   总被引:1,自引:0,他引:1  
Disordered mackinawite, FeS, is the first formed iron sulfide in ambient sulfidic environments and has a highly reactive surface. In this study, the solubility and surface chemistry of FeS is described. Its solubility in the neutral pH range can be described by Ksapp = {Fe2+} · {H2S(aq)} · {H+}−2 = 10+4.87±0.27. Acid-base titrations show that the point of zero charge (PZC) of disordered mackinawite lies at pH ∼7.5. The hydrated disordered mackinawite surface can be best described by strongly acidic mono-coordinated and weakly acidic tricoordinated sulfurs. The mono-coordinated sulfur site determines the acid-base properties at pH < PZC and has a concentration of 1.2 × 10−3 mol/g FeS. At higher pH, the tricoordinated sulfur, which has a concentration of 1.2 × 10−3 mol/g FeS, determines surface charge changes. Total site density is 4 sites nm−2. The acid-base titration data are used to develop a surface complexation model for the surface chemistry of FeS.  相似文献   

14.
The nickel–iron meteorite of Morasko shows isolated inclusions of troilite in the bulk mass of a Fe,Ni-alloy. During a segregation of the FeS phase chalcophile trace elements were collected from the melt. The solidification of the Fe,Ni-phase occurred probably later, incorporating thereby mainly siderophile trace elements. To prove this general assumption selected trace elements were determined and reveal in the two phases of the present meteorite a characteristic distribution pattern. The meteorite of Morasko is in close conformity to the iron meteorite group IAB with rounded dark FeS inclusions.  相似文献   

15.
Precipitation of iron sulfides is an important process in groundwater geochemistry because it reduces iron mobility in anaerobic aquifers. Iron sulfides occur in various allotropic forms such as amorphous FeS and pyrite, and their solubility products differ up to 13 orders of magnitude. However, few data for ion activity products (IAP) of iron sulfides defined by the equation: H+ + FeS(S) = Fe2+ + HS- in groundwater have been reported in the literature. We computed IAP values of iron sulfides for 46 groundwater samples from the Choshui fan-delta of Taiwan and 65 samples from other areas of the world. The mean of -log(IAP) values obtained for the 46 samples is 3.07 ± 0.34 (1σ), which is consistent with the solubility constant 3.00 ± 0.12 (Davison et al., 1999) of amorphous FeS, implying that the anaerobic aquifers in the Choshui fan-delta are still undergoing active sulfate-reduction processes and keeping the groundwater saturated with amorphous FeS.We suggest that the −logKsp value 3.91 of amorphous FeS adopted in the databases for WATEQF and PHREEQC computer programs ought to be revised to 3.00. Otherwise, the saturation indices (SI) calculated by the two computer programs will be an order of magnitude too high.  相似文献   

16.
A consistent, relatively rapid decrease in FeS molecular content of sphalerites at decreasing depth is recognizable in upper parts of this structurally controlled Pb-Zn ore deposit, as an expression of tectonic calm and continuity of the productive stages of the mineralization. Elsewhere, in the depths, abrupt changes in quantity of isomorphous iron in sphalerites, within a relatively short depth-span, signify intensive movements during deposition of the ore. Wherever the structures are bent and healed by early quartz sufficiently to retard circulation of the solutions and to promote their cooling, variations in the FeS content of sphalerite at different depths may be related to thermal “knickpoints” of the ascending solutions. Nonetheless, FeS molecular content of sphalerites is no clue to the temperature of their crystallization. There is no relationship between the depth at which sphalerite was formed and the isomorphous Cd or Mn in crystal structures of the mineral. — V.P. Sokoloff.  相似文献   

17.
The first precipitate formed through the reaction between aqueous Fe(II) salts and dissolved sulphide at ambient temperatures and pH < 9, appears to be a highly disordered gel approaching the composition Fe(HS)2 on a water-free basis. After 0.4 s this precipitate loses sulphide and amorphous FeS begins to appear. The mackinawite structure begins to develop after several hours.

The rate of formation of the initial precipitate can be approximated by a pseudo first-order reaction, directly dependent on total sulphide concentration and with an apparent pseudo first-order rate constant of 48 ± 9 s−1. Dissolved Fe concentration does not appear to be rate limiting.

The estimated solubility of the initial phase is variable but consistently one to two orders of magnitude greater than the measured solubilities for amorphous FeS. In natural systems this may lead to variable Fe(II) solubilities in sulphidic environments. This initial material may play a more central role in iron sulphide reaction pathways than either mackinawite or amorphous FeS.  相似文献   


18.
Pyrite (FeS2) and iron monosulfide (FeS) play a central role in the sulfur and iron cycles of marine sediments. They may be buried in the sediment or oxidized by O2 after transport by bioturbation to the sediment surface. FeS2 and FeS may also be oxidized within the anoxic sediment in which NO3, Fe(III) oxides, or MnO2 are available as potential electron acceptors. In chemical experiments, FeS2 and FeS were oxidized by MnO2 but not with NO3 or amorphous Fe(III) oxide (Schippers and Jørgensen, 2001). Here we also show that in experiments with anoxic sediment slurries, a dissolution of tracer-marked 55FeS2 occurred with MnO2 but not with NO3 or amorphous Fe(III) oxide as electron acceptor. To study a thermodynamically possible anaerobic microbial FeS2 and FeS oxidation with NO3 or amorphous Fe(III) oxide as electron acceptor, more than 300 assays were inoculated with material from several marine sediments and incubated at different temperatures for > 1 yr. Bacteria could not be enriched with FeS2 as substrate or with FeS and amorphous Fe(III) oxide. With FeS and NO3, 14 enrichments were obtained. One of these enrichments was further cultivated anaerobically with Fe2+ and S0 as substrates and NO3 as electron acceptor, in the presence of 55FeS2, to test for co-oxidation of FeS2, but an anaerobic microbial dissolution of 55FeS2 could not been detected. FeS2 and FeS were not oxidized by amorphous Fe(III) oxide in the presence of Fe-complexing organic compounds in a carbonate-buffered solution at pH 8. Despite many different experiments, an anaerobic microbial dissolution of FeS2 could not be detected; thus, we conclude that this process does not have a significant role in marine sediments. FeS can be oxidized microbially with NO3 as electron acceptor. O2 and MnO2, but not NO3 or amorphous Fe(III) oxide, are chemical oxidants for both FeS2 and FeS.  相似文献   

19.
(Fe, Mn)S and (Fe, Mg)S solid solutions are examined to study and compare the properties of Fe2+ in two different B1-structured hosts, and also to study the relative stability of the B1 (NaCl) and B8 (NiAs) structures at high pressure. The Mössbauer spectra of (Fe, Mn)S and (Fe, Mg)S B1 solid solutions are quadrupole doublets at 298 K with parameters which vary smoothly with Fe2+ concentration. At 4.2 K the Mössbauer spectra of (Fe, Mn)S and Fe-rich (Fe, Mg)S B1 solid solutions are magnetically split into eight lines, but the spectra of Mg-rich (Fe, Mg)S solid solutions are quadrupole doublets. The line widths of the magnetic spectra are broad, consistent with a multiaxial spin arrangement. Some properties of the hypothetical phase FeS(B1) are calculated from the solid solution data; the phase is inferred to be relatively ionic compared to FeS(B8) and has a molar volume that is 7.2 percent larger than the B8 phase at 298 K. The large inferred volume difference between FeS(B1) and FeS(B8) should cause exsolution of a B8-structured phase from (Fe, Mn)S and (Fe, Mg)S B1 solid solutions at high pressure. This behaviour is confirmed experimentally at high pressure using X-ray diffraction and Mössbauer spectroscopy, and the results are correlated with thermodynamic calculations of the phase boundaries based on estimates of the volume and free energy differences between the B1 and B8 phases of FeS derived from atmospheric pressure data. The absence of an increase in solubility of Mg and Mn in the B8 phase with pressure suggests that any polymorphism in MnS and MgS at high pressure is unlikely to involve the B8 phase. Shock wave data for MgO and Fe0.94O reported in the literature suggest similar behaviour in the system FeO-MgO at high pressure, namely exsolution of essentially pure FeO(hpp) from (Fe, Mg)O B1 solid solutions.  相似文献   

20.
《Geochimica et cosmochimica acta》1999,63(13-14):2019-2023
In vitro enrichment cultures of dissimilatory sulfate-reducing bacteria precipitated FeS and catalyzed its transformation into FeS2 at ambient temperature and pressure under anaerobic conditions. When compared to purely abiotic processes, the bacterially mediated transformation was shown to be more efficient in transforming FeS into FeS2. This occurred due to the large, reactive surface area available for bacterially catalyzed diagenesis, where the biogenic FeS precursor was immobilized as a thin film (∼25 nm thick) on the μm-scale bacteria. The bacteria also contained the source(s) of sulfur for diagenesis to occur. Using a radiolabeled organic-sulfur tracer study, sulfur was released during cell autolysis and was immobilized at the bacterial cell surface forming FeS2. The formation of FeS2 occurred on both the inner and outer surfaces of the cell envelope and represented the first step of bacterial mineral diagenesis. Pyrite crystals, having linear dimensions of ∼1 μm, grew outward from the bacterial cell surfaces. These minerals were several orders of magnitude larger in volume than those originating abiotically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号