首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Absolute spectrophotometry of Neptune from 3390 to 7800 Å, with spectral resolution of 10 Å in the interval 3390–6055 and 20 Å in the interval 6055–7800 Å, is reported. The results are compared with filter photometry (Appleby, 1973; Wamsteker, 1973; Savage et al., 1980) and with synthetic spectra computed on the basis of a parameterization proposed by Podolak and Danielson (1977) for aerosol scattering and absorption. A CH4/H2 ratio of 1 × 10?2 < ?CH4 < 1 × 10?1 is derived for the convectively mixed part of Neptune's atmosphere, and constrains optical properties of hypothetical aerosol layers.  相似文献   

2.
The 5ν1 absorption band of NH3 is displayed from 6418 to 6550 Å. The total band intensity has been measured: SB = 0.66 cm?1m?1amagat?1. Line intensities and self-broadening coefficients have been measured for some of the prominent lines. Our line intensities are in good agreement with those of Rank et al. (1966), but are about 2 times greater than those of Mason (1970). The spectrum displayed was obtained photoelectrically at a pressure of 0.061 atm, and shows many more lines than the spectrum obtained by McBride and Nicholls (1972a) at a pressure of 0.39 atm. Therefore, our new measurements can provide the basis for making a more complete rotational analysis than those of McBride and Nicholls (1972a).Since the total band absorption has previously been measured by others on moderate resolution photoelectric scans of the spectra of Jupiter and Saturn, we can use the band intensity to derive the NH3 abundance in the atmospheres of these two planets. The NH3 abundances in a single vertical path obtained by this method are about 10m amagat for Jupiter and 2m amagat for Saturn. These results are in agreement with previous results obtained from higher resolution photographic spectra.  相似文献   

3.
We present interferometric observations of Saturn and its ring system made at the Hat Creek Radio Astronomy Observatory at a wavelength of 1.30 cm. The data have been analyzed by both model-fitting and aperture synthesis techniques to determine the brightness temperature and optical thickness of the ring system and estimate the amount of planetary limb darkening. We find that the ring optical depth is close to that observed at visible wavelenghts, while the ring brightness temperature is only 7 ± 1°K. These observational constraints require the ring particles to be nearly conservative scatterers at this wavelength. A conservative lower limit to the single-scattering albedo of the particles at 1.30-cm wavelength is 0.95, and if their composition is assumed to be water ice, then this lower limit implies an upper limit of 2.4 m for the radius of a typical ring particle. The aperture synthesis maps show evidence for a small offset in the position of Saturn from that given in the American Ephemeris and Nautical Almanac. The direction and magnitude of this offset are consistent with that found from a similar analysis of 3.71-cm interferometric data which we have previously presented (F.P. Schloerb, D.O. Muhleman, and G.L. Berge, 1979b, Icarus39, 232–250). Limb darkening of the planetary disk has been estimated by solving for the best-fitting disk radius in the models. The best-fitting radius is 0.998 ± 0.004 times the nominal Saturn radius and indicates that the planet is not appreciably limb dark at 1.30 cm. Since our previous 3.71-cm data also indicated that the planet was not strongly limb dark (F.P. Schloerb, D. O. Muhleman, and G.L. Berge, 1979a, Icarus39, 214–230), we feel that the limb darkening is not strongly wavelength dependent between 1.30 and 3.71 cm. The difference between the best-fitting disk radii at 3.71 and 1.30 cm is +0.007 ± 0.007 times the nominal Saturn radius and suggests that the planet is more limb dark at 1.30 cm than at 3.71 cm. Models of the atmosphere which have NH3 as the principal source of microwave opacity predict that the planet will be less limb dark at 1.30 cm. However, the magnitude of the effect predicted by the NH3 models is ?0.009 and only marginally different from the observed value.  相似文献   

4.
New spectrophotometry from 1.5 to 2.5 μm is reported for the Uranian satellites Titania, Oberon, and Umbriel. A spectrum of the rings of Uranus from 2.0 to 2.4 μm is also reported. No evidence is found for frost covering the surface of the ring material, consistent with the low albedo of the rings (PK = 0.03) previously reported by Nicholson and Jones (1980). The surfaces of the satellites are found to be covered by dirty water frost. Assuming albedos of the frost and gray components covering the Uranian satellites to be the same as the light and dark faces of Iapetus, radii are derived that are roughly twice those inferred from the assumption of a visual albedo of 0.5.  相似文献   

5.
A model for the vertical cloud structure of Jupiter's Equitorial Plumes is deduced based on an analysis of Voyager images of the equitorial region in the 6190Å methane band and the 6000-Å continuum, and ground-based 8900-Å methane band images of Jupiter. A computer code that represents scattering and absorption from aerosol and gas layers was applied to a heirarchy of increasingly complex model aerosol structures to match the observations in the three wavelengths. The observations are consistent with a model for the vertical cloud structure of the equitorial region that consists of four aerosol layers. A high-altitude haze layer (HAL) with optical depth τ = 1 uniformly blankets the equitorial region at an altitude between 100 and 250 mbar. Below that, a middle-level cloud layer between 400 and 800 mbar contains the well-known Equatorial Plumes. The Plume clouds are optically thick (τ ≥ 12), bright clouds with single scattering albedo ω = 0.997. They are probably composed of ammonia ice. The darker (ω = 0.990) interplume regions contain optically thinner clouds (2 ≤ τ ≤ 5) at the same altitude as the Plumes. An opaque cloud deck between 4000 and 6000 mbar, which is probably composed of water, forms the lowest model layer. In addition to these three layers, a thin forward scattering haze layer above 100 mbar was included in the models for consistency with previous work (Tomasko et al., 1978). We conclude that the vertical structure of the Equatorial Plume clouds is consistent with the hypothesis (Hunt et al., 1981) that the Plumes are caused by upwelling at the ammonia condensation level produced by bouyancy due to latent heat release from the condensation of water clouds nearly three scale heights below the Plumes.  相似文献   

6.
High-velocity impacts of interplanetary meteoroids on Saturn's rings are discussed. It is shown that the neutral gas emitted by impact vaporization may be responsible, to a large part, for the observed neutral ring atmosphere. Both the predicted neutral gas injection rate and the gas temperature (or kinetic energy) are compatible with the measurements (see Broadfoot, A. L., B. R. Sandel, D. E. Shemansky, J. B. Holberg, G. R. Smith, D. F. Strobel, J. C. McConnell, S. Kumar, D. M. Hunten, S. K. Atreya, T. M. Dohnahne, H. W. Moos, J. L. Bertaux, J. E. Blamont, R. B. Pomphrey, and S. Linik, Science212, 206–211, 1981). Heavy ejecta particles produce a particulate ring “halo”. The physical properties of this halo are calculated, and it appears to be identical with the tenous particle population discussed by Baum and Kreidl (1982). Erosion of Saturn's ring particles, the resulting mass balance, and regolith formation are estimated. This provides some constraints on surface properties and optical albedo.  相似文献   

7.
Observations of Saturn's satellites and external rings during the 1980 edge-on presentation were obtained with a focal coronograph. A faint satellite traveling in the orbit of Dione and leading it by 72° has been detected, together with the two inner satellites already suspected (cf. J. W. Fountain and S. M. Larson, 1978,Icarus36, 92–106). The external ring has been observed on both east and west sides; it may extend up to ?8.3 Saturn radii, and appears structured.  相似文献   

8.
Jack Wisdom 《Icarus》1983,56(1):51-74
The sudden eccentricity increases discovered by J. Wisdom (Astron J.87, 577–593, 1982) are reproduced in numerical integrations of the planar-elliptic restricted three-body problem, verifying that this phenomenon is real. Maximum Lyapunov characteristic exponents for trajectories near the 31 commensurability are computed both with the mappings presented in Wisdom (1982) and by numerical integration of the planar-elliptic problem. In all cases the agreement is excellent, indicating that the mappings accurately reflect whether trajectories are chaotic or quasiperiodic. The mappings are used to trace out the chaotic zone near the 31 commensurability, both in the planar-elliptic problem and to a more limited extent in the three-dimensional elliptic problem. The outer boundary of the chaotic zone coincides with the boundary of the 31 Kirkwood gap in the actual distribution of asteroids within the errors of the asteroid orbital elements.  相似文献   

9.
As part of a continuing series of experiments on the production of dark reddish organic solids, called tholins, by irradiation of cosmically abundant reducing gases, the synthesis from a simulated Titanian atmosphere of a tholin with a visible reflection spectrum similar to that of the high altitude aerosols responsible for the albedo and reddish color of Titan has been reported Sagan and Khare, 1981, Sagan and Khare, 1982, Orig. Life. 12, 280) and [C. Sagan, B. N. Khare, and J. Lewis, in press. In Saturn (M. S. Matthews and T. Gehrels, Eds.), Univ. of Arizona Press, Tucson]. The determination of the real (n) and imaginary (k) parts of the complex refractive index of thin films of such tholin prepared by continuous D.C. discharge through a 0.9 N2/0.1 CH4 gas mixture at 0.2 mb are reported. For 250 A? ≤ γ ≤ 1000 μm, n and k have been determined from a combination of transmittance, specular reflectance, interferometric, Brewster angle, and ellipsometric polarization measurements; experimental uncertainties in n are estimated to be ±0.5, and in k ± 30%. Values of n(?1.65) and k (?0.004 to 0.08) in the visible range are consistent with deductions made by ground-based and spacecraft observations of Titan. Maximum values of k (?0.8) are near 1000 Å, and minimum values (?4 × 10?4) are near 1.5 μm. Many infrared absorption features are present in k(γ), including the 4.6-μm nitrile band.  相似文献   

10.
L.H. Wasserman 《Icarus》1974,22(1):105-110
The nightime cooling of the Jovian atmosphere near the occulation level of 1014cm?3 is calculated using the models of Strobel (1973) and Strobel and Smith (1973). The amount of cooling is found to depend on χ, the methane mixing ratio; μ the mean molecular weight; and the sunrise temperature. Using the range of sunrise (emersion) temperatures observed by Veverka et al. (1974), the overnight cooling is calculated to be 1.5–5.5°K, if reasonable assumptions are made for χ and μ. The argument may be reversed to show that the agreement in measured sunrise and sunset temperatures obtained by other observers of the β Sco occulation implies that χ cannot be significantly greater than the generally accepted value of 7 ×10?4.  相似文献   

11.
We have used Pollack et al.'s 1976 calculations of the quasi-equilibrium contraction of Saturn to study the influence of the planet's early high luminosity on the formation of its satellites and rings. Assuming that the condensation of ices ceased at the same time within Jupiter's and Saturn's primordial nebulae, and using limits for the time of cessation derived for Jupiter's system by Pollack and Reynolds (1974) and Cameron and Pollack (1975), we arrive at the following tentative conclusions. Titan is the innermost satellite at whose position a methane-containing ice could condense, a result consistent with the presence of methane in this satellite's atmosphere. Water ice may have been able to condense at the position of all the satellites, a result consistent with the occurrence of low-density satellites close to Saturn. The systematic decrease in the mass of Saturn's regular satellites with decreasing distance from Saturn may have been caused partially by the larger time intervals for the closer satellites between the start of contraction and the first condensation of ices at their positions and between the start of contraction and the time at which Saturn's radius became less than a satellite's orbital radius. Ammonia ices, principally NH4SH, were able to condense at the positions of all but the innermost satellites.Water ice may bave been able to condense in the region of the rings close to the end of the condensation period. We speculate that the rings are unique to Saturn because on the one hand, temperatures within Jupiter's Roche limit never became cool enough for ice particles to form before the end of the condensation period and on the other hand, ice particles formed only very early within Uranus' and Neptune's Roche limits, and were eliminated by gas drag effects that caused them to spiral into the planet before the gas of these planets' nebula was eliminated. Gas drag would also have eliminated any rocky particles initially present inside the Roche limit.We also derive an independent estimate of several million years for the time between the start of the quasi-equilibrium contraction of Saturn and the cessation of condensation. This estimate is based on the density and mass characteristics of Saturn's satellites. Using this value rather than the one found for Jupiter's satellites, we find that the above conclusions about the rings and the condensation of methane-and ammonia-containing ices remain valid.  相似文献   

12.
Kevin H. Baines 《Icarus》1983,56(3):543-559
High-resolution (0.1-Å) spectra of the 6818.9-Å methane feature obtained for Jupiter, Saturn, and Uranus by K. H. Baines, W. V. Schempp, and W. H. Smith ((1983). Icarus56, 534–542) are modeled using a doubling and adding code after J. H. Hansen ((1969). Astrophys. J.155, 565–573). The feature's rotational quantum number is estimated using the relatively homogeneous atmosphere of Saturn, with only J = 0 and J = 1 fitting the observational constraints. The aerosol content within Saturn's northern temperate region is shown to be substantially less than at the equator, indicating a haze only half as optically thick. Models of Jupiter's atmosphere are consistent with the rotational quantum-number assignment. Synthetic line profiles of the 6818.9-Å feature observed on Uranus reveal that a substantial haze exists at or above the methane condensation region with an optical depth eight times greater than previously reported. Seasonal effects are indicated. The methane column abundance is 5 ± 1 km-am. The mixing ratio of methane to hydrogen within the deep unsaturated region of the planet is 0.045 ± 0.025, based on an H2 column abundance of 240 ± 60 km-am (W. H. Smith, W. Macy, and C. B. Pilcher (1980). Icarus43, 153–160), thus indicating that the methane comprises between one-sixth and one-half of the planet's mass. However, proper reevaluation of H2 quadrupole features accounting for the haze reported here may significantly reduce the relative methane abundance.  相似文献   

13.
In January of 1982 we measured a microwave spectrum of CO in the Martian atmosphere utilizing the rotational J = 1 → 2 transition of CO. We have analyzed data and reanalyzed the microwave spectra of R. K. Kakar, J. W. Waters, and W. J. Wilson, (Science196, 1090–1091, 1977, measured in 1975) and J. C. Good and F. P. Schloerb, (Icarus47, 166–172, 1981 measured in 1980) in order to constrain estimates of the temporal variability of CO abundance in the Martian atmosphere. Our values of CO column density from the data of Karar et al., Good and Schloerb, and our own are 1.7 ± 0.9 × 1020, 3.0 ± 1.0 × 1020, and 4.6 ± 2.0 × 1020cm?2, respectively. The most recent estimate of CO column density from the 1967 infrared spectra of J. Connes, P. Connes, and J.P. Maillard, (Atlas de Spectres Infarouges de Venus, Mars, Jupiter, et Saturne, Editions due Centre National de la Recherche Scientifique, Paris, 1969), is 2.0 ± 0.8 × 1020 cm?2 (L.D.G. Young and A.T. Young, Icarus30, 75–79, 1977). The large uncertainties given for the microwave measurements are due primarily to uncertainty in the difference between the continuum brightness temperature and atmospheric temperatures of Mars. We have accurately calculated the variation among the observations of the continuum (surface) brightness temperature of Mars, which is primaroly a function of the observed aspect of Mars. A more difficult problem to consider is variability of global atmospheric temperatures among the observations, particularly the effects of global dust storms and the ellipticity of the orbit of Mars. The large bars accompanying our estimates of CO column density from the three sets of microwave measurements are primarily caused by an assumed uncertainty of ±10°K in our atmospheric temperature model due to possible dust in the atmosphere. A qualitative consideration of seasonal variability of global atmospheric temperatures among the measurements suggests that there is not strong evidence for variability of the column abundance of CO on Mars, although variability of 0–100% over a time scale of several years is allowed by the data set. The implication for the variability of Mars O2 is, crudely, a factor of two less. We found that the altitude distribution of CO in the atmosphere of Mars was not well constrained by any of the spectra, although our spectrum was marginally better fitted by an altitude increasing profile of CO mixing ratios.  相似文献   

14.
We present high quality images of the uranian ring system, obtained in August 2002, October 2003, and July 2004 at 2.2 μm with the adaptive optics camera NIRC2 on the Keck II telescope. Using these data, we report the first detection in backscattered light of a ring (which we refer to as the ζ ring) interior to Uranus' known rings. This ring consists of a generally uniform sheet of dust between 37,850 and 41,350 km with an equivalent width (in 2004; or ), and extends inward to 32,600 km at a gradually decreasing brightness. This ring might be related to the Voyager ring R/1986 U 2, although both its location and extent differ. This could be attributed to a difference in observing wavelength and/or solar phase angle, or perhaps to temporal variations in the ring. Through careful modeling of the I/F of the individual rings at each ansa, we reveal the presence of narrow (few 100 km wide) sheets of dust between the δ and ε rings, and between rings 4 and α. We derived a typical anisotropy factor g≈0.7 in the scattering behavior of these particles. The spatial distribution and relative intensity of these dust sheets is different than that seen in Voyager images taken in forward scattered light, due either to a difference in observing wavelength, and/or solar phase angle or to changes over time. We may have detected the λ ring in one scan at , but other scans provided upper limits below this value. A single detection, however, would be consistent with azimuthal asymmetries known to exist in this ring. We further demonstrate the presence of azimuthal asymmetries in all rings. We confirm the eccentricity of ∼0.001 in rings 4, 5, 6, which in 2004 are ∼70 km closer to Uranus in the north (near periapse; lower I/F) than in the south. We find a global optical depth of τ∼0.3 in the main rings, and of τ=0.25±0.05 in the ε ring.  相似文献   

15.
The minor planet 164 Eva passed through opposition on December 1, 1975 with a magnitude Bopp = 11.3 mag. Photoelectric observations at the Observatory of Torino, Italy, were carried out in two nights on Oct. 27/28 and Nov. 11, each with a run of about 3 hr. Two further successful photoelectric observations were carried out at the OHP, France, each with a run of about 6 hr. From all observed parts of the lightcurve a resulting synodic period of rotation of about 27.3 hr can be deduced, with a range of the total amplitude of at least Δm = 0.07 mag. With this period of 27.3 hr the minor planet 164 Eva is one more long period object, falling now between 654 Zelinda (H. J. Schober, 1975, Astron. Astrophys.44, 85–89) and 139 Juewa (J. Goguen et al., 1976, Icarus29, 137–142), at the high end in the histogram of the distribution of minor planet rotation periods.  相似文献   

16.
A contradiction in the sulfuric acid cloud hypothesis of Venus, i.e., nondetection of 4.8 μm polarization by Landau (1975), is examined on the basis of the multiple scattering calculations for the cloud model of Hansen and Hovenier (1974) including an internal heat source. Results show that the polarized thermal component cannot depolarize the scattered sunlight, and therefore a large polarization of about 13% is expected at a phase angle of 110° and wavelength of 4.8 μm, in contrast with Landau's measurements. Our computations are, however, in agreement with the measurements by S. Sato et al. (in “Proceedings, 10th Lunar and Planetary Symposium,” pp. 179–182. Institute of Space and Aeronautical Science, University of Tokyo, July 11–13, 1977).  相似文献   

17.
Dale P. Cruikshank 《Icarus》1980,41(2):240-245
The reflectance spectrum of Io is presented from 2.8 to 5.2 μm, extending the earlier results of D. P. Cruikshank, T. J. Jones, and C. B. Pilcher (1978, Astrophys. J. 225, L89–L92), and demonstrating the full extent of the broad and deep spectral absorption between 3.5 and 4.8 μm. Laboratory spectra of nitrates and carborates diluted with sulfur do not satisfactorily reproduce the Io spectrum, but new information based on the recently discovered volcanic activity on the satellite lead to consideration of other classes of compounds as reported in a companion paper (F. P. Fanale, R. H. Brown, D. P. Cruikshank, and R. N. Clark, 1979, Nature280, 761–763).  相似文献   

18.
H.J. Reitsema 《Icarus》1981,48(1):23-28
Previously published positions of Dione B are combined with new observations reported in this paper to determine the motion. The data are fit to the analytic solution of Erdi (1978) to derive the parameters of the libratory motion. The satellite oscillates about the leading equilateral libration point (L4) of Dione with a period of 785.0±0.5 days. The maximum sepaparation in orbital longitude from Dione of 76.7° was reached on UT 1980 April 20.3±1 days; the minimum separation is 46.7°.  相似文献   

19.
David R. Soderblom 《Icarus》1985,61(2):343-345
Knowledge of a star's rotation period and ν sin i can be used to select stars that are seen pole-on, and thus are well suited to planetary searches by astrometric or direct-imaging means. A table of such stars is presented. This method is not suitable for discriminating equator-on systems and so cannot be used to select candidates for the photometric method of W. J. Borucki and A. L. Summers (1984, Icarus58, 121–134).  相似文献   

20.
Interferometric observations of Saturn and its rings made at the Owens Valley Radio Observatory at a wavelength of 3.71 cm ar fit to models of the Saturn brightness structure. The models have allowed us to estimate the brightness temperatures and optical thicknesses of the A, B, and C rings as well as the brightness temperature of the planetary disk. The most accurate results are the ratios of the ring temperatures to the planet temperature of 0.030 ± 0.012, 0.050 ± 0.010, and 0.040 ± 0.014 for the A, B, and C rings, respectively. The best estimates of the ring optical thicknesses are τA = 0.2 ± 0.1, τB = 0.9 ± 0.2, and τC = 0.1 ± 0.1. The actual brightness temperatures, which are affected by the absolute calibration errors, are Tplanet = 178 ± 8, TA = 5.2 ± 2.0, TB = 9.1 ± 1.8, and TC = 7.1 ± 2.6°K. The particle single-scattering albedo that would be most consistent with the observations is slightly less than one, but probably greater than 0.95. The observations are consistent with particles which conservatively scatter the thermal emission from Saturn to the Earth and emit no thermal emission of their own. The 3.71-cm optical depths which we have estimated are very close to the visible wavelength optical depths. This similarity indicates that the ring particles must be at least a few centimeters in size, although we feel that the particles may well be much larger than this in view of the closeness of the visible and microwave optical depths. Particles which are nearly conservative scatterers at our wavelength and at least a few centimeters in size must be composed of a material which is either a very good reflector of microwaves or a very poor absorber of them. At this time, water ice seems to be the most likely candidate since it is a very poor absorber of microwaves and has been detected in the rings spectroscopically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号