首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Calculations based on approximately 350 new measurements (CaT-PCO2) of the solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90°C indicate the following values for the log of the equilibrium constants KC, KA, and KV respectively, for the reaction CaCO3(s) = Ca2+ + CO2?3: Log KC = ?171.9065 ? 0.077993T + 2839.319T + 71.595 log TLog KA = ?171.9773 ? 0.077993T + 2903.293T +71.595 log TLog KV = ?172.1295 ? 0.077993T + 3074.688T + 71.595 log T where T is in oK. At 25°C the logarithms of the equilibrium constants are ?8.480 ± 0.020, ?8.336 ± 0.020 and ?7.913 ± 0.020 for calcite, aragonite and vaterite, respectively.The equilibrium constants are internally consistent with an aqueous model that includes the CaHCO+3 and CaCO03 ion pairs, revised analytical expressions for CO2-H2O equilibria, and extended Debye-Hückel individual ion activity coefficients. Using this aqueous model, the equilibrium constant of aragonite shows no PCO2-dependence if the CaHCO+3 association constant is Log KCahco+3 = 1209.120 + 0.31294T — 34765.05T ? 478.782 log T between 0 and 90°C, corresponding to the value logKCahco+3 = 1.11 ± 0.07 at 25°C. The CaCO03 association constant was measured potentiometrically to be log KCaCO03 = ?1228.732 ? 0.299444T + 35512.75T + 485.818 log T between 5 and 80°C, yielding logKCaCO03 = 3.22 ± 0.14 at 25°C.The CO2-H2O equilibria have been critically evaluated and new empirical expressions for the temperature dependence of KH, K1 and K2 are log KH = 108.3865 + 0.01985076T ? 6919.53T ? 40.45154 log T + 669365.T2, log K1 = ?356.3094 ? 0.06091964T + 21834.37T + 126.8339 log T — 1684915.T2 and logK2 = ?107.8871 ? 0.03252849T + 5151.79/T + 38.92561 logT ? 563713.9/T2 which may be used to at least 250°C. These expressions hold for 1 atm. total pressure between 0 and 100°C and follow the vapor pressure curve of water at higher temperatures.Extensive measurements of the pH of Ca-HCO3 solutions at 25°C and 0.956 atm PCO2 using different compositions of the reference electrode filling solution show that measured differences in pH are closely approximated by differences in liquid-junction potential as calculated by the Henderson equation. Liquid-junction corrected pH measurements agree with the calculated pH within 0.003-0.011 pH.Earlier arguments suggesting that the CaHCO+3 ion pair should not be included in the CaCO3-CO2-H2O aqueous model were based on less accurate calcite solubility data. The CaHCO+3 ion pair must be included in the aqueous model to account for the observed PCO2-dependence of aragonite solubility between 317 ppm CO2 and 100% CO2.Previous literature on the solubility of CaCO3 polymorphs have been critically evaluated using the aqueous model and the results are compared.  相似文献   

2.
The Kiglapait intrusion contains 330 ppm Sr and has SrCa = 5 × 10?3 and RbSr = 3 × 10?3, as determined by summation over the Layered Group of the intrusion. Wholerocks in the Lower Zone contain 403 FL0.141 ppm Sr, where FL is the fraction of liquid remaining; Sr drops to 180 ppm at the peak of augite production (FL = 0.11) and rises to a maximum of 430 ppm in the Upper Zone before decreasing to 172 ppm at the end of crystallization. Feldspars in the Lower Zone contain 532 FL0.090 ppm Sr, increasing to 680 ppm in the Upper Zone before decreasing to 310 ppm at the end. Clinopyroxenes contain 15 to 30 ppm Sr and have a mineral-melt distribution coefficient D = 0.06 except near the top of the intrusion where D = 0.10.The calculated feldspar-liquid distribution coefficient has an average value near 1.75 but shows four distinct trends when plotted against XAn of feldspar. The first two of these are strongly correlated with the modal augite content of the liquid, on average by the relation D = 1.4 + 0.02 AugL. The third (decreasing) trend is due to co-crystallization of apatite, and the fourth (increasing) trend can best be attributed to a triclinic-monoclinic symmetry change in the feldspar at An26, 1030°C. The compound feldspar-liquid distribution coefficient KD for SrCa bears out these deductions in detail and yields ΔGr for the Sr-Ca exchange ranging from nearly zero at the base of the Lower Zone to ?26 kJ/gramatom at the end of crystallization. The compound feldspar-liquid distribution coefficient KD for RbSr varies from 0.3 in the Lower Zone to 1.1 at the end of crystallization.The ratio CaFCaL is about 1.45 for troctolitic liquids containing 5% augite, for which KD (Sr-Ca) = 1.0 and DCa = DSr. For common basaltic liquids containing 20% augite, the Kiglapait data predict solSrFSrL = 1.8, as commonly found elsewhere. The strong dependence of Dsr on augite content of the liquid illuminates the role of liquid composition and structure in determining the feldspar-liquid distribution coefficient. Conversely, a discontinuous change in the trend of DSr when apatite arrives shows that the effect is due to apatite crystallization itself, not to the continuous variation of the liquid as it becomes enriched in apatite component.  相似文献   

3.
Diffusion of ions in sea water and in deep-sea sediments   总被引:3,自引:0,他引:3  
The tracer-diffusion coefficient of ions in water, Dj0, and in sea water, Dj1, differ by no more than zero to 8 per cent. When sea water diffuses into a dilute solution of water, in order to maintain the electro-neutrality, the average diffusion coefficients of major cations become greater but of major anions smaller than their respective Dj1 or Dj0 values. The tracer diffusion coefficients of ions in deep-sea sediments, Dj,sed., can be related to Dj1 by Dj,sed. = Dj1 · αθ2, where θ is the tortuosity of the bulk sediment and a a constant close to one.  相似文献   

4.
The regular geometry and completeness of the Kiglapait intrusion permit its bulk composition to be obtained by summation, and the composition of successive liquids to be obtained by subtraction. The summations for K and Rb give 1806 and 1.08 ppm, yielding Rfrsol|K/Rb= 1670 for the intrusion, taken as equal to the parent magma. R increases slightly from this initial value to 2000 at the end of crystallization where MgO approaches zero in the rocks. K and Rb are therefore closely coherent and their distribution coefficients can differ only by a small amount in the Kiglapait system.Apparent feldspar/liquid distribution coefficients (DF/L) can be estimated from detailed plots of feldspar and liquid compositions against FL. The Kiglapait data imply that these coefficients are linear 1:1 functions of plagioclase composition within experimental error, having values given by DKF/L = 1.42? XAnDRbF/L = 1.13? XAn with minimum values of 0.75 and 0.49, respectively. The ratio RFRL lies in the range of 1.53± 0.03 for the plagioclase composition range XAn= 0.34 to 0.67 showing that high-R rocks such as anorthosite crystallized from high-R liquids.The apparent feldspar distribution coefficients are much closer to 1.0 than common literature values. They can be reduced by assuming that the cumulate pile was continuously recharged by the circulating magma until an advanced stage of differentiation was reached, and assuming that alkalies were exchanged to the feldspars from the magma. When such an ‘aquifer recharge’ model is calibrated using olivine-liquid equilibria as a time marker for the liquid, the inferred minimum equilibrium values of the distribution coefficients are DKFL= 0.42, DRbFL = 0.25 at the base of the intrusion. Their variation is given by DKFL= 1.66?1.88XAn, DRbFL= 1.17?1.41XAn, The equilibrium values are considered to be appropriate for deducing liquid compositions in plutonic bodies where alkali exchange can be shown or inferred to have been inhibited, such as in small intrusions. The apparent values are considered to be appropriate, even though they may be artificial, for large intrusions similar to the Kiglapait.The bulk K and Rb concentrations in the Kiglapait intrusion are consistent with a plagioclase-rich abyssal tholeiite magma. Clinopyroxene and olivine fractionation in the mantle may contribute to the production of such high-Rmagmas.  相似文献   

5.
Equations are developed for calculating the density of aluminosilicate liquids as a function of composition and temperature. The mean molar volume at reference temperature Tr, is given by Vr = ∑XiV?oi + XAV?oA, where the summation is taken over all oxide components except A12O3, X stands for mole fraction, V?oi terms are constants derived independently from an analysis of volume-composition relations in alumina-free silicate liquids, and V?oA is the composition-dependent apparent partial molar volume of Al2O3. The thermal expansion coefficient of aluminosilicate liquids is given by α = ∑Xi\?gaio + XA\?gaAo, where \?gaio terms are constants independent of temperature and composition, and \?gaoA is a composition-dependent term representing the effect of Al2O3 on the thermal expansion. Parameters necessary to calculate the volume of silicate liquids at any temperature T according to V(T) = Vrexp[α(T-Tr)], where Tr = 1400°C have been evaluated by least-square analysis of selected density measurements in aluminosilicate melts. Mean molar volumes of aluminosilicate liquids calculated according to the model equation conform to experimentally measured volumes with a root mean square difference of 0.28 ccmole and an average absolute difference of 0.90% for 248 experimental observations. The compositional dependence of V?oA is discussed in terms of several possible interpretations of the structural role of Al3+ in aluminosilicate melts.  相似文献   

6.
The South Mountain batholith of southwestern Nova Scotia is a large, peraluminous, granodiorite-granite complex which intrudes mainly greenschist facies metasediments of the Cambro-Ordovician Meguma Group. Using Rb-Sr isochrons constructed from whole rocks and mineral separates, the present study shows a variation in age and initial ratios of the intrusive phases of the batholith as follows: biotite granodiorite (371.8 ± 2.2 Ma, (87Sr86Sr)i ranges from 0.7076 ± 0.0003 to 0.7090 ± 0.0003, with the average = 0.7081); adamellite (364.3 ± 1.3 Ma, (87Sr86Sr)i = 0.70942 ± 35); porphyry (361.2 ± 1.4 Ma, (87Sr86Sr)i = 0.71021 ± 119); using λ87Rb = 1.42 × 10?11yr?1.A suite of Meguma country rock samples showed a variation of 87Sr86Sr = 0.7113?0.7177 at the time of intrusion of the batholith. A number of xenoliths of this material occurring in the marginal granodiorite had partially equilibrated isotopically with the granodiorite at a higher 87Sr86Sr ratio than elsewhere in the granodiorites. This evidence demonstrates that isotopic (and probably some accompanying bulk chemical) contamination by the Meguma rocks has been an important factor in determining the ultimate chemical composition and mineralogy of the South Mountain batholith.The (87Sr86Sr)372 = 0.7081 of the early granodiorites indicates that the parent magma of the South Mountain batholith was derived from a source unlike the Meguma Group. The precise nature of the source region cannot be determined by Rb-Sr work unless the degree of contamination with Megumalike material is known.  相似文献   

7.
A parameter ΔO2?, defined as the difference between the Gibbs energy of formation of a given oxide and its aqueous cation, was used to obtain linear relationships among Gibbs energies of formation from the elements of hydroxides, oxides and aqueous metallic ions (Tardy and Garrels, 1976). Use of this parameter has now been extended to meta- and orthosilicates for which the Gibbs energies of formation of silicates from their oxides are shown to be linear functions of the ΔO2? values of their constituent cations. The function obtained for metasilicates is:
ΔGo?silicate ? ∑ΔGo?oxides = ? 23(ΔO2?cation ? ΔO2?silicon
and that for orthosilicates is:
ΔGo?silicate ? ∑ΔGo?oxides = ? 44(ΔO2?cation ? ΔO2?silicon
in which Δo? silicate is the Gibbs energy of formation from the elements of a silicate of a given cation and ∑ΔGo? oxides is the sum of the Gibbs energies of formation from the elements of the constituent oxides of the silicate considered.These functions can be used to test for consistency within and between various sources of thermodynamic data and to estimate free energy of formation values for previously unstudied species.  相似文献   

8.
The coprecipitation of Na and K was experimentally investigated in aragonite. The distribution functions were determined at pH 6.8 and 8.8 over aqueous Na and K concentrations of between 5 × 10?4and 2.0 M and temperatures of between 25 and 75°C.The mole fractions of Na and K in aragonite are related to the aqueous ratios of Na and Ca by a function of the form
log XNa2CO3,K2CO3 = C0 + C1loga2Na ? ,K?aCa2+
where C0 and C1 are constants at a given temperature. This equation was derived by a statistical model assuming a heterogeneous energy distribution for the sites of incorporation. The independence of the coprecipitation process from aqueous anion activities suggests that carbonate is the only anionic species in the solid solution.  相似文献   

9.
A linear correlation exists between the standard Gibbs free energies of formation of calcite-type carbonates (MCO3) and the corresponding conventional standard Gibbs free energies of formation of the aqueous divalent cations (M2+) at 25 °C and 1 bar ΔGMCO30 = m(ΔGf,M2+0) ? 141,200 cal · mole?1 where m is equal to 0.9715. This relationship enables prediction of the standard free energies of formation of numerous hypothetical carbonates with the calcite structure. Associated uncertainties typically range from about ± 250 to 600 cal · mole?1. An important consequence of the above correlation is that the thermodynamic equilibrium constant for the distribution of two trace elements M and N between carbonate mineral and aqueous solution at 25 °C and 1 bar is proportional to the free energy difference between the corresponding two aqueous ions: In KM-N = m ? 1298.15RG?f,M2+0 ? ΔG?f,N2+0)Combination of predicted standard free energies, entropies and volumes of carbonate minerals at 25°C and 1 bar with standard free energies of aqueous ions and the equation of state in Helgesonet al. (1981) enables prediction of the thermodynamic equilibrium constant for trace element distribution between carbonates and aqueous solutions at elevated temperatures and pressures. Interpretation of the thermodynamic equilibrium constant in terms of concentration ratios in the aqueous phase is considerably simplified if pairs of divalent trace elements are considered that have very similar ionic radii (e.g., Sr2+Pb2+, Mg2+Zn2+). In combination with data for the stabilities of complex ions in aqueous solutions, the above calculations enable useful limits to be placed on the concentrations of trace elements in hydrothermal solutions.  相似文献   

10.
Chemical equilibrium between sodium-aluminum silicate minerals and chloride bearing fluid has been experimentally determined in the range 500–700°C at 1 kbar, using rapid-quench hydrothermal methods and two modifications of the Ag + AgCl acid buffer technique. The temperature dependence of the thermodynamic equilibrium constant (K) for the reaction NaAlSi3O8 + HClo = NaClo + 12Al2SiO5, + 52SiO2 + 12H2O Albite Andalusite Qtz. K = (aNaClo)(aH2O)1/2(aHClo) can be described by the following equation: log k = ?4.437 + 5205.6/T(K) The data from this study are consistent with experimental results reported by Montoya and Hemley (1975) for lower temperature equilibria defined by the assemblages albite + paragonite + quartz + fluid and paragonite + andalusite + quartz + fluid. Values of the equilibrium constants for the above reactions were used to estimate the difference in Gibbs free energy of formation between NaClo and HClo in the range 400–700°C and 1–2 kbar. Similar calculations using data from phase equilibrium studies reported in the literature were made to determine the difference in Gibbs free energy of formation between KClo and HClo. These data permit modelling of the chemical interaction between muscovite + kspar + paragonite + albite + quartz assemblages and chloride-bearing hydrothermal fluids.  相似文献   

11.
The effect of presure on the solubility of minerals in water and seawater can be estimated from In
(KPspK0sp) + (?ΔVP + 0.5ΔKP2)RT
where the volume (ΔV) and compressibility (ΔK) changes at atmospheric pressure (P = 0) are given by
ΔV = V?(M+, X?) ? V?[MX(s)]ΔK = K?(M+, X?) ? K?[MX(s)]
Values of the partial molal volume (V?) and compressibilty (K?) in water and seawater have been tabulated for some ions from 0 to 50°C. The compressibility change is quite large (~10 × 10?3 cm3 bar?1 mol?1) for the solubility of most minerals. This large compressibility change accounts for the large differences observed between values of ΔV obtained from linear plots of In Ksp versus P and molal volume data (Macdonald and North, 1974; North, 1974). Calculated values of KPspKosp for the solubility of CaCO3, SrSO4 and CaF2 in water were found to be in good agreement with direct measurements (Macdonald and North, 1974). Similar calculations for the solubility of minerals in seawater are also in good agreement with direct measurements (Ingle, 1975) providing that the surface of the solid phase is not appreciably altered.  相似文献   

12.
HD Fractionation factors between epidote minerals and water, and between the AlO(OH) dimorphs boehmite and diaspore and water, have been determined between 150 and 650°C. Small water mineral ratios were used to minimise the effect of incongruent dissolution of epidote minerals. Waters were extracted and analysed directly by puncturing capsules under vacuum. Hydrogen diffusion effects were eliminated by using thick-walled capsules.HD Exchange rates are very fast between epidote and water (and between boehmite and water), complete exchange taking only minutes above 450°C but several months at 250°C. Exchange between zoisite and water (and between diaspore and water) is very much slower, and an interpolation method was necessary to determine fractionation factors at 450 and below.For the temperature range 300–650°C, the HD equilibrium fractionation factor (αe) between epidote and water is independent of temperature and Fe content of the epidote, and is given by 1000 In αepidote-H2Oe = ?35.9 ± 2.5, while below 300°C 1000 In αepidote-H2Oe = 29.2(106T2) ? 138.8, with a ‘cross-over’ estimated to occur at around 185°C. By contrast, zoisite-water fractionations fit the relationship 1000 In αzoisite-H2Oe = ? 15.07 (106T2) ? 27.73.All studied minerals have hydrogen bonding. Fractionations are consistent with the general relationship: the shorter the O-H -- O bridge, the more depleted is the mineral in D.On account of rapid exchange rates, natural epidotes probably acquired their H-isotope compositions at or below 200°C, where fractionations are near or above 0%.; this is in accord with the observation that natural epidotes tend to concentrate D relative to other coexisting hydrous minerals.  相似文献   

13.
The carbonato and hydrogencarbonato complexes of Mg2+ were investigated at 25 and 50° in solutions of the constant ClO4? molality (3 M) consisting preponderantly of NaClO4. The experimental data could be explained assuming the following equilibria: Mg2+ + CO2B + H2O ag MgHCO+3 + H+, log 1β1 = ?7.644 ± 0.017 (25°), ?7.462 ± 0.01 1 (50°), Mg2+ + 2 CO2g + 2 H2Oag Mg(HCO3)02 ± 2 H+, log 1β2 = ?15.00 ± 0.14 (25°), ?15.37 ± 0.39 (50°), Mg2+ + CO2g + H2Oag MgCO03 + 2 H+, log 1k1 = ?15.64 ± 0.06 (25°),?15.23 ± 0.02 (50°), with the assumption γMgCO30 = γMg(HCO3)02, ΔG0(I = 0) for the reaction MgCO03 + CO2g + H2O = Mg(HCO3)02 was estimated to be ?3.91 ± 0.86 and 0.6 ± 2.4 kJ/mol at 25 and 50°C, respectively. The abundance of carbonate linked Mg(II) species in fresh water systems is discussed.  相似文献   

14.
15.
The chemical composition of gas mixtures emerging in thermal areas can be used to evaluate the deep thermal temperatures. Chemical analyses of the gas compositions for 34 thermal systems were considered and an empirical relationship developed between the relative concentrations of H2S, H2, CH4 and CO2 and the reservoir temperature. The evaluated temperatures can be expressed by: t°C = 24775α + β + 36.05 ?273 where α = 2 logCH4CO2 ?log H2CO2?3 log H2SCO2 (concentrations in % by volume) and β = 7 logPco2  相似文献   

16.
17.
A direct-sampling, mass-spectrometric technique has been used to measure simultaneously the solubilities of He, Ne, Ar, Kr, and Xe in fresh water and NaCl brine (0 to 5.2 molar) from 0° to 65 °C, and at 1 atm total pressure of moist air. The argon solubility in the most concentrated brines is 4 to 7 times less than in fresh water at 65 °C and 0°C, respectively. The salt effect is parameterized using the Setschenow equation.
ln [βio(T)βi(T) = MKiM(T)
where M is NaCl moiarity, βio(T) and βi(T) the Bunsen solubility coefficients for gas i in fresh water and brine, and KiM(T) the empirical salting coefficient. Values of KiM(T) are calculated using volumetric concentration units for noble gas and NaCl content and are independent of NaCl molarity. Below about 40°C, temperature coefficients of all KiM are negative. The value of KHeM is a minimum at 40°C. KArM decreases from about 0.40 at 0°C to 0.28 at 65 °C. The absolute magnitudes of the differences in salting coefficients (relative to KArM) decrease from 0° to 65°C. Over the range of conditions studied, all noble gases are salted out, and KHeM ? KNeM < KArM < KKrM < KXeM.From the solubility data, we calculated ΔG0tr, ΔS0tr, ΔH0tr and ΔCOp,tr for the transfer of noble gases from fresh water to 1 molar NaCl solutions. At low temperatures ΔS0tr, is positive, but decreases and becomes negative at temperatures ranging from about 25°C for He to 45°C for Xe. At low temperatures, the dissolved electrolyte apparently interferes with the formation of a cage of solvent molecules about the noble gas atom. At higher temperatures, the local environment of the gas atom in the brine appears to be slightly more ordered than in pure water, possibly reflecting the longer effective range of the ionic fields at higher temperature.The measured solubilities can be used to model noble gas partitioning in two-phase geothermal systems at low temperatures. The data can also be used to estimate the temperature and concentration dependence of the salt effect for other alkali halides. Extrapolation of the measured data is not possible due to the incompletely-characterized minima in the temperature dependence of the salting coefficients. The regularities in the data observed at low temperatures suggest relatively few high-temperature data will be required to model the behavior of noble gases in high-temperature geothermal brines.  相似文献   

18.
Differences in the chemical composition of metamorphic and igneous pyroxene minerals may be attributed to a transfer reaction, which determines the Ca content of the minerals, and an exchange reaction, which determines the relative Mg:Fe2+ ratios. Natural data for associated Ca pyroxene (Cpx) and orthopyroxene (Opx) or pigeonite are combined with experimental data for Fe-free pyroxenes, to produce the following equations for the Cpx slope of the solvus surface: > 1080°C: T = 1000(0.468 + 0.246XCpx ? 0.123 ln (1–2 [Ca]))< 1080°C: T = 1000(0.054 + 0.608XCpx ? 0.304 ln (1–2 [Ca])), and the following equation for the temperature-dependence of the Mg-Fe distribution coefficient: T = 1130(ln Kp + 0.505), where T is absolute temperature, X is Fe2+(Mg + Fe2+)), [Ca] is Ca(Ca + Mg + Fe2+) in Cpx, and KD is the distribution coefficient, defined as XOpx/(1 ? XOpx) ÷ XCpx/(1 ? Cpx).The transfer and exchange equations form useful temperature indicators, and when applied to 9 sets of well-studied rocks, yield pairs of temperatures that are in good agreement. For example, temperatures obtained for the Bushveld Complex are 1020°C (solvus equation) and 980°C (exchange equation), based on 7 specimens. The uncertainty in these numbers, due to precision and accuracy errors, is estimated to be ±60°.  相似文献   

19.
The stoichiometric, KHA1, and apparent, K'HA, constants for the ionization of a number of weak acids (NH4+, HSO4?, HF, H2O, B(OH)3, H2CO3, HCO3?, H3PO4, H2PO4?, HPO42, H3AsO4 H2AsO4? and HAsO42?) in seawater at 25°C diluted with water have been fitted to equations of the form (Millero, 1979). In KHA1 = In KHA + AS12 + BS where In KHA is the thermodynamic constant in water, S is the salinity, A and B are adjustable parameters. The validity of this equation in estuarine waters has been examined by using an ion pairing model (Millero and Schreiber, 1981). The calculated values of KHA1 and K'HA at S = 35%. are in good agreement with the measured values for all the systems examined. The equation used to extrapolate the measured values to pure water KHA predicted values that agreed with those determined by using the ion pairing model. The exception was the ionization of HPO42? due to the strong interactions of Ca2+ and Mg2+ with PO43?. The differences in the predicted values of KHA1 in seawater diluted with pure water and average river water were very small for all the acids except HPO42? (the maximum ΔpK = 0.96 in average river water). The larger difference in the KHA1 for HPO42? in river waters is due to the strong interactions of Ca2+ and PO43?.  相似文献   

20.
In a soil developed on the Cretaceous chalk of the Eastern Paris basin, calcite dissolution begins at the surface. The soil water is rapidly saturated in calcite. Calcite dissolution follows two different pathways according to seasonal pedoclimatic conditions.During winter: the soil is only partly saturated in water and the CO2 partial pressure is low (Ca 10?3 atm.). As a consequence total inorganic dissolved carbon (TIDC) is a hundred times the carbon content of the gaseous phase. Equilibrium is usually observed between the two phases. It is a closed system. The measured carbon 14 activity (87,5%) and 13C content (δtidc13C = ?12,2%0) of the drainage water are very close to theoretical values calculated for an ideal mixing system between gaseous and mineral phases (respectively characterized by the following isotopic values: δG13C = ?21,5%0; AG14C = 118%; δM13C = +2,9%0; AM14C = 28%).During spring and summer: the soil moisture decreases, the input of biogenic CO2 induces an increase of the soil CO2 partial pressure (Ca from 3.10?3 atm to 7.10?3 atm). The carbon content of the gaseous phase is higher by an order of magnitude compared to winter conditions. Therefore the aqueous phase is undersaturated in CO2 with respect to the latter. This disequilibrium occurs as a result of unbalanced rates of CO2 dissolution and CO2 effusion toward atmosphère. It is an open system. The carbon isotopic ratio of the aqueous phase is regulated by that of the gaseous phase, as demonstrated by the agreement between measured and calculated isotopic compositions (respectively δL mes = from ?9,4%0 to ?11,5%0, δl calc = from ?9,8%0 to ?13,9%0 AL mes = 119%, AL calc = from 119% to 125%).The solutions originating from both systems (open and closed) move downwards without significant mixing together. It has also been observed that no significant variation of the TIDC isotopic composition occurs during precipitation of secondary calcite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号