首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abundances and isotopic compositions of He, Ne, Ar, and Xe have been measured in eight recently fallen chondrites. Ratios of concentrations of cosmic ray-produced 3He, 21Ne, 22Ne and 38Ar indicate that all eight samples experienced less than average cosmic ray shielding. 3He and 21Ne exposure ages were calculated using shielding corrected chondritic production rates and the measured 22Ne21Ne. Exposure ages calculated from 22Na22Ne and 26Al21Ne ratios and constant relative production rates show a bias between the two ages due to variations in 22Na26Al. Arguments are presented that this bias is due to irradiation hardness differences, and therefore the use of constant values for both the 22Na22Ne and 26Al21Ne production ratios is not permitted. Dwaleni, Swaziland, was found to be an unusual gas-rich chondrite with high concentrations of solar-derived He and Ne and planetary-type Xe.  相似文献   

2.
The 10Be contents of 28 stony meteorites with known 21Ne contents range from 0.97 to 23 dpm/kg and give an average 21Ne production rate (P21) of (0.28 ± 0.02) × 108 cm3 STP/g-Myr for shielding conditions corresponding to 22Ne21Ne = 1.114 in an H-chondrite. Our P21(10Be) agrees with others' P21 based on 22Na, 81Kr and 53Mn but not on 26A1. Temporal variations in the cosmic ray flux do not explain the disagreement satisfactorily; major errors in the radionuclide half-lives are not indicated. The discrepancy seems rooted in the data selection and the difficulties of making accurate corrections for shielding, chemical composition and other sources of variability.  相似文献   

3.
Al26 and noble gas contents of 6 ordinary chondrites with He3Ne21 ratios above 6.0 or below 4.0 are used to infer the variability of the production rates of He3 and Ne21 (PHe3 and PNe21). The ratio of the observed Al26 content to a calculated, normal value is taken as a measure of the change of PNe21 from its normal value. The corresponding change in PHe3 is then computed from the observed He3Ne21 ratio and an average value of PHe3.According to these calculations which exclude orbital effects, PHe3 will be near the average value in meteorites with high He3Ne21 ratios, while PNe21 will be about 30 per cent below normal. In meteorites with low He3Ne21 ratios, PHe3 may be depressed by as much as 25 per cent from normal while PNe21 may be 15–20 per cent above the average.  相似文献   

4.
5.
The 26Al, light rare gas and major and minor element contents of Al-rich and poor samples separated from Allende. Bereba and Junivas have been measured. The production rate of 21Ne from Al (21PAl) is (1.9 ± 0.6) × 21PSi and 2221PAl = 1.4 ± 0.4. The 3He, 21Ne and 38Ar exposure ages of the eucritic pyroxenes agree suggesting complete cosmogenic gas retention. The eucritic feldspars have lost virtually all 3He and most radiogenic 4He. The equation 26Al = 0.42 ± 0.41 Mg + 2.74 ± 0.21 Si + 4.92 ± 0.51 Al + 1.33 S + 0.24 Ca + 0.03 Fe reproduces within 15% our 26Al measurements and the average values measured in ordinary chondrites without recourse to unusual cosmic-ray effects.  相似文献   

6.
The inert gases have been measured in six size fractions covering the range below 500 μm, in a single feldspathic fragment weighing 523 μg, and in an agglutinate particle weighing 465 μg. The two size fractions between 125 and 250 μm as well as 250 and 500 μm were separated into magnetic and non-magnetic portions, which were measured separately. Like the Apollo and Luna 16 fines, the terra fines represented by Luna 20 are very rich in trapped solar-wind gases, but they contain relatively less He4 and Ne20, which is revealed by their average He4Ne20 ratio of 35 and Ne20Ar36 ratio of 2.9. Obviously the terra materials are less retentive for solar-wind He and Ne than typical mare fines such as 10084. Whether this is due to the relatively small TiO2 or the relatively large plagioclase content of the former is not resolved. (Ar36Kr84)trapped and (Ar36Xe132)trapped ratios are relatively large; the average values are 2800 and 14400, respectively. The apparent Ne21 radiation ages of all the size fractions are in the range 209–286 × 106 yr; the average is 260 × 106 yr. This is in the range of values known for the Apollo and Luna 16 fines. The feldspathic fragment has a much greater apparent Nec21 age of 780 × 106 yr. The Ar40-Ar36 systematic reveals the presence of two Ar40 components, because Ar40 = (1.41 ± 0.076)Ar36 + (0.490 ± 0.130) × 10?4 (cm3 STP/g). The Ar40Ar36 slope of 1.41 is not inconsistent with an origin of the sample from a relatively old terra region.  相似文献   

7.
Metal and silicate portions from 13 mesosiderites, one pallasite, Bencubbin (“unique”) and Udei Station (‘iron with silicate inclusions’) have been analysed for their content of He, Ne and Ar; in most cases 36Cl could be determined as well. 36Cl-36Ar cosmic ray exposure ages fall between 10 and 160 Myr. Half of the metal samples show a deficit of spallogenic 3He (up to 30%) which we ascribe to a loss of tritium. The observed depletion of 3He in the silicates is correlated with their mineralogical composition: feldspar has lost its 3He in all cases, pyroxene definitely in one and possibly in five others, while olivine has been affected in only two meteorites. The thermal histories during their exposure to the cosmic radiation have been different for different meteoroids. Nevertheless, with the exception of Veramin, the data are compatible with the assumption of a continuous diffusion loss during a considerable fraction of the exposure era. For Veramin, however, an episodic event late in the exposure history is required. The exceptionally high 39Ar36Cl ratio in the metal, which is due to a high 39Ar activity, indicates that the event occurred during the last 500,000 years or so and resulted in an extremely excentric orbit (large aphelion).Production rates of 38,39Ar from Ca and 21,22Ne from Mg are given. The ratio P38CaP21Mg is close to unity. The ratios P38CaP38Fe vary between 20 and 50, and are not correlated with the absolute production rate of 38Ar from metal. The 22Ne21Ne production ratio from Mg is found to be close to but below unity.Of the mesosiderites only Veramin shows unambiguous evidence for primordial rare gases with larger amounts and a higher 20Ne36Ar ratio in the olivine, suggesting in situ fractionation to have at least been partly responsible for the abundance pattern found. Bencubbin contains large amounts of strongly fractionated primordial gases, but again part of the fractionation may have occurred in situ. Udei Station shows an excess of (3.5 ± 0.6) × 10?10 cm3 STP 129Xe/g in the non-magnetic portion.  相似文献   

8.
The C3O chondrites Kainsaz, Lancé and Ornans were studied by an acid dissolution technique, to characterize the noble-gas components in 3 mineral fractions: HF, HCl-solubles (99% of the meteorite), chromite and carbon (0.3–0.9%), and ‘phase Q’, a poorly characterized trace mineral (0.05–0.4%) containing most of the Ar, Kr, Xe. For all fractions, gas contents decline in the order Kainsaz > Lancé > Ornans; this trend parallels volatile contents but not heterogeneity of olivine composition or degree of metamorphism and seems to reflect progressively higher condensation temperatures from the solar nebula.Solubles contain nearly unfractionated Xe, and show 136Ar132Xe ratios up to 850. Hence the high ArXe ratios (200–400) of bulk C3O chondrites must be due to an HF-soluble mineral (possibly magnetite). Phase Q contains ordinary planetary gases and a Ne component of 20Ne22Ne = 10.3 ± 0.4.Chromite and carbon contain Ne of 20Ne22Ne = 8.6 ± 0.1 and ‘CCF’ xenon (a peculiar component of possibly fissiogenic origin, enriched in the heavy isotopes but accompanied by a component enriched in the light isotopes).In all primitive chondrites, both the amount and the chemical separability of CCFXe parallel the abundance of promordial noble gases and other volatiles, such as C, N, Tl, Bi and In. The close correlation of CCFXe with various properties of undoubtedly local origin (volatile content, petrologic type, presence of ferrichromite and carbon, etc.) is more consistent with a local than with an extrasolar origin of this component. A volatile superheavy element seems to be the most plausible source, but the evidence is not conclusive.  相似文献   

9.
Abundances of cosmic ray-produced noble gases and 26Al, including some new measurements, have been compiled for some 23 stone meteorites with exposure ages of < 3 × 106 yr. Concentrations of cosmogenic He, Ne, and Ar in these meteorites have been corrected for differences in target element abundances by normalization to L-chondrite chemistry. Combined noble gas measurements in depth samples of the Keyes and St. Séverin chondrites are utilized to derive equations for normalizing the production rates of cosmogenic 3He, 21Ne, and 38Ar in chondrites to an adopted ‘average’ shielding: 22Ne21Ne = 1.114. The measured unsaturated 26Al concentrations and the calculated equilibrium 26Al for these meteorites are combined to estimate exposure ages. These exposure ages are statistically compared with chemistry- and shielding-corrected concentrations of cosmogenic He, Ne, and Ar to derive absolute production rates for these nuclides. For L-chondrites, at ‘average’ shielding, these production rates (in 10?8 cm3/g 106 yr) are: 3He = 2.45,21Ne = 0.47, and 38Ar = 0.069, which are ~ 25% higher than production rates used in the past. From these production rates and relative chemical correction factors, production rates for other classes of stone meteorites are derived.  相似文献   

10.
Nine LL-chondrites were studied by a selective etching technique, to characterize the noblegas components in three mineral fractions: HF-HCl-solubles (silicates, metal, troilite, etc.; comprising ~ 99% of the meteorite), chromite and carbon (~ 0.3–0.7%) and Q (a poorly characterized mineral defined by its solubility in HNO3, comprising ~ 0.05% of the meteorite but containing most of the Ar, Kr, Xe and a neon component of 20Ne22Ne = 10.9 ± 0.8). The 20Ne36Ar ratio in Q falls wi petrologic type and rising 36Ar content, as expected for condensation from a cooling solar nebula, but contrary to the trend expected for metamorphic losses. Chondrites of different petrologic types therefore cannot all be derived from the same volatile-rich ancestor, but must have formed over a range of temperatures, with correspondingly different intrinsic volatile contents.The CCFXe (carbonaceous chondrite fission) component varies systematically with petrologic type. The most primitive LL3s (Krymka, Bishunpur, Chainpur) contain substantial amounts of CCFXe in chromite-carbon, enriched relative to primordial Xe as shown by high 136Xe132Xe (0.359–0.459, vs 0.310 for primordial Xe). These are accompanied by He and by Ne with 20Ne22Ne ≈ 8.0 and by variable amounts of a xenon component enriched in the light isotopes. The chromite in these meteorites is compositionally peculiar, containing substantial amounts of Fe(III). These meteorites, as well as Parnallee (LL3) and Hamlet (LL4) also contain CCFXe in phase Q, heavily diluted by primordial Xe (136Xe132Xe = 0.317–0.329). On the other hand, LL5s and 6s (Olivenza, St. Séverin, Manbhoom and Dhurmsala) contain no CCFXe in either mineral. This deficiency must be intrinsic rather than caused by metamorphic loss, because Q in these meteorites still contains substantial amounts of primordial Ne.If CCFXe comes from a supernova, then its distribution in LL-chondrites requires three presolar carrier minerals of the right solubility properties, containing three different xenon components in certain combinations. These minerals must be appropriately distributed over the petrologic types, together with locally produced Q containing primordial gases, and they must be isotopically normal, in contrast to the gases they contain. On the other hand, if CCFXe comes from fission of a volatile superheavy element, then its decrease from LL3 to LL6 can be attributed to progressively less complete condensation from the solar nebula. Ad hoc assumptions must of the host phase Q, its association with ferrichromite and the origin of the associated xenon component enriched in the light isotopes.Soluble minerals in LL3s and LL4s contain a previously unobserved, solar xenon component, which, however, is not derived from the solar wind. Three types of ‘primordial’ xenon thus occur side-by-side in different minerals of the same meteorite: strongly fractionated Xe in ferrichromite and carbon, lightly fractionated Xe in phase Q, and ‘solar’ Xe in solubles. Because the first two can apparently be derived from the third by mass fractionation, it seems likely that all were trapped from the same solar nebula reservoir, but with different degrees of mass fractionation.  相似文献   

11.
He, Ne, Ar, Kr and Xe concentrations and isotopic abundances were measured in three bulk grain size fractions prepared from sample L-16-19, No. 120 (C level, 20–22 cm depth) returned by the Luna 16 mission. The expected anticorrelation between the concentrations of trapped solar wind noble gases and grain size is observed. Elemental abundances of solar wind trapped noble gases are similar to those previously found in corresponding grain size fractions of the Apollo 11 and 12 fines. The trapped ratio 4He20Ne varies in the soils from different lunar maria due to diffusion losses. A rough correlation of 4He20Ne with the proportion of ilmenite in these samples is apparent. The elemental and isotopic ratios of the surface correlated noble gases in Luna 16 resemble those previously found in Apollo fines. Based on 21Ne, 78Kr and 126Xe a cosmic ray exposure age of 360 my was determined. This age is similar to those obtained for the soils from other lunar maria.  相似文献   

12.
The Roving Automated Rare Gas Analysis (RARGA) lab of Berkeley's Physics Department was deployed in Yellowstone National Park for a 19 week period commencing in June, 1983. During this time 66 gas and water samples representing 19 different regions of hydrothermal activity within and around the Yellowstone caldera were analyzed on site. Routinely, the abundances of five stable noble gases and the isotopic compositions of He, Ne, and Ar were determined for each sample. In a few cases the isotopes of Kr and Xe were also determined and found to be of normal atmospheric constitution.Correlated variations in the isotopic compositions of He and Ar can be explained within the precision of the measurements by mixing of only three distinct components. The first component is of magmatic origin and is enriched in the primordial isotope 3He with 3He4He ≥ 16 times the air value. This component also contains radiogenic 40Ar and possible 36Ar with 40Ar36Ar ≥ 500, resulting in a 3He36Ar ratio ≥ 41,000 times the air value. The second component is assumed to be purely radiogenic 4He and 40Ar (41He401Ar = 4.08 ± .33). This component is the probable carrier of observed excesses of 211Ne, attributed to the α,n reaction on 18O. Its radiogenic character implies a crustal origin in U. Th, and Krich aquifer rocks. The third component, except for possible mass fractionation, is isotopically indistinguishable from the noble gases in the atmosphere. This component originates largely from infiltrating run-off water saturated with atmospheric gases.In addition to exhibiting nucleogenic 211Ne, Ne data show anomalies in the ratio 20Ne20Ne, which correlate roughly with the 21Ne22Ne anomalies for the most part, but not as would occur from simple mass fractionation. Some exaggerated instances of the 20Ne22Ne anomaly occur which could be explained by combined mass fractionation of Ne and Ar isotopes to a severe degree coupled with remixing with normally isotopic gases. Otherwise exotic processes have to be invoked to explain the 20Ne data.Relative abundances of the non-radiogenic and non-nucleogenic noble gases (22Ne, 36Ar, 84Kr, and 132Xe) are highly variable but strongly correlated. High Xe/Ar ratios are always accompanied by low Ne/ Ar ratios and vice versa. Except for water from the few cold (T < 20°C) springs analyzed, none of the samples have relative abundances consistent with air saturated water and the observed variations are not readily explained by the distillation of air saturated water.In characterizing each area of hydrothermal activity by the highest 3He4He ratio found for that area, we find that within the caldera this parameter is somewhat uniform at ~7 ± 1 times the air value. There are exceptions, most notably at Mud Volcano, an area located along a crest of recent and rapid uplift. Here the maximum 3He4He ratio is ~ 16 times the air value. Also noteworthy is Gibbon Basin which is in the vicinity of the most recent rhyolitic volcanism and exhibits a 3He4He ratio ~ 13 times the air value. Immediately outside the caldera the maximum sol3He4He ratio decreases rapidly to values < ~3 times the air value.  相似文献   

13.
The performance characteristics of PANURGE, a modified CAMECA IMS3F ion microprobe, have been studied at a mass resolving power of 5000 for the purpose of determining isotopic ratios at a precision level approaching that of counting statistics using beam switching. The techniques used for this type of measurement are described. Using this approach, the isotopic composition of Mg and Si and the atomic ratio of AlMg in minerals from the Allende inclusion WA and the Allende FUN inclusion Cl have been measured with the ion microprobe at high mass resolving power. Enrichments in 26Mg of up to 260%. have been found. Mg and AlMg measurements on cogenetic spinel inclusions and host plagioclase crystals yield Mg-Al isochrons in excellent agreement with precise mineral isochrons determined by thermal emission mass spectrometry. The measurements confirm the presence of substantial excess 26Mg in WA (26Mg127Al = 5 × 10?5) and its near absence in Cl (26Mg127Al < 4 × 10?6). In WA plagioclase, data for which 27Al24Mg = 300 to 1000 define a linear array with 26Mg127Al = 3 × 105 and with initial 26Mg24Mg composition 30%. greater than in high Mg phases. This suggests a metamorphic reequilibration of Mg in Allende plagioclase at least 0.6 my after WA formation. There were no variations in detected 26Mg127Al in WA plagioclase associated with concentration of 26Mg1 into isolated clusters. We have confirmed by ion probe measurements that the Mg composition in Allende Cl is highly fractionated and is uniform among pyroxene, melilite, plagioclase, spinel crystals and spinel included in melilite and plagioclase crystals. Likewise, the Si composition is mass fractionated and is the same in pyroxene, melilite and plagioclase.  相似文献   

14.
Stability constants of hydroxocomplexes of Al(III):Al(OH)2+ and A1(OH)4? have been measured in the 20–70°C temperature range by reactions involving only dissolved species. The stability constant 1K1 of the first complex ion is studied by measuring pH of solutions of aluminium salts at several concentrations. 1β4 of aluminate ion is deduced from equilibrium constants of the reaction between the trioxalato aluminium (III) complex ion and Al3+ in acid medium, and between the same complex ion and A1(OH)4? in alkaline medium. The K values and the associated ΔH are 1K1 = 10?5.00 and ΔH1 = 11.8 Kcal; 1β4 = 10?22.20 and ΔH4 = 42.45 Kcal. These last results are not in agreement with the values of recent tables for ΔG0? and ΔH0? of Al3+ and Al(OH)4?. We suggest a consistent set of data for dissolved and solid Al species and for some aluminosilicates.  相似文献   

15.
We have studied fission tracks in phosphates from one gas-poor chondrite and three gas-rich chondrites to determine their thermal history and brecciation time scales. More than 70 percent of the tracks in whitlockites in these meteorites are due to the decay of extinct Pu244.Whitlockites separated from Bhola, a gas-poor chondrite, have ρPuρU = 2.6–5.2 and a model fission track age of 4.0 Gyr for a (PuU)4.55Gyr = 0.045. Brecciation of the Bhola meteorite must have occurred at ?4.3 Gyr to account for the metal data (Scott and Rajan, 1981). A minimum cooling rate of 0.9–0.20.3KMyr in the temperature interval 800 to 300 K obtained from the track data is a factor of seven higher than the metallographic cooling rate (0.1 KMyr).For the gas-rich chondrites, the ρPuρU in whitlockites are: Weston, 32–148; Fayetteville, 21–227; and St. Mesmin, 26–137. Whitlockites from all these meteorites give model fission track ages of 4.4 Gyr assuming a (PuU)4.55 Gyr = 0.045. The final brecciation event definitely did not reset the track clock in phosphates of St. Mesmin. Our data suggest that it is also true for Weston and Fayetteville. We conclude that our observed fission track ages date the end of metamorphic cooling in the meteorite parent bodies and support the planetesimal model for the formation of xenolithic chondrites.  相似文献   

16.
Isotopic concentrations of the noble gases have been measured in several different phases of Elephant Moraine A79001 and in whole rock samples of Zagami and Allan Hills A77005, three meteorites which belong to the rare group of SNC achondrites that may have originated from the planet Mars. Shocked phases of EETA79001 contain a trapped Ar, Kr, and Xe component characterized by 84Kr132Xe ~15, 40Ar36Ar > 2000, 129Xe132Xe ≥ 2, and 4He40Ar ≤ 0.1. These elemental and isotopic ratios are unlike those for any other noble gas component except analyses of the Martian atmosphere made by Viking spacecraft. The isotopic composition of the trapped Kr shows an approximate 1% per mass unit enrichment of lighter isotopes compared to terrestrial Kr, and the traped Xe may show either a fission component or a fractionated enrichment of heavier isotopes compared to terrestrial Xe. It is hypothesized that these gases represent a portion of the Martian atmosphere which was shock-implanted into EETA79001, and that they constitute direct evidence of a Martian origin for the shergottite meteorites. Cosmic ray-produced gases in the eight known SNC meteorites form three distinct groups with exposure ages of ~11 MY (Chassigny and the nakhlites), ~2.6 MY (Shergotty, Zagami, and ALHA77005), and ~0.5 MY (EETA79001). These ages suggest three distinct events and cannot have been produced by irradiation for a common time under greatly different shielding. Comparison of cosmogenic 3He21Ne measured in EETA79001 with two independent models for the production of this ratio as a function of shielding indicates that this meteorite was irradiated in space as a relatively small object. If the SNC meteorites were ejected from Mars ~ 180 My ago, the shock age of the shergottites, they must have been relatively large objects (>6 meters diameter) which experienced at least three space collisions to initiate cosmic ray exposure. Ejection from Mars by three events at the times of initiation of cosmic ray exposure would permit the ejected objects to have been much smaller (<1 meter diameter), but would require three such events on 1.3 Gy Martian terraine in the past ~10 MY and would not explain the common 180 MY shock age seen in all four shergottites.  相似文献   

17.
Equations are developed for calculating the density of aluminosilicate liquids as a function of composition and temperature. The mean molar volume at reference temperature Tr, is given by Vr = ∑XiV?oi + XAV?oA, where the summation is taken over all oxide components except A12O3, X stands for mole fraction, V?oi terms are constants derived independently from an analysis of volume-composition relations in alumina-free silicate liquids, and V?oA is the composition-dependent apparent partial molar volume of Al2O3. The thermal expansion coefficient of aluminosilicate liquids is given by α = ∑Xi\?gaio + XA\?gaAo, where \?gaio terms are constants independent of temperature and composition, and \?gaoA is a composition-dependent term representing the effect of Al2O3 on the thermal expansion. Parameters necessary to calculate the volume of silicate liquids at any temperature T according to V(T) = Vrexp[α(T-Tr)], where Tr = 1400°C have been evaluated by least-square analysis of selected density measurements in aluminosilicate melts. Mean molar volumes of aluminosilicate liquids calculated according to the model equation conform to experimentally measured volumes with a root mean square difference of 0.28 ccmole and an average absolute difference of 0.90% for 248 experimental observations. The compositional dependence of V?oA is discussed in terms of several possible interpretations of the structural role of Al3+ in aluminosilicate melts.  相似文献   

18.
A black inclusion from the Krymka LL3 chondrite was analyzed for 20 trace elements and five noble gases, by radiochemical neutron activation and mass spectrometry. The trace element pattern somewhat resembles that of C1 or C2 chondrites, but with several unique features. Elements of nebular condensation T ? 1000 K (U, Re, Os, Ir, Ni, Pd, Au, Sb and Ge) are essentially undepleted, as in C1 chondrites, but ReIr is 1.49 × higher than the characteristic Cl value. Among elements condensing below 1000 K, Cs, Se, Te, and In are depleted to approximately C2 levels (~0.6 × C1), whereas Ag, Bi, Tl are enriched to ~ 1.6 × C1. Such enrichments are thought to be characteristic of late nebular condensates.The noble-gas pattern also is unique. Gas contents are higher than in C1s, by factors of 2.6 to 19 for Ne through Xe. The Ar36Xe132 ratio of 500 is higher than mean values for C1s or C2s (109 or 89) and exceeds even the highest value seen in C3Os, 420, whereas the He4Ne20 ratio of 62 is much lower than the values for C1s and C2s (200–370). The Xe129Xe132 and Xe136Xel32 ratios of 1.040 and 0.320 resemble those of C1 chondrites, and seem to imply typical proportions of radiogenic Xe129 and ‘fissiogenic’ xenon.It appears that the inclusion represents a new primitive meteorite type, similar to C-chondrites, but probably a late condensate from a region of higher nebular pressure.  相似文献   

19.
20.
The geochemical history of Lake Lisan, the Pleistocene precursor of the Dead Sea, has been studied by geological, chemical and isotopic methods.Aragonite laminae from the Lisan Formation yielded (equivalent) Sr/Ca ratios in the range 0.5 × 10?2?1 × 10?2, Na/Ca ratios from 3.6 × 10?3 to 9.2 × 10?3, δ18OPDB values between 1.5 and 7%. and δ13CPDB from ?7.7 to 3.4%..The distribution coefficient of Na+ between aragonite and aqueous solutions, λANa, is experimentally shown to be very sensitive to salinity and nearly temperature independent. Thus, Na/Ca in aragonite serves as a paleosalinity indicator.Sr/Ca ratios and δ18O values in aragonite provide good long-term monitors of a lake's evolution. They show Lake Lisan to be well mixed, highly evaporated and saline. Except for a diluted surface layer, the salinity of the lake was half that of the present Dead Sea (15 vs 31%).Lake Lisan evolved from a small, yet deep, hypersaline Dead Sea-like, water body. This initial lake was rapidly filled-up to its highest stand by fresh waters and existed for about 40,000 yr before shrinking back to the present Dead Sea. The chemistry of Lake Lisan at its stable stand represented a material balance between a Jordan-like input, an original large mass of salts and a chemical removal of aragonite. The weighted average depth of Lake Lisan is calculated, on a geochemical basis, to have been at least 400, preferably 600 m.The oxygen isotopic composition of Lake Lisan water, which was higher by at least 3%. than that of the Dead Sea, was probably dictated by a higher rate of evaporation.Na/Ca ratios in aragonite, which correlate well with δ13C values, but change frequently in time, reflect the existence of a short lived upper water layer of varying salinity in Lake Lisan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号