首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Soluble rock terrains pose increased flood hazards because of a demographic shift from the upper Middle West and metropolitan Northeast to the “Sun Belt.” Approximately one-half of the soluble rock terrains in the continental United States occur in the Sun Belt. Urbanization of karst terrains generally increases the frequency and magnitude of sinkhole flooding and the probability of collapse. Soil erosion attendant with urbanization results in silt deposition in depressions, reducing sinkhole runoff storage capacity and regolith hydraulic conductivity. A new flood-hazard designation termed the sinkhole flood-plain is advocated for use by federal mortgage agencies in karst terrains so that sinkhole-related flooding can be minimized. A four-phase methodology for assessing sinkhole flood hazards in a rapidly urbanizing karst terrain is developed, using examples from central Tennessee and southern Kentucky.  相似文献   

2.
The relation between sinkhole density and water quality was investigated in seven selected carbonate aquifers in the eastern United States. Sinkhole density for these aquifers was grouped into high (>25 sinkholes/100 km2), medium (1–25 sinkholes/100 km2), or low (<1 sinkhole/100 km2) categories using a geographical information system that included four independent databases covering parts of Alabama, Florida, Missouri, Pennsylvania, and Tennessee. Field measurements and concentrations of major ions, nitrate, and selected pesticides in samples from 451 wells and 70 springs were included in the water-quality database. Data were collected as a part of the US Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Areas with high and medium sinkhole density had the greatest well depths and depths to water, the lowest concentrations of total dissolved solids and bicarbonate, the highest concentrations of dissolved oxygen, and the lowest partial pressure of CO2 compared to areas with low sinkhole density. These chemical indicators are consistent conceptually with a conduit-flow-dominated system in areas with a high density of sinkholes and a diffuse-flow-dominated system in areas with a low density of sinkholes. Higher cave density and spring discharge in Pennsylvania also support the concept that the high sinkhole density areas are dominated by conduit-flow systems. Concentrations of nitrate-N were significantly higher (p < 0.05) in areas with high and medium sinkhole density than in low sinkhole-density areas; when accounting for the variations in land use near the sampling sites, the high sinkhole-density area still had higher concentrations of nitrate-N than the low sinkhole-density area. Detection frequencies of atrazine, simazine, metolachlor, prometon, and the atrazine degradate deethylatrazine indicated a pattern similar to nitrate; highest pesticide detections were associated with high sinkhole-density areas. These patterns generally persisted when analyzing the detection frequency by land-use groups, particularly for agricultural land-use areas where pesticide use would be expected to be higher and more uniform areally compared to urban and forested areas. Although areas with agricultural land use and a high sinkhole density were most vulnerable (median nitrate-N concentration was 3.7 mg/L, 11% of samples exceeded 10 mg/L, and had the highest frequencies of pesticide detection), areas with agricultural land use and low sinkhole density still were vulnerable to contamination (median nitrate-N concentration was 1.5 mg/L, 8% of samples exceeded 10 mg/L, and had some of the highest frequencies of detections of pesticides). This may be due in part to incomplete or missing data regarding karst features (such as buried sinkholes, low-permeability material in bottom of sinkholes) that do not show up at the scales used for regional mapping and to inconsistent methods among states in karst feature delineation.  相似文献   

3.
To minimize costs in conventional roadway design, as much low or valley areas as possible are utilized. In many areas of the eastern United States, these valleys are filled with carbonate rocks. Excavation is used to minimize grades—this removes protective overburden or rock cover over cavities; fill also is used to minimize grades—this can increase loads on marginally stable soil arches or rock cavity roofs. Surface water runoff is directed toward low areas—the low areas are likely zones of weakness or solutioning, thereby increasing the potential for sinkhole development and providing an opportunity for ground—water contamination, and remediation usually consists of blindly filling rock cavities, thus either channeling the still-contaminated surface flows someplace else or perhaps eliminating useful ground water recharge conduits. The authors suggest that the key to proper design, construction, and remediation for roadways planned in karst is to understand the geologic and hydrogeologic setting of the route(s) or locale, perform true geotechnical engineering design, and remediate with an understanding of the overall engineering geologic, hydrogeologic, and environmental picture.  相似文献   

4.
Groundwater sensitivity (Ray and O’dell in Environ Geol 22:345–352, 1993a) refers to the inherent ease with which groundwater can be contaminated based on hydrogeologic characteristics. We have developed digital methods for identifying areas of varying groundwater sensitivity for a ten county area of south central Kentucky at a scale of 1:100,000. The study area includes extensive limestone karst sinkhole plains, with groundwater extremely sensitive to contamination. Digitally vectorized geologic quadrangles (DVGQs) were combined with elevation data to identify both hydrogeologic groundwater sensitivity regions and zones of “high risk runoff” where contaminants could be transported in runoff from less sensitive to higher sensitivity (particularly karst) areas. While future work will fine-tune these maps with additional layers of data (soils for example) as digital data have become available, using DVGQs allows a relatively rapid assessment of groundwater sensitivity for Kentucky at a more useful scale than previously available assessment methods, such as DRASTIC and DIVERSITY. Geographic definitions: United States of America, Kentucky, Barren River Area Development District.  相似文献   

5.
Origin and influence of coal mine drainage on streams of the United States   总被引:2,自引:1,他引:2  
Degradation of water quality related to oxidation of iron disulfide minerals associated with coal is a naturally occurring process that has been observed since the late seventeenth century, many years before commencement of commercial coal mining in the United States. Disturbing coal strata during mining operations accelerates this natural deterioration of water quality by exposing greater surface areas of reactive minerals to the weathering effects of the atmosphere, hydrosphere, and biosphere. Degraded water quality in the temperate eastern half of the United States is readily detected because of the low mineralization of natural water. Maps are presented showing areas in the eastern United States where concentrations of chemical constituents in water affected by coal mining (pH, dissolved sulfate, total iron, total manganese) exceed background values and indicate effects of coal mining. Areas in the East most affected by mine drainage are in western Pennsylvania, southern Ohio, western Maryland, West Virginia, southern Illinois, western Kentucky, northern Missouri, and southern Iowa. Effects of coal mining on water quality in the more arid western half of the United States are more difficult to detect because of the high degree of mineralization of natural water. Normal background concentrations of constituents are not useful in evaluating effects of coal mine drainage on streams in the more arid West. Three approaches to reduce the effects of coal mining on water quality are: (1) exclusion of oxygenated water from reactive minerals, (2) neutralization of the acid produced, (3) retardation of acid-producing bacteria population in spoil material, by application of detergents that do not produce byproducts requiring disposal. These approaches can be used to help prevent further degradation of water quality in streams by future mining.  相似文献   

6.
We used historical records of damaging landslides triggered by rainstorms and a newly developed Probabilistic Landslide Assessment Cost Estimation System (PLACES) to estimate the numbers and direct costs of future landslides in the 10-county San Francisco Bay region. Historical records of damaging landslides in the region are incomplete. Therefore, our estimates of numbers and costs of future landslides are minimal estimates. The estimated mean annual number of future damaging landslides for the entire 10-county region is about 65. Santa Cruz County has the highest estimated mean annual number of damaging future landslides (about 18), whereas Napa, San Francisco, and Solano Counties have the lowest estimated mean numbers of damaging landslides (about 1 each). The estimated mean annual cost of future landslides in the entire region is about US $14.80 million (year 2000 $). The estimated mean annual cost is highest for San Mateo County ($3.24 million) and lowest for Solano County ($0.18 million). The annual per capita cost for the entire region will be about $2.10. Santa Cruz County will have the highest annual per capita cost at $8.45, whereas San Francisco County will have the lowest per capita cost at $0.31. Normalising costs by dividing by the percentage of land area with slopes equal to or greater than 17% indicates that San Francisco County will have the highest cost per square km ($7,101), whereas Santa Clara County will have the lowest cost per square km ($229). These results indicate that the San Francisco Bay region has one of the highest levels of landslide risk in the United States. Compared with landslide cost estimates from the rest of the world, the risk level in the Bay region seems high, but not exceptionally high.  相似文献   

7.
Structures built within the area of influence of a sinkhole can be affected by collapse, subsidence, or flooding. Unanticipated property losses may be involved, and litigation commonly ensues. Insurance compensation for damages that result from sinkhole collapse or subsidence in a karst terrane are covered by statute only in Florida and by voluntary agreement of companies operating in Tennessee Liability or insurance compensation for damages resulting from sinkhole flooding is not specifically covered by any state or federal statute. Regulations of the National Flood Insurance Program have been interpreted to allow coverage by this program for homes affected by sinkhole flooding in Bowling Green, Kentucky In the present article, case law, legal concepts of groundwater and surface water, liability, and law review articles relevant to sinkhole litigation are summarized The rationales of plaintiffs and defendants are reviewed Liability for damages have been based on allegations of negligence, breach of various water law doctrines, trespass, nuisance, loss of support, breach of contract, and implied warranty of habitability Defenses against these allegations have been based on the merits of each of them and oncaveat emptor Several alternative rationales for claiming liability for losses incurred because of sinkhole development or flooding are proposed and discussed. The little-knownHenderson v Wade Sand and Gravel is highly recommended as an alternative leading case that clearly and justifiably gives protection to adjacent landowners, and ties liability for damages caused by groundwater pumpage to nuisance law and related interference with property rights. Several little-known litigated cases of sinkhole development in response to groundwater pumpage will be summarized in a second article at a later date. Concepts of liability are evolving It can be expected that the professional geologist or engineer will have an increasing number of claims made against him or her which allege responsibility for sinkhole-related damages. Such damages can often be prevented by creative zoning, sound engineering, and better husbandry of land.  相似文献   

8.
Sinkholes usually have a higher probability of occurrence and a greater genetic diversity in evaporite terrains than in carbonate karst areas. This is because evaporites have a higher solubility and, commonly, a lower mechanical strength. Subsidence damage resulting from evaporite dissolution generates substantial losses throughout the world, but the causes are only well understood in a few areas. To deal with these hazards, a phased approach is needed for sinkhole identification, investigation, prediction, and mitigation. Identification techniques include field surveys and geomorphological mapping combined with accounts from local people and historical sources. Detailed sinkhole maps can be constructed from sequential historical maps, recent topographical maps, and digital elevation models (DEMs) complemented with building-damage surveying, remote sensing, and high-resolution geodetic surveys. On a more detailed level, information from exposed paleosubsidence features (paleokarst), speleological explorations, geophysical investigations, trenching, dating techniques, and boreholes may help in investigating dissolution and subsidence features. Information on the hydrogeological pathways including caves, springs, and swallow holes are particularly important especially when corroborated by tracer tests. These diverse data sources make a valuable database—the karst inventory. From this dataset, sinkhole susceptibility zonations (relative probability) may be produced based on the spatial distribution of the features and good knowledge of the local geology. Sinkhole distribution can be investigated by spatial distribution analysis techniques including studies of preferential elongation, alignment, and nearest neighbor analysis. More objective susceptibility models may be obtained by analyzing the statistical relationships between the known sinkholes and the conditioning factors. Chronological information on sinkhole formation is required to estimate the probability of occurrence of sinkholes (number of sinkholes/km2 year). Such spatial and temporal predictions, frequently derived from limited records and based on the assumption that past sinkhole activity may be extrapolated to the future, are non-corroborated hypotheses. Validation methods allow us to assess the predictive capability of the susceptibility maps and to transform them into probability maps. Avoiding the most hazardous areas by preventive planning is the safest strategy for development in sinkhole-prone areas. Corrective measures could be applied to reduce the dissolution activity and subsidence processes. A more practical solution for safe development is to reduce the vulnerability of the structures by using subsidence-proof designs.  相似文献   

9.
Flooding in karst terranes is a commonly occurring geo-hazard. It causes damage to property, businesses, and roadways. It can lead to the formation of cover-collapse sinkholes and groundwater contamination. Generally, three types of flooding or their combinations are related to karst: recharge-related sinkhole flooding, flow-related flooding, and discharge-related flooding. Understanding of the type of flooding is essential for solving the flooding problem. Areas prone to karst flooding should be recognized, and restrictions and laws on land use should be implemented. Runoff and erosion control plans should address the unique characteristics of karst features. Digging out clogged sinkholes, creating retention basins, or installing Class V Injection Wells are possible solutions to improve drainage of storm water. Solutions to flooding problems in karst areas should also be coordinated with the water quality control to prevent groundwater contamination.  相似文献   

10.
Sinkhole formation in Florida is a common event. The Florida karst plain is significantly altered by human development and sinkholes cause considerable property damage throughout much of the state. We present in this paper a morphometric analysis of karst depressions in the Tampa Bay area, and the relation with the known distribution of sinkholes. We selected the Tampa Bay area because it is particularly susceptible to the evolution of karst depressions in relation with development of the built-up environment. Karst depressions were mapped from the 1:24,000 USGS topographic maps and a morphometric analysis was performed by using parameters such as shape, circularity index, perimeter, area, length, width, and orientation. Maps showing the distribution of depression density, and the sectors with greatest areas of karst depression were produced using a GIS. These results were compared with data compiled from the database of sinkhole occurrences in Florida maintained by the Florida Geological Survey. Our analysis demonstrates that the distribution of new sinkhole occurrences differs from the distribution of existing sinkholes, indicating that there are processes acting today that are influencing karst landscape formation that are different from those acting in the past.  相似文献   

11.
Quantitative sinkhole hazard assessments in karst areas allow calculation of the potential sinkhole risk and the performance of cost-benefit analyses. These estimations are of practical interest for planning, engineering, and insurance purposes. The sinkhole hazard assessments should include two components: the probability of occurrence of sinkholes (sinkholes/km2 year) and the severity of the sinkholes, which mainly refers to the subsidence mechanisms (progressive passive bending or catastrophic collapse) and the size of the sinkholes at the time of formation; a critical engineering design parameter. This requires the compilation of an exhaustive database on recent sinkholes, including information on the: (1) location, (2) chronology (precise date or age range), (3) size, and (4) subsidence mechanisms and rate. This work presents a hazard assessment from an alluvial evaporite karst area (0.81 km2) located in the periphery of the city of Zaragoza (Ebro River valley, NE Spain). Five sinkholes and four locations with features attributable to karstic subsidence where identified in an initial investigation phase providing a preliminary probability of occurrence of 0.14 sinkholes/km2 year (11.34% in annual probability). A trenching program conducted in a subsequent investigation phase allowed us to rule out the four probable sinkholes, reducing the probability of occurrence to 0.079 sinkholes/km2 year (6.4% in annual probability). The information on the severity indicates that collapse sinkholes 10–15 m in diameter may occur in the area. A detailed study of the deposits and deformational structures exposed by trenching in one of the sinkholes allowed us to infer a modern collapse sinkhole approximately 12 m in diameter and with a vertical throw of 8 m. This collapse structure is superimposed on a subsidence sinkhole around 80 m across that records at least 1.7 m of synsedimentary subsidence. Trenching, in combination with dating techniques, is proposed as a useful methodology to elucidate the origin of depressions with uncertain diagnosis and to gather practical information with predictive utility about particular sinkholes in alluvial karst settings: precise location, subsidence mechanisms and magnitude, and timing and rate of the subsidence episodes.  相似文献   

12.
When karst lands are developed for residential or commercial purposes, sinkholes are to be properly managed or mitigated. This paper discusses various types of sinkholes and their possible formation mechanisms, presents some guidelines for sinkhole management, and summarizes several engineering measures for sinkhole remediation. Because a sinkhole is often not an isolated feature but a component of an integrated groundwater and surface water system, knowledge of the sinkhole geology and hydrology is essential in selection of the proper management tools and remediation options. Adverse effects including flooding, additional sinkholes, and groundwater contamination can result from poorly managed or improperly repaired sinkholes.  相似文献   

13.
Much of the coal consumed in the US since the end of the last century has been produced from the Pennsylvanian strata of the Appalachian basin. Even though quantities mined in the past are less than they are today, this basin yielded from 70% to 80% of the nation's annual coal production from the end of the last century until the early 1970s. During the last 25 years, the proportion of the nation's coal that was produced annually from the Appalachian basin has declined markedly, and today it is only about 40% of the total. The amount of coal produced annually in the Appalachian basin, however, has been rising slowly over the last several decades, and has ranged generally from 400 to 500 million tons (Mt) per year.A large proportion of Appalachian historical production has come from relatively few counties in southwestern Pennsylvania, northern and southern West Virginia, eastern Kentucky, Virginia and Alabama. Many of these counties are decades past their years of peak production and several are almost depleted of economic deposits of coal. Because the current major consumer of Appalachian coal is the electric power industry, coal quality, especially sulfur content, has a great impact on its marketability. High-sulfur coal deposits in western Pennsylvania and Ohio are in low demand when compared with the lower sulfur coals of Virginia and southern West Virginia. Only five counties in the basin that have produced 500 Mt or more exhibit increasing rates of production at relatively high levels. Of these, six are in the central part of the basin and only one, Greene County, Pennsylvania, is in the northern part of the basin. Decline rate models, based on production decline rates and the decline rate of the estimated, “potential” reserve, indicate that Appalachian basin annual coal production will be 200 Mt or less by the middle of the next century.  相似文献   

14.
岩溶塌陷研究现状及趋势分析   总被引:2,自引:1,他引:1  
蒙彦  雷明堂 《中国岩溶》2019,38(3):411-417
为全面掌握当前国际岩溶塌陷研究动态,促进岩溶塌陷综合防治水平提升,重点从成因机制、识别评价和监测预警三个方面总结了当前国内外岩溶塌陷研究现状,以此为基础,综合运用文献和项目数据对国内外岩溶塌陷研究趋势进行了分析。结果显示:人类工程活动与岩溶环境相互作用关系是当前国际岩溶塌陷研究的热点;成因机理定量化、隐患识别快速化、监测预警精细化和风险防控时效化将是未来的重点攻关方向。   相似文献   

15.
以西南某典型岩溶区为例,解析示踪试验在岩溶管道连通性以及获取水文地质参数中的应用。选择落水洞为投放点,分别从落水洞西侧和东侧寻找地下水出露点作为接收点,判别落水洞地下径流的实际去向以及落水洞与接收点之间的水力联系。结合Qtracer2软件对示踪试验成果进行定量解析,确定示踪剂回收率、地下水平均流速、最快流速,估算出岩溶管道结构特征和水文地质参数。结果表明:落水洞与接收点JS01、JS03之间不存在直接水力联系;落水洞与接收点JS02存在水力联系且岩溶管道极为发育,含水介质不均匀,地下水运移路径较为通畅,为典型的紊流流态;落水洞地下径流的主要方向是由西向东,但在丰水期雨量较大期间,接收点JS04能够接收到荧光素钠,说明丰水期水位上涨后两者间会有水力联系,导致部分水量向落水洞西侧排泄。  相似文献   

16.
运用气体示踪进行土洞型岩溶塌陷监测预警是一种比较新的技术方法,其原理是通过气体在不同形状、规模的土体孔隙、裂缝和土洞中的运移规律研究,分析气体特征值与土体变形破坏的关系,进而间接判断土洞的发育情况,实现岩溶塌陷监测预警。本文以广州市金沙洲岩溶塌陷区为例,通过室内物理模型试验再现了土洞发育、形成到地面塌陷的全过程。运用气体示踪技术,按照土洞形成、土洞发育、土洞堵塞、土洞扩大和土洞塌陷五个过程,研究气体浓度、气体聚集时间等参数指标与土洞不同发育阶段的关系。结果表明:①土洞型岩溶塌陷发育程度与示踪气体浓度存在对应关系,气体浓度升高反映了土体变形破坏的进一步发育;②土体变形破坏程度与示踪气体浓度总体呈正相关关系,距离地面塌陷点越近浓度越高;③土体变形破坏程度与示踪气体浓度达到峰值浓度时间存在对应关系,距离地面塌陷点越近,气体浓度达到峰值的时间越快。根据以上试验结果,运用气体示踪技术进行土洞型岩溶塌陷监测预警是可行的,后期应探索预警阈值并进行野外现场实际验证。   相似文献   

17.
This paper summarizes over four years of studies and testing of a sinkhole/spring system in north Tampa. Sulphur Springs Pool delivers an average of 95 million l/d to the Hillsborough River, which is tributary to Tampa Bay. In 1986, owing to increasingly erratic bacterial levels at the natural bathing area adjacent to Sulphur Springs, the Hillsborough County Health Department closed the pool for swimming. The City of Tampa, Southwest Florida Water Management District (SWFWMD), Hillsborough County Environmental Protection Commission, and the United States Geological Survey have gathered data in an attempt to better understand the system and possible sources of contamination. The Sulphur Springs Action League is a civic group in the area, which has an objective of reopening the pool for recreational purposes. Environmental Engineering Consultants, Inc. provided pro bono technical assistance and expertise in assisting the Action League with its goal. The Action League obtained a grant from SWFWMD to outfit underwater divers for sinkhole exploration as well as water quality and dye trace analysis. The main suspects for bacterial contamination of the pool were two significant sinkholes located 1950 and 2300 m north of the spring. A series of dye tests and water-quality tests were performed. It was estimated that the underground velocity of water was between 90–100 m/h. Using a dye trace, bacteria testing, and travel time estimating, a new source of contamination was found in a Department of Transportation (DOT) stormwater retention basin in which a sinkhole had opened up and was receiving stormwater. The two significant sinkholes received stormwater from commercial and residential areas, and this stormwater brings a large amount of bacteria into the sinkhole, which funnels into the underground system and induces a bacteria spike at Sulphur Springs pool that exceeds the bathing water standards. The City of Tampa has constructed an experimental initial flush capture basin that will sand-filter stormwater to see if this will favorably affect bacteria levels. A mayor's task force in Tampa has recommended ultraviolet disinfection as an interim solution to the contamination problem.  相似文献   

18.
High winds are one of the nation’s leading damage-producing storm conditions. They do not include winds from tornadoes, winter storms, nor hurricanes, but are strong winds generated by deep low pressure centers, by thunderstorms, or by air flow over mountain ranges. The annual average property and crop losses in the United States from windstorms are $379 million and windstorms during 1959–1997 caused an average of 11 deaths each year. Windstorms range in size from a few hundred to hundreds of thousands square kilometers, being largest in the western United States where 40% of all storms exceed 135,000 km2. In the eastern United States, windstorms occur at a given location, on average, 1.4 times a year, whereas in the western US point averages are 1.9. Midwestern states average between 15 and 20 wind storms annually; states in the east average between 10 and 25 storms per year; and West Coast states average 27–30 storms annually. Storms causing insured property losses >$379 million and windstorms during 1959–1997 caused an average of 11 deaths each year. Windstorms range in size from a few hundred to hundreds of thousands square kilometers, being largest in the western United States where 40% of all storms exceed 135,000 km2. In the eastern United States, windstorms occur at a given location, on average, 1.4 times a year, whereas in the western US point averages are 1.9. Midwestern states average between 15 and 20 wind storms annually; states in the east average between 10 and 25 storms per year; and West Coast states average 27–30 storms annually. Storms causing insured property losses >1 million, labeled catastrophes, during 1952–2006 totaled 176, an annual average of 3.2. Catastrophic windstorm losses were highest in the West and Northwest climate regions, the only form of severe weather in the United States with maximum losses on the West Coast. Most western storms occurred in the winter, a result of Pacific lows, and California has had 31 windstorm catastrophes, more than any other state. The national temporal distribution of catastrophic windstorms during 1952–2006 has a flat trend, but their losses display a distinct upward trend with time, peaking during 1996–2006.  相似文献   

19.
New advances in karst collapse research in China   总被引:7,自引:0,他引:7  
Until 2000, more than 1,446 karst collapse events and 45,037 sinkhole pits have been documented in China. In this paper, focusing on new achievements of karst collapse research in China, a large-scale model experiment, a method of risk assessment and data management of karst collapse based on geographic information system technology are introduced for the region.  相似文献   

20.
为了查明金佛山各洞穴之间的地下水力联系,探讨岩溶地下水系统结构特征,于2016年12月进行了多元示踪试验。将罗丹明B作为示踪剂,从药池坝附近消水洞(S01)投入,验证消水洞与北坡水源(水房泉)(S02)之间存在水力联系。结果显示,示踪剂历时曲线为多峰型,推测地下过水通道可能由单管道型演变为多管道型通道;将荧光素钠投入金佛洞地下水流动处(S05)和将罗丹明B、荧光增白剂投入羊口洞地下水流动处(S03),利用高分辨率荧光光度计,于燕子洞(S04)在线监测。结果显示,金佛洞、羊口洞分别与燕子洞之间存在水力联系,且示踪剂历时曲线均为跳跃型,推测地下过水通道可能为发育有一定规模溶潭的多管道型。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号