首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 The migration, dissolution, and subsequent fate of spilled chlorinated solvents in the urban alluvial valleys of the southwestern U.S. appear to be governed by a unique set of hydrogeologic and geochemical processes occurring within terrigeneous clastic depositional systems. The alluvial and lacustrine fill of the basins, the trapping of solvents in fine-grained sediments beneath the urbanized valley centers, the oxic conditions typical of the deeper alluvium, and the contaminant-transport patterns produced by large-scale basin pumping combine to produce long aqueous-phase plumes derived from the dissolution of trapped chlorinated solvents. Although of limited aqueous solubility, these dense solvents are sufficiently mobile and soluble in the southwestern alluvial valleys to have produced aqueous plumes that have migrated several kilometers through the deeper alluvium and have contaminated valuable water-supply well fields in California, Arizona, and New Mexico. The typical length of these plumes and the presence of oxic groundwater indicate that it is unlikely that natural attenuation will be a practical remedial option in the southwestern alluvial valleys or in other alluvial systems in which similar hydrogeologic and geochemical conditions exist. Received, December 1996 · Revised, October 1997 · Accepted, November 1997  相似文献   

2.
The Condamine plain is an important agricultural zone in Australia with prominent irrigated cotton and grain crops. About one third of the irrigation water is pumped from the shallow alluvial aquifer, causing gross aquifer depletion over time. Over the last few decades, various hydrological, hydrochemical, and geological aspects of this aquifer and the overlying floodplain (including soil properties) have been investigated and used to construct the conceptual understanding and numerical models for management of this resource. Yet, the water balance of the aquifer is still far from resolved, and the geological contact between the alluvial sediments and underlying bedrock is yet to be categorically defined, to mention two major uncertainties. This report collates up-to-date knowledge of different disciplines, critically evaluates the accepted hydrogeological conventions, highlights key knowledge gaps, and suggests strategies for future research. Among recommendations are (1) development of numerical flow and solute transport models for the natural (i.e. pre-developed) period, (2) analysis of groundwater for isotopic composition and presence of pesticides, CFCs and PPCPs, and (3) use of stochastic approaches to characterize the hydraulic properties of the alluvial sediments. These and other proposed measures are relevant also to other alluvial aquifers which suffer from similar fundamental uncertainties.  相似文献   

3.
The impact of groundwater withdrawals on the interaction between multi-layered aquifers with different water qualities in the Viterbo geothermal area (central Italy) was studied. In this area, deep thermal waters are used to supply thermal spas and public pools. A shallow overlying aquifer carries cold and fresh water, used for irrigation and the local drinking-water supply. Starting with a conceptual hydrogeological model, two simplified numerical models were implemented: a steady-state flow model of the entire groundwater system, and a steady-state flow and heat transport model of a representative area, which included complex interactions between the aquifers. The impact of increased withdrawals associated with potential future development of the thermal aquifer must be considered in terms of the water temperature of the existing thermal sources. However, withdrawals from the shallow aquifer might also influence the discharge of thermal sources and quality of the water withdrawn from the shallow wells. The exploitation of the two aquifers is dependent on the hydraulic conductivity and thickness of the intervening aquitard, which maintains the delicate hydrogeological equilibrium. Effective methods to control this equilibrium include monitoring the vertical gradient between the two aquifers and the residual discharge of natural thermal springs.  相似文献   

4.
 Applying the concept of "analogue studies" long used in reservoir characterization, outcrop analogues in two aquifer units of Southern Germany have been investigated: Upper Triassic (Keuper) alluvial sandstones (Stubensandstein) and Quaternary glaciofluvial gravels. Architectural element analysis of the outcrops is combined with ground-penetrating radar profiles derived a few meters behind the outcrop walls. Such calibration is used to better understand the three-dimensional sedimentary architecture. Many sedimentary units at the same time represent hydraulic flow units and are characterized by specific radar signatures. This approach leads to promising results, not only in unconsolidated aquifers but also in fully consolidated sedimentary rocks. Our studies will lead to a database with which more realistic predictions of the hydraulic behaviour of sedimentary aquifers systems, needed for numerical hydrogeological simulations, will be possible. Received: 17 June 1996 · Accepted: 12 August 1996  相似文献   

5.
Groundwater models simulating flow in buried valleys interacting with regional aquifers are often based on hydrogeological models interpreted from dense geophysical datasets and scarce borehole data. For three simple synthetic cases, it is demonstrated that alternative methods of inversion of transient electro-magnetic (TEM) data can lead to very different interpretations of the hydrogeology inside and surrounding a buried valley. The alternative interpreted hydrogeological models are used in numerical modelling of groundwater flow to a pumping well. It is demonstrated that the alternative models result in quite different groundwater-model predictions of capture zone, recharge area, and groundwater age for the pumping well. It is briefly demonstrated that model calibration against hydraulic head data is not likely to improve the predictions or to identify the structural error of the interpreted hydrogeological models. It is therefore concluded that when TEM-based resistivity models are interpreted to construct the hydrogeological framework of a groundwater model, it must be done cautiously with support from deep borehole information. Too much reliance on geophysical mapping can lead to seriously wrong hydrogeological models and correspondingly wrong groundwater-model predictions.  相似文献   

6.
The coastal alluvial plain of Sarno River (Campania Region, southern Italy) is a very rich environment that has experienced a long history of changes due to both natural phenomena such as eustatic sea-level variations and deposition of volcanoclastic sediments, and human civilizations who populated this area since historical times. As a result, it is characterized by complex stratigraphic sequences and groundwater flow systems. The architecture of the multi-layered aquifer system in a sample area, located in a densely urbanized sector at the mouth of Sarno River, was reconstructed. Starting from the analysis of stratigraphic log data and laboratory geotechnical measurements, the lithostratigraphical-unit sequence was retrieved and a realistic three-dimensional (3D) model of the hydrogeological heterogeneity was obtained. The results of a detailed 2D electrical resistivity tomography survey were used to support the analysis of the spatial heterogeneity of the aquifer system in a sector characterized by lack of log data. The integration of hydrogeological and geophysical data allowed for the reconstruction of a 3D hydrogeophysical model of the multi-layered system, which electrically characterizes and geometrically identifies two aquifers. Finally, piezometric-level measurements validated the hydrogeological–geophysical model and showed the effectiveness of the methodology.  相似文献   

7.
8.
The Andean region is characterized by important intramontane alluvial and glacial valleys; a typical example is the Tarqui alluvial plain, Ecuador. Such valley plains are densely populated and/or very attractive for urban and infrastructural development. Their aquifers offer opportunities for the required water resources. Groundwater/surface-water (GW–SW) interaction generally entails recharge to or discharge from the aquifer, dependent on the hydraulic connection between surface water and groundwater. Since GW–SW interaction in Andean catchments has hardly been addressed, the objectives of this study are to investigate GW–SW interaction in the Tarqui alluvial plain and to understand the role of the morphology of the alluvial valley in the hydrological response and in the hydrological connection between hillslopes and the aquifers in the valley floor. This study is based on extensive field measurements, groundwater-flow modelling and the application of temperature as a groundwater tracer. Results show that the morphological conditions of a valley influence GW–SW interaction. Gaining and losing river sections are observed in narrow and wide alluvial valley sections, respectively. Modelling shows a strong hydrological connectivity between the hillslopes and the alluvial valley; up to 92 % of recharge of the alluvial deposits originates from lateral flow from the hillslopes. The alluvial plain forms a buffer or transition zone for the river as it sustains a gradual flow from the hills to the river. Future land-use planning and development should include concepts discussed in this study, such as hydrological connectivity, in order to better evaluate impact assessments on water resources and aquatic ecosystems.  相似文献   

9.
An electrical resistivity method has been used to determine aquifer parameters in the Ganga-Yamuna interfluve in northern India. An existing relationship between the geoelectrical and hydraulic parameters has been modified for the case of an anisotropic aquifer. The hydrogeological framework in the upper part of the Ganga-Yamuna interfluve is evaluated by using existing relationships between hydraulic parameters and geoelectrical parameters for alluvial aquifers. On the basis of aquifer geometry, the area has been divided into two hydraulic units: the western Yamuna flood plain and the Ganga flood plain towards the east. The resistivity data collected in parts of the study area are first interpreted in terms of true resistivity and thicknesses of subsurface layers. The electrical parameters (resistivity and thicknesses) are subsequently correlated with the available pumping test data. Distinct correlations between transmissivity and modified transverse resistance are obtained for the two hydraulic units. A four-parameter model consisting of hydraulic conductivity, modified longitudinal resistivity, modified transverse resistance and hydraulic anisotropy is presented for the anisotropic aquifer underlain by conductive fine grained sediments. The model has been validated at a number of locations, where aquifer parameters are known from pumping test data.  相似文献   

10.
This study uses Ordinary Kriging (OK), Sequential Gaussian Simulation (SGS) and Simulated Annealing Simulation (SAS) to relocate the completely heterotopic dataset from the locations of the Standardized Satellite Oriented Control Point System (SSOCPS) stations to the Groundwater Monitoring Networks (GMNS) stations and factorial kriging to analyze and map relationships among seven variables, including the hydraulic conductivities of three aquifers, the vertical displacements of the ground and groundwater level changes in the wells of three aquifers, and also to delineate the anomalies of multi-scale spatial variation of hydrogeological properties associated with the ChiChi earthquake, measuring 7.3 on the Richter scale, in the ChouShui River alluvial fan in Taiwan. In this study, the anomalies of spatial variation of hydrogeological properties associated with the earthquake are illustrated at micro, local and regional scales of 9, 12 and 36 km, respectively. In the study area, regionalization components associated with variation at local and regional scales are obtained and mapped by factorial kriging. Factorial Kriging Analysis (FKA) also demonstrated that the main effects of the ChiChi earthquake on the spatial variations of groundwater hydrological changes include porous media compression at micro scale, hydrogeological heterogeneousness of the sediments within the aquifer at local scale and the cyclic loading of deviatoric stress at regional scale. Finally, maps of spatial variations of regional components fully depicted all of the anomalies of spatial variation of hydrogeological changes due to the ChiChi earthquake and can be used to identify, confirm and monitor the hydrogeological properties in this study area.  相似文献   

11.
Buried valleys are characteristic features of glaciated landscapes, and their deposits host important aquifers worldwide. Understanding the stratigraphic architecture of these deposits is essential for protecting groundwater and interpreting sedimentary processes in subglacial and ice‐marginal environments. The relationships between depositional architecture, topography and hydrostratigraphy in dissected, pre‐Illinoian till sheets is poorly understood. Boreholes alone are inadequate to characterize the complex geology of buried valleys, but airborne electromagnetic surveys have proven useful for this purpose. A key question is whether the sedimentary architecture of buried valleys can be interpreted from airborne electromagnetic profiles. This study employs airborne electromagnetic resistivity profiles to interpret the three‐dimensional sedimentary architecture of cross‐cutting buried valleys in a ca 400 km2 area along the western margin of Laurentide glaciation in North America. A progenitor bedrock valley is succeeded by at least five generations of tunnel valleys that become progressively younger northward. Tunnel‐valley infills are highly variable, reflecting under‐filled and over‐filled conditions. Under‐filled tunnel valleys are expressed on the modern landscape and contain fine sediments that act as hydraulic barriers. Over‐filled tunnel valleys are not recognized in the modern landscape, but where they are present they form hydraulic windows between deep aquifer units and the land surface. The interpretation of tunnel‐valley genesis herein provides evidence of the relationships between depositional processes and glacial landforms in a dissected, pre‐Illinoian till sheet, and contributes to the understanding of the complex physical hydrology of glacial aquifers in general.  相似文献   

12.
The hydrological response of the Choshuishi alluvial fan to the 1999 Chi-Chi earthquake shows that the earthquake did impact the aquifer. The possible earthquake-induced changes in hydrogeological properties were investigated in this study. First, contour maps of the hydrologic anomaly, seismic factors, and vertical ground-surface displacement were compared qualitatively. Bulls eye patterns were found on the contour maps of hydraulic conductivity, coseismic groundwater-level change and vertical ground-surface displacement but did not occur with other seismic factors. The more permeable zones of the aquifer were found to coincide with the locations of greater vertical ground-surface displacement and coseismic groundwater-level change in the 1999 Chi-Chi earthquake. This indicates that the change of the hydrogeologic properties of Choshuishi alluvial fan due to the 1999 Chi-Chi earthquake may have mainly occurred in the highly permeable zones. Fractal, cross semivariogram and cross correlogram analyses were performed to quantitatively measure the persistency, variability and similarity, respectively, of spatial hydrologic response, seismic factors and hydraulic conductivity. The groundwater-level change, earthquake intensity, and vertical ground-surface displacement were found to show antipersistent tendencies while other factors showed the opposite. Higher correlations were found between hydraulic conductivity and groundwater-level change in aquifers 2–1 and 2–2, and between hydraulic conductivity and vertical ground-surface displacement in aquifer 3. Changes in porosities and hydraulic conductivity were evaluated in the main aquifers of the Choshuishi alluvial fan based on the data of hydrologic anomaly and the vertical ground-surface displacement. While both approaches show that the 1999 Chi-Chi earthquake has impacted the Choshuishi alluvial fan by reducing its porosity and hydraulic conductivity, these changes were not significant relative to natural variation in hydraulic conductivity.This revised version was published in May 2005 with correction to the rubric.  相似文献   

13.
The aim of this study was to identify the complex hydrogeological and hydrochemistry conditions of Damt region, through determining hydrochemical properties of groundwater in the study area. According to the results of hydrochemical analyses, sampled waters can be divided into three groups: cold, thermal, and mixed waters. Thermal waters in the area are characterized by Na–HCO3, while the cold waters by CaHCO3 facies. HCO3 indiscriminate cation and/or Na-indiscriminate anion are present in many places in the region and indicate generally mixing water. Only three villages with dental fluorosis observed using water elevated in F for drinking. Agricultural and liquid waste disposal are the main sources of pollution, leads to increase of Na, Cl, NO3, Cd, and Iron. The groundwater flow is from north, northwest, and northeast to the south. Within this regional trend, structural controlling groundwater flow along Wadis and it flows from upper reaches of tributaries toward the main channel, then downward to the south of the study area. The similarity of TDS and Cl concentration at Qa’a Al Haql and Al Nadirah between aquifers indicates hydraulic continuity between alluvial and the underlying volcanic, while at Damt no hydraulic continuity found between alluvial, volcanic and Sandstone aquifers. The temporal variation shows slight decrease in the concentration of nitrate and sulfate of thermal water indicating previously high gas content of nitrogen, hydrogen sulfide in the thermal active region. The developed conceptual model of water circulation indicates flood waters infiltrate slowly through the wadi bottoms in the East where Sandstone aquifer outcrops. These waters flow westward, following the westerly dip of the Sandstone through the effects of gravity, gains heat and dissolve materials as it comes in contact with the numerous dykes, which are the feeders to the overlying volcanoes and sputter cones. All thermal water samples from Damt region fall into immature water field in NA–K–Mg diagram. Therefore, the results obtained from the cation geothermometers should be taken into account as doubtful.  相似文献   

14.
The main aim of the present study is to detect the status of groundwater resources in west Mallawi area which represented one of the new reclamation lands. In order to achieve this aim, the hydrogeological and hydrogeochemical studies are carried out, based on the results of 21 pumping tests and chemical analysis of 29 water samples. Two water-bearing units are detected in the study area, namely, the Eocene fractured limestone aquifer which occupies the east portion of the studied area. The second aquifer consists of friable sediments of sand and gravel and may be related to the late Oligocene–early Miocene age and overlies the limestone rocks in the west, and this aquifer were studied for the first time in this work. Regionally, the groundwater flow in the area under study occurs toward the north and east directions. There is a hydraulic connection between both aquifers through the structural pattern affected the area. The partial recharge of the both aquifers takes place through the upward leakage from deep aquifers and the Nile water. There is a general decrease in the water salinity from west to east direction. The groundwater of both aquifers was evaluated for the different purposes and concluded that, it is considered suitable for different uses.  相似文献   

15.
由于三维地质结构模型和地下水面(包括潜水水面和承压水水面)模型开展地面沉降机理研究的重要基础,因此,本次利用Visual C 和OpenGL(Open Graphics Library)将苏州—无锡—常州(简称苏锡常)地区第四系含水层结构和地下水位形态进行三维虚拟表达,创建了酷似于实际情况的地下水赋存环境(三维地质结构模型),并在该环境中添加了各含水层的水位线。研究者可交互操作于该虚拟环境,并能够直观形象地了解研究区内的水文地质情况(各地层间的空间分布及岩性特征、含水层间的补给关系及地下水位的动态过程等),从而获得身临其境的感受,为进行地面沉降机理研究提供一个基础性的辅助方法。  相似文献   

16.
The coal geologists have studied the sedimentary condi-tions and accum ulation patterns of coals in intra- mountainousfault basins(Hu etal.,1998;Wang,1997;Wu etal.,1997;L i,1988;Bordonne et al.,1986 ;Vetter,1986 ;Teichmullerand Teichmuller,1982 ) and also the accumulation m odel forthick coalbeds (Wang et al.,1999;Zhang et al.,1999;Wang,1997;Wu etal.,1996 ;Esterle and Ferm,1994) .Es-pecially,the authors of this paper observed and studied in de-tail the strata outcropping in two continenta…  相似文献   

17.
More than 2,600 relict rock glaciers are known in the Austrian Alps but the knowledge of their hydraulic properties is severely limited. The relict Schöneben Rock Glacier (Niedere Tauern Range, Austria), with an extension of 0.17 km2, was investigated based on spring data (2006–2014) and seismic refraction survey. Spring-discharge hydrographs and natural and artificial tracer data suggest a heterogeneous aquifer with a layered internal structure for the relict rock glacier. The discharge behavior exhibits a fast and a delayed flow component. The spring discharge responds to recharge events within a few hours but a mean residence time of several months can also be observed. The internal structure of the rock glacier (up to several tens of meters thick) consists of: an upper blocky layer with a few meters of thickness, which lacks fine-grained sediments; a main middle layer with coarse and finer-grained sediments, allowing for fast flow; and an approximately 10-m-thick basal till layer as the main aquifer body responsible for the base flow. The base-flow component is controlled by (fine) sandy to silty sediments with low hydraulic conductivity and high storage capacity, exhibiting a difference in hydraulic conductivity to the upper layer of about three orders of magnitude. The high storage capacity of relict rock glaciers has an impact on water resources management in alpine catchments and potentially regulates the risk of natural hazards such as floods and related debris flows. Thus, the results highlight the importance of such aquifer systems in alpine catchments.  相似文献   

18.
Groundwater preservation comprises a major problem in water policy. The comprehension of the groundwater/hydraulic systems can provide the means to approach this problem. Generally, drilling is expensive and time-consuming. On the other hand, new techniques have been applied during the last few decades that provide useful information on the depth and quality of aquifers. Among them, transient electromagnetic method (TEM) is an appealing method that provides fast results with minimum field crew and solves several hydrogeological problems. Many portable systems for single-site measurements are commercially available. The TEM-Fast 48HPC was used for acquiring 106 soundings in the northwestern Crete in Greece for defining the hydrogeological characteristics of the study area, since there were no available data from boreholes. Detailed geological, hydrolithological and tectonic survey was applied prior to the geophysical measurements. All the data were integrated to produce a secure and reliable hydrogeological model for the study area prior to any future hydrowell. Specifically, geometrical and hydraulic data of the study area groundwater were acquired. Two unconnected aquifers were detected and their possible contamination due to saltwater intrusion was analyzed and eliminated. Moreover, a location for borehole construction and groundwater pumping based on the potential of the aquifer system was proposed. Finally, the contribution of TEM (and electrical resistivity tomography) geophysical methods in studying complex coastal aquifers is shown by this work.  相似文献   

19.
The Liaodong Bay sub-basin is a classic non-marine rift sub-basin in the Bohai Bay, northeastern China. The study area is located on the east side of Liaoxi uplift in the west slope of Liaodong Bay sub-basin. It sits on a draped anticline zone above the paleo-uplift and contains the second biggest offshore hydrocarbon field found in China to date. The sub-basin is bound to the west by the TanLu fault zone, the most active and largest fault active zone in eastern of China, and has been active from the Mesozoic to present. The spatial distribution and temporal evolution of the depositional systems in the lacustrine rift basin were significantly controlled by topography of paleo-uplift and the distribution of sediment transport pathways. Using 3D seismic and densely spaced well data, we systematically analysed the spatial distribution and temporal evolution of sediment transport pathway of the deltaic deposits in the SZ36-1 oilfield in the eastern slope of the Liaozhong sag. Two types of sediment transport pathway, including the fault relay ramps and erosional valleys, were recognised: (i) the fault relay ramps between two sub-parallel faults; and (ii) a series erosional valleys on the uplift, with ‘V-’, ‘U-’ or ‘W-'shaped cross-sectional patterns. Seismic stratal slices reveal that the erosional valleys branch and converge from upstream to downstream. The paleomorphology of the Liaoxi uplift (e.g., erosional valleys and sub-uplifts) and their evolution control the depositional systems and the pattern of sediment dispersal in the rift lacustrine basin area. The research indicates that paleogeomorphology controlled the direction of sediment transport, the capacity and position of sediment accommodation, influenced the type of sedimentary micro-facies and the spatial distribution pattern of the sediments. Seismic stratal slices and paleogeography maps reveal the erosional valleys shrunk progressively with sedimentary fills, resulting in decreasing gradients of the depositional slope, and provide a gentle geomorphology for a large-scale fluvial-delta depositional system to develop.  相似文献   

20.
Recent work has identified groundwater flow through basal till aquifers as a key control on melt‐season pressure transients beneath alpine glaciers, with potential implications for climate change studies, glacial geomorphology, tracer test interpretation, and the sediment load and chemistry of glacially derived waters. In this study, we investigate heuristically such subglacial Darcian flow processes using standard groundwater modelling techniques. Our primary result is that a one‐dimensional, transient, confined flow model with recharge, implemented numerically using time‐varying specified‐head and no‐flow boundaries, reproduces overall observed subglacial hydraulic behaviour very well and permits effective visualisation of aquifer responses under different conditions. Spatial variability in hydrogeological parameters is shown to have significant effects, but may be difficult to incorporate reliably into site‐specific models and to identify unambiguously in borehole pressure data. Time‐variance in areal recharge, if present, is apparently not observably expressed in the system, but time‐variance in transmissivity may be significant for some glaciers. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号