首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 645 毫秒
1.
Understanding groundwater-pumpage sources is essential for assessing impacts on water resources and sustainability. The objective of this study was to quantify pumping impacts and sources in dipping, unconfined/confined aquifers in the Gulf Coast (USA) using the Texas Carrizo-Wilcox aquifer. Potentiometric-surface and streamflow data and groundwater modeling were used to evaluate sources and impacts of pumpage. Estimated groundwater storage is much greater in the confined aquifer (2,200?km3) than in the unconfined aquifer (170?km3); however, feasibility of abstraction depends on pumpage impacts on the flow system. Simulated pre-development recharge (0.96?km3/yr) discharged through evapotranspiration (ET, ~37%), baseflow to streams (~57%), and to the confined aquifer (~6%). Transient simulations (1980–1999) show that pumpage changed three out of ten streams from gaining to losing in the semiarid south and reversed regional vertical flow gradients in ~40% of the entire aquifer area. Simulations of predictive pumpage to 2050 indicate continued storage depletion (41% from storage, 32% from local discharge, and 25% from regional discharge capture). It takes ~100?yrs to recover 40% of storage after pumpage ceases in the south. This study underscores the importance of considering capture mechanism and long-term system response in developing water-management strategies.  相似文献   

2.
In central Turkey, there are serious groundwater quality problems in the main river valleys and plains, and even in the lower parts of the secondary basins due to the underlying evaporitic geological formations. Groundwater quality improves towards the upstreams in the alluvium aquifers in most secondary valleys; however, groundwater potential decreases as well due to the reduced basin area, areal extent and thickness of the aquifers. The Malibogazi valley is situated to some 100 km north of Ankara. The dam constructed in the narrowest section of the valley has an average storage coefficient of 0.2 and the total and active storage capacities of 110,000 and 55,000 m3, respectively. The 20-m-thick aquifer extends for 6–7 km till the dam site within valley with an average width of 50–70 m. It mostly comprises sandy–gravely alluvial deposits. Malibogazi groundwater dam is a valve-controlled gravity flow dam. When the valves are opened, the water from the aquifer reservoir flows by gravity through supply pipe to the main irrigation channel, but when the valves are closed the water is stored in the aquifer and groundwater level begins to rise. Average groundwater discharge was about 20 l/s in 2005–2006 irrigation period. In this period, groundwater levels were about 2 m higher compared to the groundwater levels in the same seasons before the construction of the groundwater dam. Because the dam is of gravity flow type, it means an important contribution to the farmers since the operation cost is quite low. Malibogazi groundwater dam represents one of the first experiences of Turkey in the field of groundwater storage. Although the dam has small storage capacity, it may be a model for Turkey from the viewpoints of investigation, construction, dam wall, intake facility and measurements etc.  相似文献   

3.
王宇 《中国岩溶》2019,38(6):823-830
岩溶地区地表水流域与地下水流域边界的分异形式有三类,即:地表分水岭与地下水流域边界在平面分布上基本一致;地表分水岭超出了地下水流域边界;地下水流域边界超出了地表分水岭。岩溶区地表水与地下水耦合流域的顶界为地表水流域的水面及下垫面,底界为浅循环潜水含水层或潜水—承压含水层下伏的隔水层顶面,在大厚度岩溶含水层分布区,可以弱岩溶发育带的顶面作为底界。其中地表水与地下水两个子系统间的次级边界,为地表水流域的下垫面。结合专门调查(勘查)评价和区域调查评价的特性,提出评价单元划分的原则及方法。这有助于在新一轮自然资源调查评价中,以流域为单元系统地开展水资源及环境调查评价,实行地表水和地下水资源及环境的统一管理。   相似文献   

4.
王波  张华  王宇  张贵  张文鋆  高瑜  罗为群 《中国岩溶》2020,39(3):319-326
在详细调查基础上,采用系统科学及水文地质分析方法,依据地形地貌、地层岩性、地质构造、示踪试验、地下水排泄基准面、喀斯特发育条件及发育规律等剖析论证流域边界,并通过钻探及示踪试验进行验证。研究结果:(1)对泸西喀斯特断陷盆地南东部的水系统边界向北移进行了修正,证实了三塘一带深部不发育的喀斯特是地下水分水岭边界,使得泸西喀斯特断陷盆地流域的径流系统和边界圈化更加准确;(2)泸西喀斯特断陷盆地流域地表水、地下水转化频繁,地表水径流特征主要以小江河在水库、河流、伏流间的径流转化过程为体现,地下水在侵溶山区接受大气降水补给后,上层径流以泉、暗河的形式在泸西盆地底面排泄后转化成地表水,最终汇集于盆地南部、通过工农隧洞及落水洞排向小江,而下层径流则以小江水面为基准,通过深层径流排泄。   相似文献   

5.
The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.  相似文献   

6.
王波  王宇  张贵  张华  代旭升  康晓波 《地球学报》2021,42(3):352-362
泸江流域是滇东南典型的喀斯特断陷盆地发育区,主干水系连接着多个断陷盆地及坡立谷.根据最新的地下水污染调查资料,流域喀斯特地下水质量总体以Ⅲ类为主,水质超Ⅲ类的岩溶水点中,东部多,西部少,且暗河占比最大,岩溶泉次之,机井最小.主要污染源是工矿企业及城镇生活垃圾污染源,研究分析了污染影响因素为环境水文地质条件的差异、污染源类型及排污强度、岩溶含水层防污性能的强弱程度和岩溶地下水污染机制的不同.详细阐述了岩溶地下水主要污染机制为落水洞或岩溶洞管灌入污染机制、溶隙溶孔含水介质渗透污染机制及浅覆盖型岩溶含水层越流渗漏污染机制.针对性的提出了3条防治对策:一是调整工业布局,切实减少、杜绝污染源;二是调查污染源及污染途径,重视环境水文地质条件对污染物迁移转化的影响;三是编制地下水开发与保护规划,制定相应的管理措施,有效保护水源.  相似文献   

7.
The karst groundwater in northern China is an important source of water supply. Its capacity for self-renewal is a key factor affecting its sustainable use. The Pingyi–Feixian karst aquifer in central and southern Shandong Province is a typical karst water source, contributing 54% to the total groundwater taken from the region. In this study, 25 groups of water samples were collected from the Pingyi–Feixian karst aquifer in November 2013. The compositions of isotopes of tritium (3H), carbon-13 (13C), and carbon-14 (14C) were measured. As indicated by the tritium values between 7.1 and 12.2 TU, the Pingyi–Feixian karst groundwater is primarily originated from both historical atmospheric precipitation and modern precipitation. The 14C ages corrected by δ13C were between 146 and 5403 years. Specifically, the shallow groundwater is younger than deep groundwater. Groundwater age tends to increase along the flow path. The ages of the groundwater in recharge area were between 146 and 1348 years, while the ages of deep groundwater in flowing area were generally between 2000 and 4000 years. The ages of the groundwater in discharge area with little anthropic exploitation were larger than 4500 years, whereas these with large amounts of exploitation were less than 1500 years. The shallower the groundwater, the stronger its capacity for renewal. The renewable capacity of karst groundwater in discharge area was significantly affected by anthropic exploitation. The karst groundwater in the areas with less exploitation showed the weakest capacity, whereas that in the area with intensive exploitation was much older and had a stronger renewable capacity.  相似文献   

8.
Understanding the transference of water resources within hydrogeological systems, particularly in coastal aquifers, in which groundwater discharge may occur through multiple pathways (through springs, into rivers and streams, towards the sea, etc.), is crucial for sustainable groundwater use. This research aims to demonstrate the usefulness of the application of conventional recharge assessment methods coupled to isotopic techniques for accurately quantifying the hydrogeological balance and submarine groundwater discharge (SGD) from coastal carbonate aquifers. Sierra Almijara (Southern Spain), a carbonate aquifer formed of Triassic marbles, is considered as representative of Mediterranean coastal karst formations. The use of a multi-method approach has permitted the computation of a wide range of groundwater infiltration rates (17–60%) by means of direct application of hydrometeorological methods (Thornthwaite and Kessler) and spatially distributed information (modified APLIS method). A spatially weighted recharge rate of 42% results from the most coherent information on physiographic and hydrogeological characteristics of the studied system. Natural aquifer discharge and groundwater abstraction have been volumetrically quantified, based on flow and water-level data, while the relevance of SGD was estimated from the spatial analysis of salinity, 222Rn and the short-lived radium isotope 224Ra in coastal seawater. The total mean aquifer discharge (44.9–45.9 hm3 year?1) is in agreement with the average recharged groundwater (44.7 hm3 year?1), given that the system is volumetrically equilibrated during the study period. Besides the groundwater resources assessment, the methodological aspects of this research may be interesting for groundwater management and protection strategies in coastal areas, particularly karst environments.  相似文献   

9.
This paper deals with the analysis of groundwater condition in an alluvial aquifer system underlying Kushabhadra-Bhargavi River basin of Odisha, India. The rainfall data and river-stage data of the Kushabhadra River were analyzed for the periods of 1995–2009 and 1991–2010, respectively. Using the available lithologic data, geologic profiles along North-South and East-West sections were prepared and stratigraphy analysis was performed to characterize aquifers and confining layers present in the river basin. The results of stratigraphic analyses indicated that a two-layered aquifer system consisting of an unconfined aquifer and a confined aquifer exists in the study area. The thickness of unconfined aquifer varies from 3.4 to 46.5 m, whereas that of confined aquifer varies from 3.1 to 80.3 m over the basin with an interconnecting confining layer of thickness ranging from 2.1 to 60.0 m. The rainfall-groundwater dynamics and hydraulic connectivity were also investigated for gaining insights into groundwater characteristics. The analysis of groundwater levels indicated that the correlation among the 14 sites is better for most pairs of the sites (r = 0.50 to 0.96) in case of pre-monsoon season’s data and annual data as compared to monsoon and post-monsoon season’s data. This indicates good hydraulic connectivity among the observed sites in the study area. The significant seasonal groundwater fluctuations in the study area indicate appreciable recharge to the aquifer during the monsoon season. The findings obtained and insights gained from this study can be helpful for the water managers and decision makers to understand groundwater dynamics for the efficient planning and management of vital groundwater resources in the region. It is recommended that groundwater monitoring should be continued at more sites to understand long-term spatio-temporal characteristics of groundwater in the study area.  相似文献   

10.
The groundwater flow system and the flow velocity in the alluvial fan plain of the Hutuo River, China, have been studied, with an emphasis on relating geochemical characteristics and isotopes factors. Seven stretches of one river, six springs and 31 wells, with depths ranging from 0 m (river waters) to 150 m, were surveyed. The groundwater has a vertical two-layer structure with a boundary at about 80–100 m depth, yielding an upper and a lower groundwater layer. The δ18O and δD values range from ?10.56 to ?7.05‰ and ?81.83 to ?59‰, respectively. The groundwater has been recharged by precipitation, and has not been subjected to significant evaporation during infiltration into the aquifer in the upper layer. Using a tritium model, the groundwater flow in the alluvial fan plain showed horizontal flow velocity to be greater than vertical velocity. Groundwater in the upper layer is characterized by Ca–HCO3 type. From the spatial distribution characteristics of the stable isotope and chemical composition of the groundwater, agricultural irrigation was considered to have an influence on the aquifer by causing excessive groundwater abstraction and irrigation return.  相似文献   

11.
The characterization of river–aquifer connectivity in karst environments is difficult due to the presence of conduits and caves. This work demonstrates how geophysical imaging combined with hydrogeological data can improve the conceptualization of surface-water and groundwater interactions in karst terrains. The objective of this study is to understand the association between the Bell River and karst-alluvial aquifer at Wellington, Australia. River and groundwater levels were continuously monitored, and electrical resistivity imaging and water quality surveys conducted. Two-dimensional resistivity imaging mapped the transition between the alluvium and karst. This is important for highlighting the proximity of the saturated alluvial sediments to the water-filled caves and conduits. In the unsaturated zone the resistivity imaging differentiated between air- and sediment-filled karst features, and in the saturated zone it mapped the location of possible water- and sediment-filled caves. Groundwater levels are dynamic and respond quickly to changes in the river stage, implying that there is a strong hydraulic connection, and that the river is losing and recharging the adjacent aquifer. Groundwater extractions (1,370 ML, megalitres, annually) from the alluvial aquifer can cause the groundwater level to fall by as much as 1.5 m in a year. However, when the Bell River flows after significant rainfall in the upper catchment, river-leakage rapidly recharges the alluvial and karst aquifers. This work demonstrates that in complex hydrogeological settings, the combined use of geophysical imaging, hydrograph analysis and geochemical measurements provide insights on the local karst hydrology and groundwater processes, which will enable better water-resource and karst management.  相似文献   

12.
王宇  张华  张贵  蓝芙宁  王秀艳  万龙  刘宏 《中国岩溶》2021,40(4):644-653
在调查研究典型喀斯特断陷盆地水文地质特征、地表水文过程、“五水”转换及水资源均衡,研发地下水高效开发利用、地表水调蓄、水污染风险评估与水质修复、农田节水灌溉及土壤保墒、水资源优化调控等系列技术的基础上,以可持续发展和系统科学理论为指导,构建了喀斯特断陷盆地水资源高效开发利用模式,包括理论与技术支撑体系和开发利用工程体系两个层次。前者的基本构成及内涵为:水资源高效开发利用工作流程、理论依据及技术支撑,是模式的理论与技术内涵;后者为沿着盆地地表、地下水的形成、运动和转换过程,从上游山区到下游河谷区,逐级分区部署的水资源开发利用工程体系,工程布局做到因地制宜、科学合理,大、中、小、微型并举,集中供水与分散供水兼顾,同时系统推进水质修复、水循环利用、节约用水等措施,实现水资源的高效和可持续开发利用。   相似文献   

13.
Investigation of the evolution of the groundwater system and its mechanisms is critical to the sustainable management of water in river basins. Temporal and spatial distributions and characteristics of groundwater have undergone a tremendous change with the intensity of human activities in the middle reaches of the Heihe River Basin (HRB), the second largest arid inland river basin in northwestern China. Based on groundwater observation data, hydrogeological data, meteorological data and irrigation statistical data, combined with geostatistical analyses and groundwater storage estimation, the basin-scaled evolution of the groundwater levels and storage (from 1985 to 2013) were investigated. The results showed that the unbalanced allocation of water sources and expanded cropland by policy-based human activities resulted in the over-abstraction of groundwater, which induced a general decrease in the water table and groundwater storage. The groundwater level has generally fallen from 4.92 to 11.49 m from 1985 to 2013, especially in the upper and middle parts of the alluvial fan (zone I), and reached a maximum depth of 17.41 m. The total groundwater storage decreased by 177.52?×?108 m3; zone I accounted for about 94.7 % of the total decrease. The groundwater balance was disrupted and the groundwater system was in a severe negative balance; it was noted that the groundwater/surface-water interaction was also deeply affected. It is essential to develop a rational plan for integration and management of surface water and groundwater resources in the HRB.  相似文献   

14.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   

15.
Differences in the degree of confinement, redox conditions, and dissolved organic carbon (DOC) are the main factors that control the persistence of nitrate and pesticides in the Upper Floridan aquifer (UFA) and overlying surficial aquifer beneath two agricultural areas in the southeastern US. Groundwater samples were collected multiple times from 66 wells during 1993–2007 in a study area in southwestern Georgia (ACFB) and from 48 wells in 1997–98 and 2007–08 in a study area in South Carolina (SANT) as part of the US Geological Survey National Water-Quality Assessment Program. In the ACFB study area, where karst features are prevalent, elevated nitrate-N concentrations in the oxic unconfined UFA (median 2.5 mg/L) were significantly (p = 0.03) higher than those in the overlying oxic surficial aquifer (median 1.5 mg/L). Concentrations of atrazine and deethylatrazine (DEA; the most frequently detected pesticide and degradate) were higher in more recent groundwater samples from the ACFB study area than in samples collected prior to 2000. Conversely, in the SANT study area, nitrate-N concentrations in the UFA were mostly <0.06 mg/L, resulting from anoxic conditions and elevated DOC concentrations that favored denitrification. Although most parts of the partially confined UFA in the SANT study area were anoxic or had mixed redox conditions, water from 28 % of the sampled wells was oxic and had low DOC concentrations. Based on the groundwater age information, nitrate concentrations reflect historic fertilizer N usage in both the study areas, but with a lag time of about 15–20 years. Simulated responses to future management scenarios of fertilizer N inputs indicated that elevated nitrate-N concentrations would likely persist in oxic parts of the surficial aquifer and UFA for decades even with substantial decreases in fertilizer N inputs over the next 40 years.  相似文献   

16.
The Gavbast karstic aquifer located in southern Iran is in direct contact with an exposed salt diapir. To assess the influence of the diapir on the quality of groundwater in the karstic aquifer, electrical conductivity, total dissolved solids, flow rate, temperature and major ion concentrations were measured at 57 sampling sites, including springs, surface waters and wells. A conceptual model of groundwater flow is proposed for the Gavbast karstic aquifer based on the geological setting, water budget, local base of erosion, and hydrochemistry of the sampling sites. The model suggests two subbasins in the Gavbast Anticline draining into two distinct discharging alluvial sections. Unexpectedly, groundwater discharging from the carbonate Gavbast aquifer is saline or brackish and water is of chloride type. The study indicates that the source of salinity of the Gavbast aquifers is infiltration of surface diapir-derived brine into the aquifer. The contribution of the diapir brine in the Gavbast karst aquifer is calculated about 4 L/s, using chloride mass balance. Construction of salt basins to evaporate brine discharging from the diapir springs is proposed to reduce the salinity of karst water. A row of strategically placed wells in the Gavbast karst aquifer would potentially exploit large volumes of fresh groundwater before it is contaminated by the salt. Such low-cost remediation should allow the agricultural exploitation of 40 km2 of currently barren land.  相似文献   

17.
The Paris–Abu Bayan area located along the Darb El Arbaein road is involved in the New Valley Project in the Egyptian Western Desert (EWD) as part of ongoing efforts since the 1960s. In this dryland area, groundwater stored in the Nubian Sandstone Aquifer System (NSAS) serves as the only water resource for a number of different uses. A major concern is the significant groundwater withdrawals from 74 pumped wells since the beginning of agricultural activities in 2000. The recent rapid expansion of agricultural activity and the lack of sufficient groundwater recharge as a result of unplanned groundwater development have led to severe stress on the aquifer. Field measurements have shown a rapid decline in groundwater levels, creating a crisis situation for this sole source of water in the area. In this study, mathematical modeling of the groundwater system (single aquifer layer) of the Paris–Abu Bayan reclaimed area was implemented using MODFLOW to devise a new strategy for the sustainable use of groundwater, by applying a number of scenarios in a finite-difference program. The conceptual model and calibration were developed by generating and studying the hydrogeological records, NSA parameters, production wells, and water level measurements for 2005 and 2012. Three management scenarios were applied on the calibrated model to display the present and future stresses on this aquifer over a 30-year period (2012–2042). The results clearly show a high decline in the heads of the NSA, by about 13.8 m, due to the continuous withdrawal of water (first scenario: present conditions, 102,473 m3/day). In the second scenario, the water level is expected to decrease significantly, by about 16 m, in most of the reclamation area by increasing the pumping rates by about 25% (over-pumping) to meet the continuous need for more cultivation land in the area. To reduce the large decline in water levels, the third plan tests the aquifer after reducing the water withdrawal by approximately 25%, applying modern irrigation systems, and suggesting two new reclaimed areas in the northeastern and northwestern parts (areas 1 and 2), with 20 new wells, at 500 m3/day/well. The results in this case show that groundwater levels are slightly decreased, by about 9.5 m, while many wells (especially the new wells in the northern part) show a slight decrease in groundwater levels (0.8 m). The results comparison shows that the groundwater level in the modeled area is lowered by 0.3 m/year with an increase in the number of wells to 94 and increased cultivation area by about 18% (third scenario), versus 0.45 m/year and 0.60 m/year recorded for the first and second scenarios, respectively. Therefore, based on the results, the third scenario is recommended as a new strategy for improving groundwater resource sustainability in the region.  相似文献   

18.
Epigenic karst systems exhibit strong connectivity to surface recharge. In land use dominated by extensive agriculture and farming, epigenic karst aquifers are highly vulnerable to surface contaminants from point and nonpoint sources. Currently, the karstic landscapes of the southeastern Kentucky platform (USA) are impacted by agriculture and the rapid proliferation of concentrated-animal-feeding operations. Analysis of karst aquifer responses to storm events provides qualitative information regarding aquifer–recharge flow paths and groundwater residence time, and knowledge of spatial and temporal variations in recharge and flow is crucial to the understanding of the fate of surface contaminants. Time-series correlation analyses on long-term physicochemical data recorded at the outlet of Grayson Gunnar Cave, an epigenic karst system located along the Cumberland escarpment in southeastern Kentucky, revealed the existence of two separate conduit branches responding 4–8 h apart from each other. Recorded storm response times range from 4 h for flushing and dilution to 7 h for recovery. An estimated 6 million L of stored groundwater is discharged from both branches during major storms, and the fastest responding branch accounts for the majority (80%) of the groundwater reserve being discharged through the spring. As evidenced by groundwater residence time (7 days), recharge is likely characterized by localized infiltration of rain water from subsurface sinkholes to the conduit branches with no contribution of regional or lateral groundwater flow.  相似文献   

19.

Particularly in arid and semiarid areas, more and more populations rely almost entirely on imported water. However, the extent to which intentional discharge into transiting river systems and unintentional leakage may be augmenting water resources for communities along and down gradient of the water transfer scheme has not previously been subject to research. The objective of this study was to assess both the potential of a large-scale water transfer (WT) scheme to increase groundwater availability by channel transmission losses in a large dryland aquifer system (2,166 km²) in Brazil, and the capability of the receiving streams to transport water downstream under a prolonged drought. An integrated surface-water/groundwater model was developed to improve the estimation of the groundwater resources, considering the spatio-temporal variability of infiltrated rainfall for aquifer recharge. Aquifer recharge from the WT scheme was simulated under prolonged drought conditions, applying an uncertainty analysis of the most influential fluxes and parameters. The annual recharge (66 mm/year) was approximately twice the amount of water abstracted (1990–2016); however, the annual recharge dropped to 13.9 mm/year from 2012 to 2016, a drought period. Under similar drought conditions, the additional recharge (6.89 × 106 m³/year) from the WT scheme did not compensate for the decrease in groundwater head in areas that do not surround the receiving streams. Actually, the additional recharge is counteracted by a decrease of 25% of natural groundwater recharge or an increase of 50% in pumping rate; therefore, WT transmission losses alone would not solve the issue of the unsustainable management of groundwater resources.

  相似文献   

20.
About 3 % of India’s total land surface is occupied by carbonate rocks which are mostly karstified and constitute a significant source of groundwater. The groundwater drawn from these aquifers matches the water demand of ~35 million people living in 106 districts of the country and also the water needs of livestock, irrigation and industry. The studies on karst in India carried out so far have mostly addressed geology, hydrology and groundwater contamination. A literature survey suggests that there is a need for detailed research, applying new approaches and techniques for proper carbonate aquifer identification, characterization and management. Such specific approaches will improve modeling, exploitation and protection of karst groundwater. An overview of the research carried out on groundwater resources of karst formations in India is presented, which also throws light on the protection of karst aquifers from existing anthropogenic activities such as mining and groundwater over-exploitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号