首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The effects of climate change and overexploitation are being strongly perceived in the studied area and the springs discharge is obviously affected. In this paper, Ras El Ain spring discharge and precipitation were analyzed by normalized methods on an yearly timescale. The deficit of Ras El Ain spring discharge due to overexploitation factors and drought effects was estimated. Cumulative drought analyses were carried out using SPI10 and SQI10. Finally, the decreasing trends of the spring discharge due to the deficiency in rainfall were analyzed. The main results reveal that the annual mean deficit of Ras El Ain spring discharge due to overpumping was between 32 and 45%, whereas, annual mean deficit related to drought was between 22 and 35% on average, during the last 30 years (post-1984). The moving averages of SPI and SQI delineate very well the drought periods during last three decades. The cumulative droughts using SPI10 and SQI10 reveal that wet period (pre-1984) with positive values was characterized by high precipitation and spring discharge. Overexploitation period (1984–1989) is distinguished by decreasing SQI10 values whereas, SPI10 is almost stable. The response of the karst system to the precipitation signal has been changed, during the drought period (1990–2000), and the spring behaviour has been modified due to the first overexploitation period. Finally, overexploitation period (2001–2008) is related to the second phase of groundwater intensive pumping for irrigation purposes. Consequently, this period is completely catastrophic causing the drying up of the spring. The decreasing trends analyzed using DPI and DQI showed annual decreasing rates relative to the mean values of ?0.268% and ?0.105%, respectively. Thus, the results of theoretical model reveal that precipitation will decrease by about \(\hbox {DPI} = -20.7\)% and the discharge will decline by about ?9.2% by 2050. Consequently, the declining discharge due to climatic variation under natural conditions as pre-1984 was about 10%. Whereas, the catastrophic drying up of the spring was probably the consequence of the anthropogenic effects. Accordingly, it requires the development of sustainable water resources management program to reduce long-term drought risks, restore the groundwater reservoir and minimize the overexploitation effects on spring discharge.  相似文献   

2.
Suzhou is located at the lower reaches of the Yangtze River in southeastern Jiangsu, China. It is part of the Su-Xi-Chang area including Suzhou, Wuxi and Changzhou. As one of the most developed areas in China, this region has suffered from severe land subsidence caused by extensive groundwater exploitation since 1980s. The land subsidence was controlled by prohibition of groundwater exploration in the past several years. However, the surface water pollution prompted a new task of how to sustainably utilize the groundwater resource, especially to satisfy the emergency demands of water supply. In this paper, we took Suzhou as a representative case to discuss how to develop groundwater resources while controlling the land subsidence. The relationship between the deformation and the groundwater level was analyzed, with focus on the deformation features after the period of groundwater exploitation ban. The results confirmed the conclusion by Shi et al. (2007, 2008a): even in the period of rising groundwater level, same units may manifest different deformation characteristics, such as elasticity, elasto-plasticity, and visco-elasto-plasticity, at different locations of the cone of depression. A land subsidence model that couples a 3-D groundwater model and a 1-D deformation model was developed to simulate the groundwater level and deformation. A high-resolution local grid (child model) for Suzhou was built based on the regional land subsidence model of Su-Xi-Chang area by Wu et al. (2009). The model was used for a number of predictive scenarios up to the year of 2012 to examine how to develop sustainable use of groundwater resources under the conditions of land subsidence control. Our results indicated that about 3.08 × 107 m3/a groundwater could be provided as emergency and standby water source while meeting the land subsidence control target of 10 mm/a.  相似文献   

3.
Land subsidence in Tianjin,China   总被引:3,自引:1,他引:2  
Land subsidence has been affecting Tianjin for the past 50 years. It leads to comprehensive detrimental effects on society, the economy and natural environment. Overpumping of groundwater is the main cause. In 2008, the maximum cumulative subsidence reached 3.22 m and the total affected area nearly 8,000 km2. The subsidence reached its most critical state in the early 1980s when it occurred at a rate as high as 110 mm/year. At the same time, groundwater extraction had also reached a maximum of 1,200 million m3. By importing the Luan River to Tianjin and restricting exploitation of groundwater, hydraulic heads gradually recovered after 1986 in all aquifers, and this has continued to the present in the second aquifer. The subsidence rate in urban areas dropped to 10–15 mm/year. The area of groundwater extraction expanded to the suburban area with economic growth in the 1990s, and it was shifted to the third and fourth aquifers. At present, with a subsidence rate of 30–40 mm/year, four new suburban subsidence centers have been formed. Several measures were adopted to mitigate and prevent land subsidence disasters. These included restricting groundwater exploitation, groundwater injection, prohibiting use in the specific zone, a pricing policy for water resources, advocating water-saving technology, and strict enforcement of groundwater laws. Although the subsidence area is still increasing slowly, the subsidence rate is being controlled.  相似文献   

4.
《China Geology》2021,4(3):455-462
The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone. It enjoys rapid economic and social development while suffering relatively water scarcity. The overexploitation of groundwater in the Luanhe River Delta in recent years has caused the continuous drop of groundwater level and serious environmental and geological problems. This study systematically analyzes the evolution characteristics of the population, economy, and groundwater exploitation in the Luanhe River Delta and summarizes the change patterns of the groundwater flow regime in different aquifers in the Luanhe River Delta according to previous water resource assessment data as well as the latest groundwater survey results. Through comparison of major source/sink terms and groundwater resources, the study reveals the impacts of human activities on the groundwater resources and ecological environment in the study area over the past 30 years from 1990 to 2020. The results are as follows. The average annual drop rate of shallow groundwater and the deep groundwater in the centers of depression cones is 0.4 m and 1.64 m, respectively in the Luanhe River Delta in the past 30 years. The depression cones of shallow and deep groundwater in the study area cover an area of 545.32 km2 and 548.79 km2, respectively, accounting for more than 10% of the total area of the Luanhe River Delta. Overexploitation of groundwater has further aggravated land subsidence. As a result, two large-scale subsidence centers have formed, with a maximum subsidence rate of up to 120 mm/a. The drop of groundwater level has induced some ecological problems in the Luanhe River Delta area, such as the zero flow and water quality deterioration of rivers and continuous shrinkage of natural wetlands and water. Meanwhile, the proportion of natural wetland area to the total wetland area has been decreased from 99% to 8% and the water area from 1776 km2 to 263 km2. These results will provide data for groundwater overexploitation control, land subsidence prevention, and ecological restoration in plains and provide services for water resources management and national land space planning.© 2021 China Geology Editorial Office.  相似文献   

5.
Land subsidence due to groundwater overdraft has been an ongoing problem in south-central and southern Arizona (USA) since the 1940s. The first earth fissure attributed to excessive groundwater withdrawal was discovered in the early 1950s near Picacho. In some areas of the state, groundwater-level declines of more than 150 m have resulted in extensive land subsidence and earth fissuring. Land subsidence in excess of 5.7 m has been documented in both western metropolitan Phoenix and Eloy. The Arizona Department of Water Resources (ADWR) has been monitoring land subsidence since 2002 using interferometric synthetic aperture radar (InSAR) and since 1998 using a global navigation satellite system (GNSS). The ADWR InSAR program has identified more than 25 individual land subsidence features that cover an area of more than 7,300 km2. Using InSAR data in conjunction with groundwater-level datasets, ADWR is able to monitor land subsidence areas as well as identify areas that may require additional monitoring. One area of particular concern is the Willcox groundwater basin in southeastern Arizona, which is the focus of this paper. The area is experiencing rapid groundwater declines, as much as 32.1 m during 2005–2014 (the largest land subsidence rate in Arizona State—up to 12 cm/year), and a large number of earth fissures. The declining groundwater levels in Arizona are a challenge for both future groundwater availability and mitigating land subsidence associated with these declines. ADWR’s InSAR program will continue to be a critical tool for monitoring land subsidence due to excessive groundwater withdrawal.  相似文献   

6.
Land subsidence in Bangkok, Thailand   总被引:9,自引:0,他引:9  
Land subsidence from deep well pumping has been affecting Bangkok for the past 35 years. Its impact is particularly critical because of the flat low-lying topography and the presence of a thick soft clay layer at the ground surface that augment flood risk and foundation engineering problems, respectively. The subsidence reached its most critical state in the early 1980s when it occurred at a rate as high as 120 mm/year. The rate decreased in the subsequent period but the subsidence-affected area expanded following the growth of the city. Despite various attempts implemented to remedy the crisis, groundwater pumping from the thick aquifer system underneath the city continued to increase from 1.2 million m3/day in the early 1980s to more than 2.0 million m3/day at the turn of the century. Piezometric levels in the main aquifer layers had been drawn down by as much as 65 m. Monitoring data showed a clear correlation between the subsidence and piezometric drawdown. The data suggested that for 1 m3 of groundwater pumped out in Bangkok Plain, approximately 0.10 m3 of ground loss occurred at the surface. Significant development has been made in numerical methods for prediction of differential settlements between building foundations caused by the piezometric drawdown in the aquifers. The strict mitigation measures adopted recently, comprising a pricing policy for groundwater management, an expansion of tap water supply, and strict enforcement of groundwater laws, have resulted in a marked drop in groundwater use. However, the land subsidence will continue for a long while owing to the time-dependent consolidation behavior of the soft clay layer and clay aquitards.  相似文献   

7.
This paper presents the results of investigations of the generalized subsidence occurring in and around the city of Murcia, Spain. Based on this research, this is the first integrated investigation of its type performed in Spain. The phenomenon of ground consolidation in the city of Murcia leads to the appearance of severe cracking and settlement in buildings. Subsidence is the result of two factors: on the one hand, the nature of the ground in this area, as it is made of recent deposits of clay and soft limes filled in with clay–lime backfills in the top layers. On the other hand, the increase in groundwater withdrawal during the 1992–95 drought led to a decrease in the water level of a magnitude never before recorded in the city. The risk prevention management suggested convenience of the installation of a measurement network to study and follow the phenomena of the subsidence to quantify it and to calibrate this theoretical model. This network is composed of extensometers and piezometers, the best devices to measure moderate ground movements, which is the case of Murcia. The first phase (Phase I) of this study of ground settlement in the metropolitan area of Murcia involved the installation of a network with 22 extensometers and taking the first measurement series. In a second phase (Phase II), during a period of 4 years, measurements with extensometers were performed to make the analysis and calibration of the theoretical model. Experience and data analysis showed the convenience of installation of new control points with an incremental extensometer and a piezometer in close position with the aim of precisely correlating piezometric levels with the observed subsidence. The third phase (Phase III) started in 2007, a new control technique, based on radar interferometry (InSAR), is being employed to provide information about subsidence in areas not previously monitored.  相似文献   

8.
Shanghai, in China, has experienced two periods of rapid land subsidence mainly caused by groundwater exploitation related to economic and population growth. The first period occurred during 1956–1965 and was characterized by an average land subsidence rate of 83 mm/yr, and the second period occurred during 1990–1998 with an average subsidence rate of 16 mm/yr. Owing to the establishment of monitoring networks for groundwater levels and land subsidence, a valuable dataset has been collected since the 1960s and used to develop regional land subsidence models applied to manage groundwater resources and mitigate land subsidence. The previous geomechanical modeling approaches to simulate land subsidence were based on one-dimensional (1D) vertical stress and deformation. In this study, a numerical model of land subsidence is developed to simulate explicitly coupled three-dimensional (3D) groundwater flow and 3D aquifer-system displacements in downtown Shanghai from 30 December 1979 to 30 December 1995. The model is calibrated using piezometric, geodetic-leveling, and borehole extensometer measurements made during the 16-year simulation period. The 3D model satisfactorily reproduces the measured piezometric and deformation observations. For the first time, the capability exists to provide some preliminary estimations on the horizontal displacement field associated with the well-known land subsidence in Shanghai and for which no measurements are available. The simulated horizontal displacements peak at 11 mm, i.e. less than 10 % of the simulated maximum land subsidence, and seems too small to seriously damage infrastructure such as the subways (metro lines) in the center area of Shanghai.  相似文献   

9.
Since ancient times, water resources, mainly from melting snow in the high mountains, have nourished a large area of an oasis in the Kashi Plain in the western Terim Basin, China. In the last half-century, however, the rapid growth of population and the overexploitation of water, soil, and biological resources have led to drought, salinization, and desertification in the area, and consequently have hindered the development of sustainable agriculture. In this study, groundwater reservoirs with sustainable water supplies equivalent to 44.65×108 m3/year were identified, which has made it possible to implement several projects in the area to improve the ecological and agricultural environment. Three strategies are proposed for the integrated development and management of both surface-water and groundwater resources in the area. Electronic Publication  相似文献   

10.
鲁北平原地下水的劣变特征与可持续利用的对策   总被引:2,自引:0,他引:2  
2005年相对于20世纪70年代,鲁北平原开采机井数由9.29万眼增至28.76万眼.浅层水、深层水开采量分别增加了近2倍和3.76倍。长期超量开采和不合理的开采布局,使地下水水位持续下降、含水层疏干体积不断增加、地下水位降落漏斗持续扩展.并产生地面沉降、成水入侵等环境地质问题。采取农业节水、调整工业开采强度布局、加强浅层水均衡开发利用、地表水与地下水联合调蓄、本地劣质水资源化、保护和涵养深层地下水资源等举措,修复和涵养鲁北平原超采区的深层地下水系统势在必行。  相似文献   

11.
刘勇  李培英  丰爱平  黄海军 《地球科学》2014,39(11):1555-1565
为了分析黄河三角洲地下水动态及其与地面沉降的关系, 利用多年地下水和地面沉降监测数据, 发现黄河三角洲广饶县和东营区的地下水动态变化剧烈且地面沉降严重, 含水层多处于超采状态, 浅、深层地下水降落漏斗先后出现.深层地下水降落漏斗中心水位下降速度达2~3m/a.近年来, 东营和广饶地面沉降漏斗中心沉降量和速率分别为155.1mm、28.2mm/a和356.0mm、64.7mm/a.借助GIS技术及数理统计法, 发现深层地下水降落漏斗与沉降漏斗空间耦合良好, 深层地下水位与地面高程呈线性正相关, 相关系数为0.92, 深层地下水过度开采已成为影响沉降的最根本因素.井灌区第三粘性压缩层成为地面沉降主要贡献层, 且深层地下水降落漏斗中心的地下水位已低于第三承压含水层临界水位, 沉降趋于严重.   相似文献   

12.
A sinking of the land surface due to the pumping of groundwater has long been recognized as an environmental issue in the Shiroishi plain of Saga, Japan. Land subsidence can have several negative economic and social implications such as changes in groundwater and surface water flow patterns, restrictions on pumping in land subsidence prone areas, localized flooding, failure of well casings as well as shearing of structures. To minimize such an environmental effect, groundwater management should be considered in this area. In this study, a new integrated numerical model that integrates a three-dimensional numerical groundwater flow model coupled with a one-dimensional soil consolidation model and a groundwater optimization model was developed to simulate groundwater movement, to predict ground settlement and to search for optimal safe yield of groundwater without violating physical, environmental and socio-economic constraints. It is found that groundwater levels in the aquifers greatly vary from season to season in response to the varying climatic and pumping conditions. Consequently, land subsidence has occurred rapidly throughout the area with the Shiroishi plain being the most prone. The predicted optimal safe yield of the pumping amount is about 5 million m3. The study also suggests that pumping with this optimal amount will minimize the rate of land subsidence over the entire area. An erratum to this article can be found at  相似文献   

13.
皖北地区地貌形态以平原为主,地面沉降是其面临的主要地质灾害。基于小基线集(small baseline subsets-interferometric synthetic aperture radar, SBAS-InSAR)方法,利用2017年5月至2021年12月期间采集的47景Sentinel-1A SLC (single look complex,SLC) 升轨数据对砀山县进行地表形变监测,获得了砀山地区该时段年均形变速率和地表累计形变图,揭示了监测期间该区的形变时空分布和变化特征。结果表明: 以砀城镇为中心,包含高铁新区及经济开发区一带地表沉降明显,黄河故道以北,沿玄庙镇东西方向发生微量沉降,沉降的分布与地下水过量开采以及岩土性质密切相关。定期监测地面沉降的分布和量级,能够缓解日益增长的城市化人口暴露于这类灾害下的风险。  相似文献   

14.
The Central Valley in California (USA) covers about 52,000 km2 and is one of the most productive agricultural regions in the world. This agriculture relies heavily on surface-water diversions and groundwater pumpage to meet irrigation water demand. Because the valley is semi-arid and surface-water availability varies substantially, agriculture relies heavily on local groundwater. In the southern two thirds of the valley, the San Joaquin Valley, historic and recent groundwater pumpage has caused significant and extensive drawdowns, aquifer-system compaction and subsidence. During recent drought periods (2007–2009 and 2012-present), groundwater pumping has increased owing to a combination of decreased surface-water availability and land-use changes. Declining groundwater levels, approaching or surpassing historical low levels, have caused accelerated and renewed compaction and subsidence that likely is mostly permanent. The subsidence has caused operational, maintenance, and construction-design problems for water-delivery and flood-control canals in the San Joaquin Valley. Planning for the effects of continued subsidence in the area is important for water agencies. As land use, managed aquifer recharge, and surface-water availability continue to vary, long-term groundwater-level and subsidence monitoring and modelling are critical to understanding the dynamics of historical and continued groundwater use resulting in additional water-level and groundwater storage declines, and associated subsidence. Modeling tools such as the Central Valley Hydrologic Model, can be used in the evaluation of management strategies to mitigate adverse impacts due to subsidence while also optimizing water availability. This knowledge will be critical for successful implementation of recent legislation aimed toward sustainable groundwater use.  相似文献   

15.
In this paper, we discuss historical and recent land subsidence in the Modern Yellow River Delta. Integrated analysis of leveling and relevant background data, including groundwater level, oil extraction, and geological structure, has revealed that land displacement is driven by natural and induced components acting at various depths. Since the 1950s, intense settlements occurred in the modern estuary delta lobes. Between 2002 and 2008, the subsidence center of Dongying and Guangrao exhibited a typical subsidence area with subsidence rates of 28.2 and 64.7 mm/years, respectively. Higher magnitudes are associated with groundwater withdrawals and oil–gas field exploitations, which induce the compaction of a deep clayey layer. There existed a significant linear positive correlation between groundwater level and elevation in the center of the deep groundwater depression cone. The major contributor of natural subsidence is tectonic movements, while moderate sinking due to the natural consolidation of the recent delta subsoil is still acting.  相似文献   

16.
天津市地下水流-地面沉降耦合模型   总被引:6,自引:0,他引:6  
天津市平原区地面沉降主要由地下水大量开采引起,影响范围广、危害大,已成为天津市主要的环境地质问题。分析了研究区的水文地质条件,结合地下水开发利用状况,将研究区概化为6个含水层组,地下水流考虑三维非稳定流,地面沉降选用一维固结压缩模型,运用地下水流模型Modflow 2005和地面沉降模拟模块 Sub,建立了天津市平原区地下水流-地面沉降数值耦合模型,模型面积为1.1×104 km2,利用1998-2008年地下水位等值线、过程线、地面沉降过程线等资料对模型进行了识别。模拟期的地下水均衡分析表明,在多年开采条件下,越流补给、压缩释水、侧向边界流入分别占深层含水层补给量的41.84%、32.15%和24.17%。将调试后的模型应用于南水北调实施后地下水控采条件下的地面沉降趋势预测,显示出停采或减少地下水的开采,有利于减缓地面沉降下降速度,且表现出开采层位越往下,地面沉降恢复难度越大的变化趋势。  相似文献   

17.
During the process of urbanization and industrialization, groundwater has been extensively overexploited, with the direct result of continuously decreasing groundwater level, followed by the appearance of large scale of depression cones, which is furthermore followed by land subsidence, seawater intrusion, and increasing difficulties in subsequent groundwater exploitation. This paper makes an analysis on the geological disasters caused by overexploitation of groundwater. The consumption and overexploitation status of groundwater in representative regions in China is discussed first, with the distribution and development of depression cones elaborated the next. And the problems of land subsidence, seawater intrusion, and increasing difficulties caused by overexploitation of groundwater are analyzed at last. Results show that overexploitation of groundwater is positively related to economic development. Moreover, geological disasters such as land subsidence and seawater intrusion caused by long term of overexploitation also aggregate, posing threats, and losses to people’s lives and production. According to the analysis, the fundamental resolution for overexploitation of groundwater as well as consequential geological damages is to properly control city size and to utilize groundwater rationally and efficiently.  相似文献   

18.
淮南采煤沉陷区积水来源的氢氧稳定同位素证据   总被引:2,自引:0,他引:2  
淮南是我国东部重要的能源基地,由于长期地下采煤,地表形成大面积的采煤沉陷区并积水,造成严重地质灾害。针对于此,部分学者提出利用采煤沉陷区建立"平原水库"解决周边地区干旱年份农田缺水问题的设想。然而,一方面,由于煤层上覆几百米厚的新生代沉积,采煤塌陷形成的沉陷裂隙是否沟通了不同含水层之间的水力联系,并因此改变了这个地区的地下水系统,成为区域水资源评价需要了解的一个重要科学问题;另一方面,建立"平原水库"需要有稳定的补给水源,采煤形成的沉陷裂隙如果沟通了地下不同深度含水层的水力联系,是否使地下水成为塌陷区除降雨外的重要补给来源,这就成为评价"平原水库"水资源潜力的重要参考依据。氢氧稳定同位素是示踪天然水体水来源的重要手段,笔者在淮南矿区采集了旱季和雨季的浅层地下水、河水、雨水、沉陷区的积水等不同水体的水样23件,分析了其氢氧稳定同位素组成并与深层地下水进行对比。结果表明:雨季和旱季,该地区采煤沉陷区积水的氢氧稳定同位素组成都非常接近大气降水的氢氧稳定同位素组成,而与深层地下水的氢氧稳定同位素组成相差较大,说明采煤沉陷区的积水来源主要是大气降水补给。采煤沉陷区的沉陷裂隙贯穿了整个新生代地层,使地表水发生下渗与在深部与深层地下水发生不同程度的混合,而深层地下水尚不是"平原水库"的稳定补给源。  相似文献   

19.
The study analyzes drought using Standardized Precipitation Index (SPI) and Mann-Kendall (MK) Trend Test in the context of the impacts of drought on groundwater table (GWT) during the period 1971-2011 in the Barind area, Bangladesh. The area experienced twelve moderate to extreme agricultural droughts in the years 1972, 1975, 1979, 1982, 1986, 1989, 1992, 1994, 2003, 2005, 2009 and 2010. Some of them coincide with El Niño events. Hydrological drought also occurred almost in the same years. However, relationship between all drought events and El Niño is not clear. Southern and central parts of the area frequently suffer from hydrological drought, northern part is affected by agricultural drought. Trends in SPI values indicate that the area has an insignificant trend towards drought, and numbers of mild and moderate drought are increasing. GWT depth shows strong correlation with rainy season SPI values such that GWT regaining corresponds with rising SPI values and vice versa. However, 2000 onwards, GWT depth is continuously increasing even with positive SPI values. This is due to over-exploitation of groundwater and changes in cropping patterns. Agricultural practice in Barind area based on groundwater irrigation is vulnerable to drought. Hence, adaptation measures to minimize effects of drought on groundwater ought to be taken.  相似文献   

20.
Groundwater resources protection and aquifer recovery in China   总被引:7,自引:0,他引:7  
The groundwater resources in China and especially the northern part represent a vital water resource. Both the shallow and deep aquifers are highly overexploited in a large area of north China. The heavy overexploitation of groundwater resources is causing major environmental damage. To protect groundwater resources, several technical feasibility studies were performed. Artificial recharge using floodwater and wastewater was tried. Surface spreading systems are applicable in many areas of the Yellow River basin and Hai River basin. Deep aquifer injections were undertaken in the urban area. A far better strategy is to reduce the extraction of groundwater, especially to stop or slow down land subsidence and seawater intrusion. To address the problem of falling groundwater levels and aquifer recovery, there is a need reduce groundwater extraction and artificial recharge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号