首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated major ions, stable isotopes, and radiocarbon dates in a Quaternary aquifer in semi-arid northwestern China to gain insights into groundwater recharge and evolution. Most deep and shallow groundwater in the Helan Mountains was fresh, with total dissolved solids <1,000 mg L?1 and Cl? <250 mg L?1. The relationships of major ions with Cl? suggest strong dissolution of evaporites. However, dissolution of carbonates, albite weathering, and ion exchange are also the major groundwater process in Jilantai basin. The shallow desert groundwater is enriched in δ18O and intercepts the local meteoric water line at δ18O = ?13.4 ‰, indicating that direct infiltration is a minor recharge source. The isotope compositions in intermediate confined aquifers resemble those of shallow unconfined groundwater, revealing that upward recharge from intermediate formations is a major source of shallow groundwater in the plains and desert. The estimated residence time of 10.0 kyr at one desert site, indicating that some replenishment of desert aquifers occurred in the late Pleistocene and early Holocene with a wetter and colder climate than at present.  相似文献   

2.
Groundwater in shallow unconsolidated sedimentary aquifers close to the Bornheim fault in the Lower Rhine Embayment (LRE), Germany, has relatively low δ2H and δ18O values in comparison to regional modern groundwater recharge, and 4He concentrations up to 1.7?×?10?4 cm3 (STP) g–1?±?2.2 % which is approximately four orders of magnitude higher than expected due to solubility equilibrium with the atmosphere. Groundwater age dating based on estimated in situ production and terrigenic flux of helium provides a groundwater residence time of ~107 years. Although fluid exchange between the deep basal aquifer system and the upper aquifer layers is generally impeded by confining clay layers and lignite, this study’s geochemical data suggest, for the first time, that deep circulating fluids penetrate shallow aquifers in the locality of fault zones, implying  that sub-vertical fluid flow occurs along faults in the LRE. However, large hydraulic-head gradients observed across many faults suggest that they act as barriers to lateral groundwater flow. Therefore, the geochemical data reported here also substantiate a conduit-barrier model of fault-zone hydrogeology in unconsolidated sedimentary deposits, as well as corroborating the concept that faults in unconsolidated aquifer systems can act as loci for hydraulic connectivity between deep and shallow aquifers. The implications of fluid flow along faults in sedimentary basins worldwide are far reaching and of particular concern for carbon capture and storage (CCS) programmes, impacts of deep shale gas recovery for shallow groundwater aquifers, and nuclear waste storage sites where fault zones could act as potential leakage pathways for hazardous fluids.  相似文献   

3.
An investigation was conducted in Beijing to identify the groundwater evolution and recharge in the quaternary aquifers. Water samples were collected from precipitation, rivers, wells, and springs for hydrochemical and isotopic measurements. The recharge and the origin of groundwater and its residence time were further studied. The groundwater in the upper aquifer is characterized by Ca-Mg-HCO3 type in the upstream area and Na-HCO3 type in the downstream area of the groundwater flow field. The groundwater in the lower aquifer is mainly characterized by Ca-Mg-HCO3 type in the upstream area and Ca-Na-Mg-HCO3 and Na-Ca-Mg-HCO3 type in the downstream area. The δD and δ18O in precipitation are linearly correlated, which is similar to WMWL. The δD and δ18O values of river, well and spring water are within the same ranges as those found in the alluvial fan zone, and lay slightly above or below LMWL. The δD and δ18O values have a decreasing trend generally following the precipitation → surface water → shallow groundwater → spring water → deep groundwater direction. There is evidence of enrichment of heavy isotopes in groundwater due to evaporation. Tritium values of unconfined groundwater give evidence for ongoing recharge in modern times with mean residence times <50 a. It shows a clear renewal evolution along the groundwater flow paths and represents modern recharge locally from precipitation and surface water to the shallow aquifers (<150 m). In contrast, according to 14C ages in the confined aquifers and residence time of groundwater flow lines, the deep groundwater is approximately or older than 10 ka, and was recharged during a period when the climate was wetter and colder mainly from the piedmont surrounding the plain. The groundwater exploitation is considered to be “mined unsustainably” because more water is withdrawn than it is replenished.  相似文献   

4.
The Grombalia aquifer (NE Tunisia) is an example of an important source of water supply for regional and national development, where the weak controls over abstraction, fertilizer application and waste disposal, coupled with limited knowledge of aquifer dynamics, is causing aquifer over-exploitation and water quality degradation. Assessing the key role of groundwater in water-resources security is therefore of paramount importance to support new actions to preserve water quality and quantity in the long-run. This study presents one of the first investigations targeted at a complete assessment of aquifer dynamics in the Grombalia aquifer. A multi-tracer hydrogeochemical and isotopic (δ2H, δ18O and 3H) approach was used to study the influence of seasonal variation on piezometric levels, chemical and isotopic compositions, and groundwater recharge. A total of 116 samples were collected from private wells and boreholes during three periods in a 1 year monitoring campaign (February–March 2014, September 2014 and February 2015). Results revealed the overall unsuitability of groundwater for drinking and irrigation purposes (NO3?>?50 mg/L in 51% of the wells; EC >1,000 μS/cm in 99% of the wells). Isotopic balance coupled to piezometric investigation indicated the contribution of the shallow aquifer to deep groundwater recharge. The study also revealed the weakness of ‘business as usual’ management practices, highlighting possible solutions to tackle water-related challenges in the Grombalia region, where climate change, population growth and intensive agricultural activities have generated a large gap between demand and available water reserves, hence becoming a possible driver for social insecurity.  相似文献   

5.
The dynamics of artificial recharge of winter surface flows coupled with increased summer groundwater use for irrigation in the Sokh aquifer (Central Asia) have been investigated. Water release patterns from the giant Toktogul reservoir have changed, as priority is now given to hydropower generation in winter in Kyrgyzstan. Winter flows have increased and summer releases have declined, but the Syr Darya River cannot pass these larger winter flows and the excess is diverted to a natural depression, creating a 40?×?109m3 lake. A water balance study of all 18 aquifers feeding the Fergana Valley indicated the feasibility of winter groundwater recharge in storage created by summer abstraction. This modeling study examines the dynamics of the process in one aquifer over a 5-year period, with four scenarios: the current situation; increased groundwater abstraction of around 625 million (M) m3/year; groundwater abstraction with an artificial recharge of 144 Mm3/year, equivalent to the volume available in low flow years in the Sokh River; and with a larger artificial recharge of 268 Mm3/year, corresponding to high flow availability. Summer surface irrigation diversions can be reduced by up to 350 Mm3 and water table levels can be lowered.  相似文献   

6.
The continuous abstraction of groundwater from Arusha aquifers in northern Tanzania has resulted in a decline in water levels and subsequent yield reduction in most production wells. The situation is threatening sustainability of the aquifers and concise knowledge on the existing groundwater challenge is of utmost importance. To gain such knowledge, stable isotopes of hydrogen and oxygen, and radiocarbon dating on dissolved inorganic carbon (DIC), were employed to establish groundwater mean residence time and recharge mechanism.14C activity of DIC was measured in groundwater samples and corrected using a δ13C mixing method prior to groundwater age dating. The results indicated that groundwater ranging from 1,400 years BP to modern is being abstracted from deeper aquifers that are under intensive development. This implies that the groundwater system is continuously depleted due to over-pumping, as most of the sampled wells and springs revealed recently recharged groundwater. High 14C activities observed in spring water (98.1?±?7.9 pMC) correspond with modern groundwater in the study area. The presence of modern groundwater suggests that shallow aquifers are actively recharged and respond positively to seasonal variations.  相似文献   

7.
A drilling project was carried out in Syria to assess the potential of the deep groundwater resources of the Cretaceous aquifer, composed of Cenomanian-Turonian limestones and dolomites. In this context, isotope (14C, 3H, δ13C, δ18O, δ2H) and hydrochemical analyses were performed on wells in and around the Aleppo and Steppe basins. The interpretation includes complementary results from published and unpublished literature. The results provide evidence that many new wells pump mixed groundwater from the Cretaceous aquifer and the overlying Paleogene aquifer. Radiocarbon measurements confirmed dominating Pleistocene groundwater in the Cretaceous aquifer and mainly Holocene groundwater in the Paleogene aquifer. Most groundwater in the Cretaceous aquifer seems to be recharged in the western limestone ridges, stretching from Jebel az Zawiyah (south of Idlep) via Jebel Samane (south of Afrin and A’zaz) to the region north of Aleppo, and in the Northern Palmyrides mountain belt. Some recharge also occurs around the basalt plateau of the Jebel al Hass, south east of Aleppo. It is concluded that the Taurus Mountains and the Euphrates River do not recharge the Cretaceous aquifer. The sources of recharge seem to be occasionally occurring intensive winter storms that approach from Siberia.  相似文献   

8.
The geochemical and isotopic composition of surface waters and groundwater in the Velenje Basin, Slovenia, was investigated seasonally to determine the relationship between major aquifers and surface waters, water–rock reactions, relative ages of groundwater, and biogeochemical processes. Groundwater in the Triassic aquifer is dominated by HCO3 , Ca2+, Mg2+ and δ13CDIC indicating degradation of soil organic matter and dissolution of carbonate minerals, similar to surface waters. In addition, groundwater in the Triassic aquifer has δ18O and δD values that plot near surface waters on the local and global meteoric water lines, and detectable tritium, likely reflecting recent (<50 years) recharge. In contrast, groundwater in the Pliocene aquifers is enriched in Mg2+, Na+, Ca2+, K+, and Si, and has high alkalinity and δ13CDIC values, with low SO4 2– and NO3 concentrations. These waters have likely been influenced by sulfate reduction and microbial methanogenesis associated with coal seams and dissolution of feldspars and Mg-rich clay minerals. Pliocene aquifer waters are also depleted in 18O and 2H, and have 3H concentrations near the detection limit, suggesting these waters are older, had a different recharge source, and have not mixed extensively with groundwater in the Triassic aquifer.  相似文献   

9.
The Agadir-Essaouira area in the occidental High Atlas Mountains of Morocco is characterized by a semi-arid climate. The scarcity and quality of water resources, exacerbated by long drought periods, constitute a major problem for a sustainable development of this region. Groundwater resources of carbonate units within Jurassic and Cretaceous aquifers are requested for drinking and irrigation purposes. In this study, we collected 84 samples from wells, boreholes, springs, and rivers. Hydrochemical and isotopic data were used to examine the mineralization and origin of water, which control groundwater quality. The chemical composition of water seems to be controlled by water-rock interactions, such as dissolution of carbonates (calcite and dolomite), weathering of gypsum, as well as ion exchange processes, which explain the observed variability. Stable isotopes results show that groundwater from the mainly marly Cretaceous aquifer are submitted to an evaporation effect, while samples from the chiefly calcareous Jurassic aquifer indicate a meteoric origin, due to a rapid infiltration of recharge runoff through the karstic outcrops. The low values of δ18O and δ2H suggest a local recharge from areas with elevations ranging from 400 to 1200 m for the Cretaceous aquifer and from 800 to 1500 m for the Jurassic units.  相似文献   

10.
A significant component of domestic demand for water of urban areas located in the Gangetic plains is met by heavy pumping of groundwater. The present study is focused on the Patna municipal area, inhabited by 17 million people and spanning over 134 km2, where entire urban water demand is catered from pumping by wells of various capacities and designs. The present study examines the nature of the aquifer system within the urban area, the temporal changes in the water/piezometric level and the recharge mechanism of the deeper aquifers. The aquifer system is made up of medium-to-coarse unconsolidated sand, lying under a ~40-m-thick predominantly argillaceous unit holding 8- to 13-m-thick localised sand layers and continues up to 220 m below ground. Groundwater occurs under semi-confined condition, with transmissivity of aquifers in 5,500–9,200 m2 day?1 range. Hydraulic head of the deeper aquifer remains in 9–19 m range below ground, in contrast to 1–9 m range of that of the upper aquitard zone. The estimated annual groundwater extraction from the deeper aquifer is ~212.0 million m3, which has created a decline of 3.9 m in the piezometric level of the deeper aquifer during the past 30 years. Unregulated construction of deep tube wells with mushrooming of apartment culture may further exacerbate the problem. The sand layers within the aquitard zone are experiencing an annual extraction of 14.5 million m3 and have exhibited stable water level trend for past one and half decades. This unit is recharged from monsoon rainfall, besides contribution from water supply pipe line leakage and seepage from unlined storm water drains.  相似文献   

11.
Groundwater systems in the San Luis Valley, Colorado, USA have been re-evaluated by an analysis of solute and isotopic data. Existing stream, spring, and groundwater samples have been augmented with 154 solute and isotopic samples. Based on geochemical stratification, three groundwater regimes have been identified within 1,200 m of the surface: unconfined, upper active confined, and lower active confined with maximum TDS concentrations of 35,000, 3,500 and 600 mg/L, respectively. The elevated TDS of northern valley unconfined and upper active confined systems result from mineral dissolution, ion exchange and methanogenesis of organic and evaporate lake sediments deposited in an ancient lake, herein designated as Lake Sipapu. Chemical evolutions along flow paths were modeled with NETPATH. Groundwater ages, and δ13C, δ2H and δ18O compositions and distributions, suggest that mountain front recharge is the principle recharge mechanism for the upper and lower confined aquifers with travel times in the northern valley of more than 20,000 and 30,000 14C years, respectively. Southern valley confined aquifer travel times are 5,000 14C years or less. The unconfined aquifer contains appreciable modern recharge water and the contribution of confined aquifer water to the unconfined aquifer does not exceed 20%.  相似文献   

12.
The rapid expansion of agriculture, industries and urbanization has triggered unplanned groundwater development leading to severe stress on groundwater resources in crystalline rocks of India. With depleting resources from shallow aquifers, end users have developed resources from deeper aquifers, which have proved to be counterproductive economically and ecologically. An integrated hydrogeological study has been undertaken in the semi-arid Madharam watershed (95 km2) in Telangana State, which is underlain by granites. The results reveal two aquifer systems: a weathered zone (maximum 30 m depth) and a fractured zone (30–85 m depth). The weathered zone is unsaturated to its maximum extent, forcing users to tap groundwater from deeper aquifers. Higher orders of transmissivity, specific yield and infiltration rates are observed in the recharge zone, while moderate orders are observed in an intermediate zone, and lower orders in the discharge zone. This is due to the large weathering-zone thickness and a higher sand content in the recharge zone than in the discharge zone, where the weathered residuum contains more clay. The NO3 ? concentration is high in shallow irrigation wells, and F? is high in deeper wells. Positive correlation is observed between F? and depth in the recharge zone and its proximity. Nearly 50 % of groundwater samples are unfit for human consumption and the majority of irrigation-well samples are classed as medium to high risk for plant growth. Both supply-side and demand-side measures are recommended for sustainable development and management of this groundwater resource. The findings can be up-scaled to other similar environments.  相似文献   

13.
Groundwater depletion and seawater intrusion constitute major challenges along coastal aquifers in arid areas. This paper assesses the role of groundwater recharge dams constructed to replenish aquifers and fight seawater intrusion with reference to AlKhod dam, Oman, sited 7 km from the coast on a gravely unconfined aquifer. Water table rise in piezometers located downstream from the dam shows regular patterns correlating with magnitude of wadi flow, whereas upstream piezometers show irregular patterns. Controlled release of water captured by the dam optimizes water percolation and enhances artificial recharge which was estimated in the wet years 1997, 2003 and 2005 as 15, 22 and 27 Mm3, respectively, using water table fluctuation method. Recharge contributed 40–60 % of the total annual abstraction. Groundwater salinity increased in the 1980s and 1990s and the saline/freshwater interface advanced inland, but has receded partially after 1997 (highest rainfall) and completely after 2005 indicated by reduction in electrical conductivity and thickening of freshwater lens. The recession is attributed to the dam’s induced recharge and reduction of pumping in 2004 following the commissioning of Barka desalination plant. Integrating artificial recharge with groundwater resources management is therefore an effective measure to replenish aquifers in arid areas and mitigate seawater intrusion along the coasts.  相似文献   

14.
Seawater intrusion is one of the most serious environmental problems in many coastal regions all over the world. Mixing a small quantity of seawater with groundwater makes it unsuitable for use and can result in abandonment of aquifers. Therefore, seawater intrusion should be prevented or at least controlled to protect groundwater resources. This paper presents development and application of a simulation‐optimization model to control seawater intrusion in coastal aquifers using different management scenarios; abstraction of brackish water, recharge of freshwater, and combination of abstraction and recharge. The model is based on the integration of a genetic algorithm optimisation technique and a coupled transient density‐dependent finite element model. The objectives of the management scenarios include determination of the optimal depth, location and abstraction/recharge rates for the wells to minimize the total costs for construction and operation as well as salt concentrations in the aquifer. The developed model is applied to analyze the control of seawater intrusion in a hypothetical confined coastal aquifer. The efficiencies of the three management scenarios are examined and compared. The results show that combination of abstraction and recharge wells is significantly better than using abstraction wells or recharge wells alone as it gives the least cost and least salt concentration in the aquifer. The results from this study would be useful in designing the system of abstraction/recharge wells to control seawater intrusion in coastal aquifers and can be applied in areas where there is a risk of seawater intrusion. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Understanding the transference of water resources within hydrogeological systems, particularly in coastal aquifers, in which groundwater discharge may occur through multiple pathways (through springs, into rivers and streams, towards the sea, etc.), is crucial for sustainable groundwater use. This research aims to demonstrate the usefulness of the application of conventional recharge assessment methods coupled to isotopic techniques for accurately quantifying the hydrogeological balance and submarine groundwater discharge (SGD) from coastal carbonate aquifers. Sierra Almijara (Southern Spain), a carbonate aquifer formed of Triassic marbles, is considered as representative of Mediterranean coastal karst formations. The use of a multi-method approach has permitted the computation of a wide range of groundwater infiltration rates (17–60%) by means of direct application of hydrometeorological methods (Thornthwaite and Kessler) and spatially distributed information (modified APLIS method). A spatially weighted recharge rate of 42% results from the most coherent information on physiographic and hydrogeological characteristics of the studied system. Natural aquifer discharge and groundwater abstraction have been volumetrically quantified, based on flow and water-level data, while the relevance of SGD was estimated from the spatial analysis of salinity, 222Rn and the short-lived radium isotope 224Ra in coastal seawater. The total mean aquifer discharge (44.9–45.9 hm3 year?1) is in agreement with the average recharged groundwater (44.7 hm3 year?1), given that the system is volumetrically equilibrated during the study period. Besides the groundwater resources assessment, the methodological aspects of this research may be interesting for groundwater management and protection strategies in coastal areas, particularly karst environments.  相似文献   

16.
The recharge and origin of groundwater and its residence time were studied using environmental isotopic measurements in samples from the Heihe River Basin, China. δ18O and δD values of both river water and groundwater were within the same ranges as those found in the alluvial fan zone, and lay slightly above the local meteoric water line (δD=6.87δ18O+3.54). This finding indicated that mountain rivers substantially and rapidly contribute to the water resources in the southern and northern sub-basins. δ18O and δD values of groundwater in the unconfined aquifers of these sub-basins were close to each other. There was evidence of enrichment of heavy isotopes in groundwater due to evaporation. The most pronounced increase in the δ18O value occurred in agricultural areas, reflecting the admixture of irrigation return flow. Tritium results in groundwater samples from the unconfined aquifers gave evidence for ongoing recharge, with mean residence times of: less than 36 years in the alluvial fan zone; about 12–16 years in agricultural areas; and about 26 years in the Ejina oasis. In contrast, groundwater in the confined aquifers had 14C ages between 0 and 10 ka BP.  相似文献   

17.

Over-exploited groundwater is expected to remain the predominant source of domestic water in suburban areas of Hanoi, Vietnam. In order to evaluate the effect on groundwater recharge, of decreasing surface-water bodies and land-use change caused by urbanization, the relevant groundwater systems and recharge pathways must be characterized in detail. To this end, water levels and water quality were monitored for 3 years regarding groundwater and adjacent surface-water bodies, at two typical suburban sites in Hanoi. Stable isotope (δ18O, δD of water) analysis and hydrochemical analysis showed that the water from both aquifers and aquitards, including the groundwater obtained from both the monitoring wells and the neighboring household tubewells, was largely derived from evaporation-affected surface-water bodies (e.g., ponds, irrigated farmlands) rather than from rivers. The water-level monitoring results suggested distinct local-scale flow systems for both a Holocene unconfined aquifer (HUA) and Pleistocene confined aquifer (PCA). That is, in the case of the HUA, lateral recharge through the aquifer from neighboring ponds and/or irrigated farmlands appeared to be dominant, rather than recharge by vertical rainwater infiltration. In the case of the PCA, recharge by the above-lying HUA, through areas where the aquitard separating the two aquifers was relatively thin or nonexistent, was suggested. As the decrease in the local surface-water bodies will likely reduce the groundwater recharge, maintaining and enhancing this recharge (through preservation of the surface-water bodies) is considered as essential for the sustainable use of groundwater in the area.

  相似文献   

18.
The combined effects of low rainfall, groundwater withdrawal in excess of 300 GL/year and reduced recharge in areas covered by pine plantations has caused the water table in a sandy unconfined aquifer on the Gnangara Mound in Western Australia to drop by up to 5 m and aquifer storage to decline by about 500 GL over the last 20 years. Groundwater has become acidic in areas of high drawdown, with pH values typically being less than 5.0 at the water table, and elevated concentrations of SO4 2?, Al, Fe, Zn, Cu, Ni and Pb. Trends of increasing acidity and base cation concentrations in deep water supply wells in the Mirrabooka wellfield indicate that about 0.7 keq/ha/year of base cations are being leached from soil within cones of depression of pumping wells. These results indicate that the assessment of the sustainable yields of aquifers under conditions of low rainfall needs to consider geochemical interactions between groundwater, aquifer sediments, soils and vegetation, and not be just based on aquifer hydraulics and water-balance changes.  相似文献   

19.
Groundwater is the major source of water and a critical resource for socioeconomic development in semi-arid environments like the Johannesburg area. Environmental isotopes are employed in this study to characterise groundwater recharge and flow mechanisms in the bedrock aquifers of Johannesburg, which is known for polluted surface water. With the exception of boreholes near the Hartbeespoort Dam, groundwater in the study area was derived from meteoric water that has undergone some degree of evaporation before recharge, possibly via diffuse mechanisms. Boreholes that tap groundwater from the Transvaal Supergroup Formation show depletion in δ18O and δ2H values. This is attributed to diffuse recharge through weathering fractures at high elevation that are undergoing deep circulation or recharge from depleted rainfall from the high-latitude moisture sources. The influence of focused recharge from the Hartbeespoort Dam was observed in the boreholes north of the dam, possibly as a result of the north–south trending fault lines and the north-dipping fractures in the bedding planes of quartzites. This is also supported by a reservoir water budget method which indicated a mean annual net flux of 2,084,131 m3 from Hartbeespoort Dam recharging groundwater per annum. Using tritium in the dam and boreholes located at 750 m and 5400 m downstream, average groundwater flow velocity was estimated as 202 m/year. An open system was observed in shale, andesite and granitic-gneiss aquifers indicating soil CO2 as a dominant source of carbon (δ13C) in groundwater. A closed system was also observed in dolomitic aquifers indicating carbonate dissolution as the predominant source of carbon.  相似文献   

20.
The Quaternary coastal plain aquifer down gradient of the Wadi Watir catchment is the main source of potable groundwater in the arid region of south Sinai, Egypt. The scarcity of rainfall over the last decade, combined with high groundwater pumping rates, have resulted in water-quality degradation in the main well field and in wells along the coast. Understanding the sources of groundwater salinization and amount of average annual recharge is critical for developing sustainable groundwater management strategies for the long-term prevention of groundwater quality deterioration. A combination of geochemistry, conservative ions (Cl and Br), and isotopic tracers (87/86Sr, δ81Br, δ37Cl), in conjunction with groundwater modeling, is an effective method to assess and manage groundwater resources in the Wadi Watir delta aquifers. High groundwater salinity, including high Cl and Br concentrations, is recorded inland in the deep drilled wells located in the main well field and in wells along the coast. The range of Cl/Br ratios for shallow and deep groundwaters in the delta (∼50–97) fall between the end member values of the recharge water that comes from the up gradient watershed, and evaporated seawater of marine origin, which is significantly different than the ratio in modern seawater (228). The 87/86Sr and δ81Br isotopic values were higher in the recharge water (0.70,723 < 87/86Sr < 0.70,894, +0.94 < δ81Br < +1.28‰), and lower in the deep groundwater (0.70,698 < 87/86Sr < 0.70,705, +0.22‰ < δ81Br < +0.41‰). The δ37Cl isotopic values were lower in the recharge water (−0.48 < δ37Cl < −0.06‰) and higher in the deep groundwater (−0.01 < δ37Cl < +0.22‰). The isotopic values of strontium, chloride, and bromide in groundwater from the Wadi Watir delta aquifers indicate that the main groundwater recharge source comes from the up gradient catchment along the main stream channel entering the delta. The solute-weighted mass balance mixing models show that groundwater in the main well field contains 4–10% deep saline groundwater, and groundwater in some wells along the coast contain 2–6% seawater and 18–29% deep saline groundwater.A three-dimensional, variable-density, flow-and-transport SEAWAT model was developed using groundwater isotopes (87Sr/86Sr, δ37Cl and δ81Br) and calibrated using historical records of groundwater level and salinity. δ18O was used to normalize the evaporative effect on shallow groundwater salinity for model calibration. The model shows how groundwater salinity and hydrologic data can be used in SEAWAT to understand recharge mechanisms, estimate groundwater recharge rates, and simulate the upwelling of deep saline groundwater and seawater intrusion. The model indicates that most of the groundwater recharge occurs near the outlet of the main channel. Average annual recharge to delta alluvial aquifers for 1982 to 2009 is estimated to be 2.16 × 106 m3/yr. The main factors that control groundwater salinity are overpumping and recharge availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号