首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In porous aquifers, groundwater flow and solute transport strongly depend on the sedimentary facies distribution at fine scale, which determines the heterogeneity of the conductivity field; in particular, connected permeable sediments could form preferential flow paths. Therefore, properly defined statistics, e.g. total and intrinsic facies connectivity, should be correlated with transport features. In order to improve the assessment of the relevance of this relationship, some tests are conducted on two ensembles of equiprobable realizations, obtained with two different geostatistical simulation methods—sequential indicator simulation and multiple point simulation (MPS)—from the same dataset, which refers to an aquifer analogue of sediments deposited in a fluvial point-bar/channel association. The ensembles show different features; simulations with MPS are more structured and characterised by preferential flow paths. This is confirmed by the analysis of transport connectivities and by the interpretation of data from numerical experiments of conservative solute transport with single and dual domain models. The use of two ensembles permits (1) previous results obtained for single realizations to be consolidated on a more firm statistical basis and (2) the application of principal component analysis to assess which quantities are statistically the most relevant for the relationship between connectivity indicators and flow and transport properties.  相似文献   

2.
Application of Multiple Point Geostatistics to Non-stationary Images   总被引:5,自引:2,他引:3  
Simulation of flow and solute transport through aquifers or oil reservoirs requires a precise representation of subsurface heterogeneity that can be achieved by stochastic simulation approaches. Traditional geostatistical methods based on variograms, such as truncated Gaussian simulation or sequential indicator simulation, may fail to generate the complex, curvilinear, continuous and interconnected facies distributions that are often encountered in real geological media, due to their reliance on two-point statistics. Multiple Point Geostatistics (MPG) overcomes this constraint by using more complex point configurations whose statistics are retrieved from training images. Obtaining representative statistics requires stationary training images, but geological understanding often suggests a priori facies variability patterns. This research aims at extending MPG to non-stationary facies distributions. The proposed method subdivides the training images into different areas. The statistics for each area are stored in separate frequency search trees. Several training images are used to ensure that the obtained statistics are representative. The facies probability distribution for each cell during simulation is calculated by weighting the probabilities from the frequency trees. The method is tested on two different object-based training image sets. Results show that non-stationary training images can be used to generate suitable non-stationary facies distributions.  相似文献   

3.
The hydrodispersive properties of porous sediments are strongly influenced by the heterogeneity at fine scales, which can be modeled by geostatistical simulations. In order to improve the assessment of the properties of three different geostatistical simulation methods (Sequential indicator simulation, SISIM; Transition probability geostatistical simulation, T-PROGS; Multiple point simulation, MPS) a comparison test at different scales was performed for a well-exposed aquifer analogue. In the analysed volume (approximately 30,000?m3) four operative hydrofacies have been recognised: very fine sand and silt, sand, gravelly sand and open framework gravel. Several equiprobable realizations were computed with SISIM, MPS and T-PROGS for a test volume of approximately 400?m3 and for the entire volume, and the different outcomes were compared with visual inspection and connectivity analysis of the very or poorly permeable structures. The comparison of the different simulations shows that the geological model is best reproduced when the simulations are realised separately for each highest rank depositional element and subsequently merged. Moreover, the three methods yield different images of the volume; in particular MPS is efficient in mapping the geometries of the most represented hydrofacies, whereas SISIM and T-PROGS can account for the distribution of the less represented facies.  相似文献   

4.
Stochastic sequential simulation is a common modelling technique used in Earth sciences and an integral part of iterative geostatistical seismic inversion methodologies. Traditional stochastic sequential simulation techniques based on bi-point statistics assume, for the entire study area, stationarity of the spatial continuity pattern and a single probability distribution function, as revealed by a single variogram model and inferred from the available experimental data, respectively. In this paper, the traditional direct sequential simulation algorithm is extended to handle non-stationary natural phenomena. The proposed stochastic sequential simulation algorithm can take into consideration multiple regionalized spatial continuity patterns and probability distribution functions, depending on the spatial location of the grid node to be simulated. This work shows the application and discusses the benefits of the proposed stochastic sequential simulation as part of an iterative geostatistical seismic inversion methodology in two distinct geological environments in which non-stationarity behaviour can be assessed by the simultaneous interpretation of the available well-log and seismic reflection data. The results show that the elastic models generated by the proposed stochastic sequential simulation are able to reproduce simultaneously the regional and global variogram models and target distribution functions relative to the average volume of each sub-region. When used as part of a geostatistical seismic inversion procedure, the retrieved inverse models are more geologically realistic, since they incorporate the knowledge of the subsurface geology as provided, for example, by seismic and well-log data interpretation.  相似文献   

5.
This study investigates the effect of fine-scale clay drapes on tracer transport. A tracer test was performed in a sandbar deposit consisting of cross-bedded sandy units intercalated with many fine-scale clay drapes. The heterogeneous spatial distribution of the clay drapes causes a spatially variable hydraulic conductivity and sorption coefficient. A fluorescent tracer (sodium naphthionate) was injected in two injection wells and ground water was sampled and analyzed from five pumping wells. To determine (1) whether the fine-scale clay drapes have a significant effect on the measured concentrations and (2) whether application of multiple-point geostatistics can improve interpretation of tracer tests in media with complex geological heterogeneity, this tracer test is analyzed with a local three-dimensional ground-water flow and transport model in which fine-scale sedimentary heterogeneity is modeled using multiple-point geostatistics. To reduce memory needs and calculation time for the multiple-point geostatistical simulation step, this study uses the technique of direct multiple-point geostatistical simulation of edge properties. Instead of simulating pixel values, model cell edge properties indicating the presence of irregularly shaped surfaces are simulated using multiple-point geostatistical simulations. Results of a sensitivity analysis show under which conditions clay drapes have a significant effect on the concentration distribution. Calibration of the model against measured concentrations from the tracer tests reduces the uncertainty on the clay-drape parameters. The calibrated model shows which features of the breakthrough curves can be attributed to the geological heterogeneity of the aquifer and which features are caused by other processes.  相似文献   

6.
Modern geostatistical techniques allow the generation of high-resolution heterogeneous models of hydraulic conductivity containing millions to billions of cells. Selective upscaling is a numerical approach for the change of scale of fine-scale hydraulic conductivity models into coarser scale models that are suitable for numerical simulations of groundwater flow and mass transport. Selective upscaling uses an elastic gridding technique to selectively determine the geometry of the coarse grid by an iterative procedure. The geometry of the coarse grid is built so that the variances of flow velocities within the coarse blocks are minimum. Selective upscaling is able to handle complex geological formations and flow patterns, and provides full hydraulic conductivity tensor for each block. Selective upscaling is applied to a cross-bedded formation in which the fine-scale hydraulic conductivities are full tensors with principal directions not parallel to the statistical anisotropy of their spatial distribution. Mass transport results from three coarse-scale models constructed by different upscaling techniques are compared to the fine-scale results for different flow conditions. Selective upscaling provides coarse grids in which mass transport simulation is in good agreement with the fine-scale simulations, and consistently superior to simulations on traditional regular (equal-sized) grids or elastic grids built without accounting for flow velocities.  相似文献   

7.
In previous studies, the groundwater flow models formulated for the Hat Yai Basin were conventional and deterministic because the geologic heterogeneity of the alluvial aquifer system in the basin had not yet been assessed. This paper describes an effort to develop hydrofacies models, such that the spatial variability of the aquifer system can be represented in a systematic way. Variogram parameters that characterize the alluvial aquifer heterogeneity were determined. Based on these variogram parameters, an indicator-based geostatistical approach was used to develop hydrofacies models using sequential indicator simulation. The hydrofacies models indicate three distinct aquifer units, namely Hat Yai, Khu Tao, and Kho Hong aquifers, which is in good agreement with a conceptual model, and incorporates spatial variability as observed in field data from borehole logs. The hydrofacies models can be used in groundwater modeling and simulations.  相似文献   

8.
基于不同地质统计方法的渗透系数场对污染物运移的影响   总被引:1,自引:0,他引:1  
渗透系数场的空间变异性是影响污染物运移结果的决定因素,而地质统计方法是解决渗透系数空间变异性的主要技术手段。本文利用野外场地实测数据,采用普通克里格法和指示克里格法、顺序高斯模拟法和顺序指示模拟法四种地质统计方法,插值估测和模拟再现随机渗透系数场,进而对比研究四种渗透系数场对大尺度污染物运移的影响。研究结果表明,污染羽的质心位置(一阶矩)主要由渗透系数的平均值来决定;污染羽在空间上的展布范围(二阶矩)主要受渗透系数空间变异方差的影响;条件模拟克服了估计法的平滑效果,较好地再现真实曲线的波动性,渗透系数( lnK)估计方差与污染羽空间二阶矩随着条件模拟次数的增加而减小,并且顺序指示模拟程度更加明显。  相似文献   

9.
Sedimentological processes often result in complex three-dimensional subsurface heterogeneity of hydrogeological parameter values. Variogram-based stochastic approaches are often not able to describe heterogeneity in such complex geological environments. This work shows how multiple-point geostatistics can be applied in a realistic hydrogeological application to determine the impact of complex geological heterogeneity on groundwater flow and transport. The approach is applied to a real aquifer in Belgium that exhibits a complex sedimentary heterogeneity and anisotropy. A training image is constructed based on geological and hydrogeological field data. Multiple-point statistics are borrowed from this training image to simulate hydrofacies occurrence, while intrafacies permeability variability is simulated using conventional variogram-based geostatistical methods. The simulated hydraulic conductivity realizations are used as input to a groundwater flow and transport model to investigate the effect of small-scale sedimentary heterogeneity on contaminant plume migration. Results show that small-scale sedimentary heterogeneity has a significant effect on contaminant transport in the studied aquifer. The uncertainty on the spatial facies distribution and intrafacies hydraulic conductivity distribution results in a significant uncertainty on the calculated concentration distribution. Comparison with standard variogram-based techniques shows that multiple-point geostatistics allow better reproduction of irregularly shaped low-permeability clay drapes that influence solute transport.  相似文献   

10.
Multiple-point simulation is a newly developed geostatistical method that aims at combining the strengths of two mainstream geostatistical methods: object-based and pixel-based methods. It maintains the flexibility of pixel-based algorithms in data conditioning, while enhancing its capability of reproducing realistic geological shapes, which is traditionally reserved to object-based algorithms. However, the current snesim program for multiple-point simulation has difficulty in reproducing large-scale structures, which have a significant impact on the flow response. To address this problem, we propose to simulate along a structured path based on an information content measure. This structured path accounts for not only the information from the data, but also some prior structural information provided by geological knowledge. Various case studies show a better reproduction of large-scale structures. This concept of simulating along a structured path guided by information content can be applied to any sequential simulation algorithms, including traditional variogram-based two-point geostatistical algorithms.  相似文献   

11.
The present study focuses on understanding the leakage potentials of the stored supercritical CO2 plume through caprocks generated in geostatistically created heterogeneous media. For this purpose, two hypothetical cases with different geostatistical features were developed, and two conditional geostatistical simulation models (i.e., sequential indicator simulation or SISIM and generalized coupled Markov chain or GCMC) were applied for the stochastic characterizations of the heterogeneities. Then, predictive CO2 plume migration simulations based on stochastic realizations were performed and summarized. In the geostatistical simulations, the results from the GCMC model showed better performance than those of the SISIM model for the strongly non-stationary case, while SISIM models showed reasonable performance for the weakly non-stationary case in terms of low-permeability lenses characterization. In the subsequent predictive simulations of CO2 plume migration, the observations in the geostatistical simulations were confirmed and the GCMC-based predictions showed underestimations in CO2 leakage in the stationary case, while the SISIM-based predictions showed considerable overestimations in the non-stationary case. The overall results suggest that: (1) proper characterization of low-permeability layering is significantly important in the prediction of CO2 plume behavior, especially for the leakage potential of CO2 and (2) appropriate geostatistical techniques must be selectively employed considering the degree of stationarity of the targeting fields to minimize the uncertainties in the predictions.  相似文献   

12.
Geostatistical simulations have been recently widely used in the geological and mining investigations. Variogram, the fundamental tools of geostatistics, can identify the spatial distribution of the regionalized variable within the area. One of the important issues of geostatistical simulation in seismotectonics is producing uncertainty maps, which could be applicable to predict earthquake parameters through the site locations especially for civil structures like bridges. It can help engineers to design the structure of interest better. Earthquake parameters as for example seismic fault and surface wave magnitude (Ms) have significant impact on the feasibility study of the civil structures. In this research, a method is presented to produce uncertainty maps for seismic fault and surface wave magnitude, Ms. For this aim, information related to surface wave magnitude and fault trace in Zagros region (SW of Iran) has been collected. Then, the relationships between them through the site location have been investigated and analyzed by conditional geostatistical simulation. In order to quantify the uncertainty of each parameter, the uncertainty formula after generating the E-type maps has been provided and discussed. Finally, in “Talgah Bridge” site, these uncertainty maps were produced to interpret the impact of the surface wave magnitude and fault trace in this specific civil structure.  相似文献   

13.
Following the accidental subsurface release of dense nonaqueous phase liquids (DNAPLs), spatial variability of physical and chemical soil/contaminant properties can exert a controlling influence on infiltration pathways and organic entrapment. DNAPL spreading, fingering, and pooling typically result in source zones characterized by irregular contaminated regions with complex boundaries. Spatial variability in aquifer properties also influences subsequent DNAPL dissolution and aqueous transport dynamics. An increasing number of studies have investigated the effects of subsurface heterogeneity on the fate of DNAPL; however, previous work was limited to the examination of the behavior of single-component DNAPL in systems with simple and well-defined aqueous and solid surface chemistry. From a DNAPL remediation point of view, such an idealized assumption will bring a large discrepancy between the designs based on the model simulation and the reality. The research undertaken in this study seeks to stochastically explore the influence of spatially variable porous media on DNAPL entrapment and dissolution profiles in the saturated groundwater aquifer. A 3D, multicomponent, multiphase, compositional model, UTCHEM, was used to simulate natural gradient water flooding processes in spatially variable soils. Porosity was assumed to be uniform or simulated using sequential Gaussian simulation (SGS) and sequential indicator simulation (SIS). Soil permeability was treated as a spatially random variable and modeled independently of porosity, and a geostatistical method was used to generate random distributions of soil permeability using SGS and SIS (derived from measured grain size distribution curves). Equally possible 3D ensembles of aquifer realizations with spatially variable permeability accounting of physical heterogeneity could be generated. Tetrachloroethene (PCE) was selected as a DNAPL representative as it was frequently discovered at many contaminated groundwater sites worldwide, including Thailand. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL source zone architecture under 96-L hypothetical PCE spill in heterogeneous media and stochastic analysis was conducted based on the simulated results. Simulations revealed considerable variations in the predicted PCE source zone architecture with a similar degree of heterogeneity, and complex initial PCE source zone distribution profoundly affected PCE recovery time in heterogeneous media when subject to natural gradient water flush. The necessary time to lower PCE concentrations below Thai groundwater quality standard ranged from 39 years to more than 55 years, suggesting that spatial variability of subsurface formation significantly affected the dissolution behavior of entrapped PCE. The temporal distributions of PCE saturation were significantly altered owing to natural gradient water flush. Therefore, soil heterogeneity is a critical factor to design strategies for characterization and remediation of DNAPL contaminated sites. The systematic and comprehensive design algorithm developed and described herein perhaps serves as a template for application at other DNAPL sites in Thailand.  相似文献   

14.
An approach for geostatistically consistent matching of 3D flow simulation models and 3D geological models is proposed. This approach uses an optimization algorithm based on identification of the parameters of the geostatistical model (for example, the variogram parameters, such as range, sill, and nugget effect). Here, the inverse problem is considered in the greatest generality taking into account facies heterogeneity and the variogram anisotropy. The correlation dependence parameters (porosity-to-log permeability) are clarified for each single facies.  相似文献   

15.
On the basis of local measurements of hydraulic conductivity,geostatistical methods have been found to be useful in heterogeneity characterization of a hydraulic conductivity field on a regional scale. However,the methods are not suited to directly integrate dynamic production data,such as,hydraulic head and solute concentration,into the study of conductivity distribution. These data,which record the flow and transport processes in the medium,are closely related to the spatial distribution of hydraulic conductivity. In this study,a three-dimensional gradient-based inverse method-the sequential self-calibration (SSC) method-is developed to calibrate a hydraulic conductivity field,initially generated by a geostatistical simulation method,conditioned on tracer test results. The SSC method can honor both local hydraulic conductivity measurements and tracer test data. The mismatch between the simulated hydraulic conductivity field and the reference true one,measured by its mean square error (MSE),is reduced through the SSC conditional study. In comparison with the unconditional results,the SSC conditional study creates the mean breakthrough curve much closer to the reference true curve,and significantly reduces the prediction uncertainty of the solute transport in the observed locations. Further,the reduction of uncertainty is spatially dependent,which indicates that good locations,geological structure,and boundary conditions will affect the efficiency of the SSC study results.  相似文献   

16.
张嘉  王明玉 《地学前缘》2010,17(6):152-158
在地下水污染模拟预报中,弥散参数是很难确定的一个模型参数。因实验室小尺度弥散规律一般不能用于大尺度弥散过程,而野外示踪试验却耗资大、周期长,限制了其实用性。文中利用随机数值模拟手段、基于随机理论的蒙特卡罗方法及序贯高斯模拟技术来生成渗透系数随机场,并研究渗透系数对数场的方差、相关长度以及变异函数类型在不同尺度上对纵向弥散度的影响,进而建立纵向弥散度与随机分布渗透系数场的方差和相关长度的统计定量关系,并与Gelhar理论计算结果进行比较。数值模拟结果表明,经过一定迁移距离后纵向弥散度与随机分布渗透系数对数场的方差和相关长度具有良好的线性统计关系,与Gelhar理论公式表达的关系类型类似。但对于较大的方差,纵向弥散度模拟结果明显大于Gelhar理论计算值,而对于较大相关长度在迁移距离不很大时,纵向弥散度模拟结果明显小于Gelhar理论计算值。本研究可为野外大尺度地下水污染预报模型中水动力弥散参数的确定提供方法借鉴。  相似文献   

17.
A procedure to estimate the probability of intercepting a contaminant groundwater plume for monitoring network design has been developed and demonstrated. The objective of the procedure is to use all available information in a method that accounts for the heterogeneity of the aquifer and the paucity of data. The major components of the procedure are geostatistical conditional simulation and parameter estimation that are used sequentially to generate flow paths from a suspected contaminant source location to a designated monitoring transect. From the flow paths, a histogram is constructed that represents the spatial probability distribution of plume centerlines. With an independent estimate of the plume width, a relationship between the total cost and the probability of detecting a plume can be made. The method uses geostatistical information from hydraulic head measurements and is conditioned by the data and the physics of groundwater flow. This procedure was developed specifically for the design of monitoring systems at sites where very few, if any, hydraulic conductivity data are available.  相似文献   

18.
The reproduction of the non-stationary distribution and detailed characteristics of geological bodies is the main difficulty of reservoir modeling. Recently developed multiple-point geostatistics can represent a stationary geological body more effectively than traditional methods. When restricted to a stationary hypothesis, multiple-point geostatistical methods cannot simulate a non-stationary geological body effectively, especially when using non-stationary training images (TIs). According to geologic principles, the non-stationary distribution of geological bodies is controlled by a sedimentary model. Therefore, in this paper, we propose auxiliary variables based on the sedimentary model, namely geological vector information (GVI). GVI can characterize the non-stationary distribution of TIs and simulation domains before sequential simulation, and the precision of data event statistics will be enhanced by the sequential simulation’s data event search area limitations under the guidance of GVI. Consequently, the reproduction of non-stationary geological bodies will be improved. The key features of this method are as follows: (1) obtain TIs and geological vector information for simulated areas restricted by sedimentary models; (2) truncate TIs into a number of sub-TIs using a set of cut-off values such that each sub-TI is stationary and the adjacent sub-TIs have a certain similarity; (3) truncate the simulation domain into a number of sub-regions with the same cut-off values used in TI truncation, so that each sub-region corresponds to a number of sub-TIs; (4) use an improved method to scan the TI or TIs and construct a single search tree to restore replicates of data events located in different sub-TIs; and (5) use an improved conditional probability distribution function to perform sequential simulation. A FORTRAN program is implemented based on the SNESIM.  相似文献   

19.
Understanding flow and transport in low-permeability media is very important in the context of nuclear waste disposal, oil and gas reservoirs and long term evolution of groundwater systems. In low-permeability media, transport by diffusion is often the most important mass transport process. This study investigates the effect of the heterogeneity of diffusion parameters on mass transport in low-permeability media. A geostatistical approach for integrating heterogeneity of diffusion parameters in groundwater flow and transport models is proposed and applied to the Toarcian argillites in France which are studied in the framework of feasibility of storing radioactive waste in deep clayey massifs. Stochastic fields of the diffusion parameters of the Toarcian argillites (France) are generated based on 64 measured values of diffusion coefficient and diffusion accessible porosity and used as input for a 3D local-scale groundwater flow and transport model. The chloride concentrations computed by these heterogeneous models are compared to the measured chloride concentrations and to concentrations calculated with a model in which the Toarcian argillites are subdivided into several homogeneous zones. The heterogeneous simulations result in a slightly better correspondence between measured and calculated values and have the additional advantage that the measured diffusion coefficient values in the Toarcian are perfectly honored in the model. This study shows that small-scale variability of diffusion parameters has a significant effect on solute concentrations and omitting this heterogeneity may be a problem in transport calculations in low-permeability media, depending on the specific setting and objectives of the study.  相似文献   

20.
三维无缝工程地质建模系统的研制   总被引:1,自引:0,他引:1  
徐能雄  田红 《岩土力学》2009,30(8):2385-2391
在边界表示法的基础上,提出了无缝工程地质模型的概念,实现了基于模型线框架的无缝工程地质建模方法,研制了无缝建模系统(ROCKModel)。该系统包括3个部分:原始数据转换工具、实体建模工具与辅助工具,涉及剖分、插值、曲面求交等8个基本功能模块。在基本功能模块的基础上,提出并实现了形态复杂曲面的创建、构建模型线框架、界面编辑与重构、块体搜索、岩体质量三维分级等关键技术。该系统能够实现复杂地质对象与工程对象的无缝建模与可视化,并为数值模拟软件直接提供几何模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号