首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
ABSTRACT

Tongling, in eastern China, is an area well-known for intra-plate adakites. Here, we present the mineral chemistry and zircon U–Pb ages for amphibole cumulate xenoliths, the mineral chemistry of amphibole megacrysts, and the whole–rock chemistry, zircon U–Pb age and Sr–Nd isotopic compositions of host gabbros from Tongling. Zircon U–Pb dating yields a crystallization age of 120.6 ± 1.2 Ma (MSWD = 4.2) for the host gabbros, which are characteristically depleted in high field strength elements (Nb, Ta, and Ti) and enriched in large ion lithophile elements (Ba and Sr), with εNd (t) of ?3.00 to ?4.52 and initial 87Sr/86Sr ratios of 0.7068–0.7072, suggesting an enriched mantle source. Parental melts, as estimated from average amphibole megacryst and cumulate compositions, have Mg# values of 26–33, are enriched in Ba, Th, U, and Nd, and depleted in Nb, Ta, Zr, Hf, and Ti, similar to 136 Ma mafic magmas in Tongling. Zircon U–Pb dating yields a crystallization age of 135.4 ± 1.0 Ma (MSWD = 1.6) for the amphibole cumulates. It is concluded that the Tongling adakitic rocks were formed by polybaric crystallization involving early high-pressure intracrustal fractional crystallization of cumulates comprising hornblende and clinopyroxene, and late low-pressure fractional crystallization of hornblende and plagioclase phenocrysts. The flat subduction of Pacific plate and its subsequent foundering during the Cretaceous may have triggered the generation of extensive adakitic magmas and lithospheric thinning in the Lower Yangtze Region.  相似文献   

2.
The Kukaazi Pb–Zn–Cu–W polymetallic deposit, located in the Western Kunlun orogenic belt, is a newly discovered skarn-type deposit. Ore bodies mainly occur in the forms of lenses and veins along beddings of the Mesoproterozoic metamorphic rocks. Three ore blocks, KI, KII, and KIII, have been outlined in different parts of the Kukaazi deposit in terms of mineral assemblages. The KI ore block is mainly composed of chalcopyrite, scheelite, pyrrhotite, sphalerite, galena and minor pyrite, arsenopyrite, and molybdenite, whereas the other two ore blocks are made up of galena, sphalerite, magnetite and minor arsenopyrite and pyrite. In this study, we obtained a molybdenite isochron Re–Os age of 450.5 ± 6.4 Ma (2σ, MSWD = 0.057) and a scheelite Sm–Nd isochron age of 426 ± 59 Ma (2σ, MSWD = 0.49) for the KI ore block. They are broadly comparable to the ages of granitoid in the region. Scheelite grains from the KI ore block contain high abundances of rare earth elements (REE, 42.0–95.7 ppm) and are enriched in light REE compared to heavy REE, with negative Eu anomalies (δEu = 0.13–0.55). They display similar REE patterns and Sm/Nd ratios to those of the coeval granitoids in the region. Moreover, they also have similar Sr and Nd isotopes [87Sr/86Sr = 0.7107–0.7118; εNd(t) = ?4.1 to ?4.0] to those of such granitoids, implying that the tungsten-bearing fluids in the Kukaazi deposit probably originate from the granitic magmas. Our results first defined that the Early Paleozoic granitoids could lead to economic Mo–W–(Cu) mineralization at some favorable districts in the Western Kunlun orogenic belt and could be prospecting exploration targets.  相似文献   

3.
The Daolundaba Cu–polymetallic deposit is a newly discovered Cu–W–Sn deposit on the western slopes of the southern Great Xing’an Range, and its mineralization was related to an early Permian coarse-grained biotite granite. However, there is little information on the age of formation of the deposit. In this article, we present the results of our investigation into the age of the Daolundaba Cu–polymetallic deposit, which involved the selection of chalcopyrite and pyrrhotite samples for Rb–Sr isochron dating. A Rb–Sr isochron defined by the chalcopyrite samples yielded a Rb–Sr isochron age of 290.0 ± 11 Ma (MSWD = 1.2) with an initial Sr isotopic composition (ISr) of 0.71446. The pyrrhotite samples yielded a Rb–Sr isochron age of 283.0 ± 2.6 Ma (MSWD = 1.16) with an initial Sr isotopic composition (ISr) of 0.71447. The Rb–Sr isochron age determined from the chalcopyrite and pyrrhotite is 282.7 ± 1.7 Ma (MSWD = 1.13). These results indicate that the Daolundaba Cu–polymetallic deposit formed during the early Permian (282.7–290.0 Ma). The Rb and Sr contents of the chalcopyrite and pyrrhotite range from ~0.1325 to ~3.6810 ppm and from ~0.1219 to ~9.5740 ppm, respectively, and the initial Sr isotope ratios (ISr) range from 0.71047 to 0.71869, with an average of 0.714723. These isotopic characteristics indicate the ore-forming minerals of the Daolundaba Cu–polymetallic deposit originated mainly from the crust, but with small amounts of mantle material involved. The copper was derived from the associated magma whereas the W and Sn was derived from the surrounding strata. The Permian mineralization of the Xing’an–Mongolia region occurred in an active continental margin setting during subduction of the Palaeo-Asian oceanic plate beneath the Siberian Plate.  相似文献   

4.
U–Pb zircon geochronological, geochemical, and whole-rock Sr–Nd isotopic analyses are reported for a suite of Karamay A-type granites from the Central Asian Orogenic Belt (CAOB) in the western Junggar region of northern Xinjiang, Northwest China, with the aim of investigating the sources and petrogenesis of A-type granites. The Karamay pluton includes monzogranite and syenogranite. Laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating yielded a concordant weighted mean 206Pb/238U age of 304 ± 5 Ma (n = 11), defining a late Carboniferous magmatic event. Geochemically, the rock suite is characterized by high SiO2, FeOt/MgO, total alkalies (K2O + Na2O), Zr, Nb, Y, Ta, Ga/Al, and rare earth elements (REEs) (except for Eu), and low contents of MgO, CaO, and P2O5, with negative Ba, Sr, P, Eu, and Ti anomalies. These features indicate an A-type affinity for the Karamay granitic intrusions. Isotopically, they display consistently depleted Sr–Nd isotopic compositions (initial 87Sr/86Sr = 0.7014–0.7022, ?Nd(t) = +5.6–+7.0). Geochronological, geochemical, and isotopic data suggest that the Karamay A-type granites were derived from remelting juvenile lower crust, followed by fractional crystallization. The Karamay A-type granites as well as widespread late Carboniferous magmatism in the western Junggar region of the southwestern CAOB may have been related to ridge subduction and a resultant slab window. This further demonstrates the importance of the late Palaeozoic granitic magmatism in terms of vertical crustal growth in northern Xinjiang.  相似文献   

5.
Isotopic analyses of ancient mantle-derived magmatic rocks are used to trace the geochemical evolution of the Earth’s mantle, but it is often difficult to determine their primary, initial isotope ratios due to the detrimental effects of metamorphism and secondary alteration. We present in situ analyses by LA-MC-ICPMS for the Pb isotopic compositions of igneous plagioclase (An75–89) megacrysts and the Hf isotopic compositions of BSE-imaged domains of zircon grains from two mantle-derived anorthosite complexes from south West Greenland, Fiskenæsset and Nunataarsuk, which represent two of the best-preserved Archean anorthosites in the world. In situ LA-ICPMS U–Pb geochronology of the zircon grains suggests that the minimum crystallization age of the Fiskenæsset complex is 2,936 ± 13 Ma (2σ, MSWD = 1.5) and the Nunataarsuk complex is 2,914 ± 6.9 Ma (2σ, MSWD = 2.0). Initial Hf isotopic compositions of zircon grains from both anorthosite complexes fall between depleted mantle and a less radiogenic crustal source with a total range up to 5 εHf units. In terms of Pb isotopic compositions of plagioclase, both anorthosite complexes share a depleted mantle end member yet their Pb isotopic compositions diverge in opposite directions from this point: Fiskenæsset toward a high-μ, more radiogenic Pb, crustal composition and Nunataarsuk toward low-μ, less radiogenic Pb, crustal composition. By using Hf isotopes in zircon in conjunction with Pb isotopes in plagioclase, we are able to constrain both the timing of mantle extraction of the crustal end member and its composition. At Fiskenæsset, the depleted mantle melt interacted with an Eoarchean (~3,700 Ma) mafic crust with a maximum 176Lu/177Hf ~0.028. At Nunataarsuk, the depleted mantle melt interacted with a Hadean (~4,200 Ma) mafic crust with a maximum 176Lu/177Hf ~0.0315. Evidence from both anorthosite complexes provides support for the long-term survival of ancient mafic crusts that, although unidentified at the surface to date, could still be present within the Fiskenæsset and Nunataarsuk regions.  相似文献   

6.
《International Geology Review》2012,54(11):1391-1408
ABSTRACT

Rocks of the early Neoproterozoic age of the world have remained in discussion for their unique identity and evolutionary history. The rocks are also present in Sindh province of Pakistan and have been in debate for a couple of years. Yet, these igneous rocks have been studied very poorly regarding U-Pb and Lu-Hf age dating. The early Neoproterozoic rocks located in Nagarparkar town of Sindh have been considered as shoulder of Malani Igneous Suite (MIS) discovered in Southwest of India. The Nagarparkar Igneous Complex (NPIC) rocks are low-grade metamorphosed, mafic and silicic rocks. These rocks are accompanied by felsic and mafic dikes. Two types of granite from NPIC have been identified as peraluminous I-type biotite granites (Bt-granites), of medium-K calc-alkaline rocks series and A-type potash granites (Kfs-granites) of high-K calc-alkaline rocks series. Geochemical study shows that these Kfs-granites are relatively high in K and Na contents and low MgO and CaO. The Bt-granites have positive Rb, Ba, and Sr with negative Eu anomalies rich with HFSEs Zr, Hf, and slightly depleted HREEs, whereas Kfs-granites have positive Rb with negative Ba, Sr, and Eu anomalies and have positive anomalies of Zr and Hf with HREEs. In addition, these rocks possess crustal material, which leads to the enrichment of some incompatible trace elements and depletion of Sr and Ba in Kfs-granites and relatively high Sr and Ba in Bt-granites, indicating a juvenile lower continental crust affinity. Zircon LA-ICP-MS U-Pb dating of these granites yielded weighted mean 206Pb/238U ages ranging from 812.3 ± 14.1 Ma (N = 18; MSWD = 3.7); and 810 ± 7.4 Ma (N = 16; MSDW = 0.36) for the Bt-granites, and 755.3 ± 7.1 Ma (N = 21; MSDW = 2.0); NP-GG-01 and 736.3 ± 4.3 Ma (N = 24; MSWD = 1.05) for Kfs-granites, respectively. The Bt-granites and Kfs-granites have positive zircon εHf(t) values, which specify that they are derived from a juvenile upper and lower continental crust. Based on the geochemical and geochronological data, we suggest that the Bt-granites were formed through lower continental crust earlier to the rifting time, whereas the Kfs-granites were formed via upper continental crust, during crustal thinning caused by Rodinia rifting. These zircon U-Pb ages 812 to 736 Ma, petrographic, and geochemical characteristics match with those of the adjacent Siwana, Jalore, Mount Abu, and Sirohi granites of MIS. Thus, we can suggest that NPIC granites and adjacent MIS can possibly be assumed as a missing link of the supercontinent Rodinia remnants.  相似文献   

7.
《International Geology Review》2012,54(11):1296-1308
Geochronological, geochemical, and whole-rock Sr–Nd isotopic analyses were performed on a suite of Palaeozoic nepheline syenites from Zijinshan to characterize their ages and petrogenesis. Laser ablation inductively coupled plasma-mass spectrometry U–Pb zircon analyses yield consistent ages of 525.7 ± 2.8 million years for a sample (HYK01). These intrusive rocks belong to the foid syenite magma series in terms of K2O?+?Na2O contents (14.3–15.2 wt.%) and to the shoshonitic series based on their high K2O contents (5.42–5.61 wt.%). The nepheline syenites are further characterized by high light rare earth element contents [(La/Yb) N ?=?29.1–36.1]; show modest negative Eu anomalies (δEu?=?0.5–0.6) and positive anomalies in Rb, Th, U, Pb, Zr, and Hf; are depleted in Ba and high field strength elements (P and Ti). In addition, all the nepheline syenites in this study display relatively low radiogenic Sr (87Sr/86Sr) i (0.7042–0.7043) and positive ?Nd (t) (0.7–0.8). These results suggest that the nepheline syenites were derived from depleted continental crust. The parent magmas likely experienced fractional crystallization of plagioclase, Ti-bearing oxides (e.g. rutile, ilmenite, and titanite), apatite, and zircon during ascent, with negligible crustal contamination before final emplacement at a high crustal level.  相似文献   

8.
《International Geology Review》2012,54(10):1294-1310
ABSTRACT

Palaeozoic intrusions in Eastern Tianshan are important for understanding the evolution of the Central Asian Orogenic Belt (CAOB). The Sanchakou intrusions situated in Eastern Tianshan (southern CAOB), are mainly quartz diorite and granodiorite. A comprehensive study of zircon U–Pb ages, zircon trace elements, whole-rock geochemistry, and Lu–Hf isotopes were carried out for the Sanchakou intrusive rocks. LA-ICP-MS zircon U–Pb dating yielded crystallization ages of 439.7 ± 2.5 Ma (MSWD = 0.63, n = 21) for the quartz diorite, and 430.9 ± 2.5 Ma (MSWD = 0.21, n = 21) and 425.5 ± 2.7 Ma (MSWD = 0.04; n = 20) for the granodiorites. These data, in combination with other Silurian ages reported for the intrusive suites from Eastern Tianshan, indicate an early Palaeozoic magmatic event in the orogen. In situ zircon Hf isotope data for the Sanchakou quartz diorite shows εHf(t) values of +11.2 to +19.6, and the two granodioritic samples exhibit similar εHf(t) values from +13.0 to +19.5. The Sanchakou plutons show metaluminous to weakly peraluminous, arc-type geochemical and low-K tholeiite affinities, and display trace element patterns characterized by enrichment in K, Ba, Sr, and Sm, and depletion in Nb, Ta, Pb, and Ti. The geochemical and isotopic signatures indicate that the Sanchakou dioritic and granodioritic magmas were sourced from a subducted oceanic slab, and subsequently underwent some interaction with peridotite in the mantle wedge. Combined with the regional geological history, we suggest the Sanchakou intrusions formed due to the northward subduction of the Palaeo-Tianshan Ocean beneath the Dananhu–Tousuquan arc during early Silurian time.  相似文献   

9.
ABSTRACT

Metatexite and diatexite migmatites are widely distributed within the upper amphibolite and granulite-facies zones of the Higo low-P/high-T metamorphic terrane. Here we report Nd–Sr isotopic and whole rock composition data from an outcrop in the highest-grade part of the granulite-facies zone, in which diatexite occurs as a 3 m-thick layer between 2 m-thick layers of stromatic-structured metatexite within pelitic gneiss. The metatexite has Nd–Sr isotopes and whole rock compositions similar to those of the gneiss, but the diatexite shows the reverse. The diatexite has a higher εNd(t) and 147Sm/144Nd ratio (εNd(t) = ?0.5; 147Sm/144Nd = 0.1636) than the gneiss (εNd(t) = ?2.1; 147Sm/144Nd = 0.1287) and metatexite (εNd(t) = ?3.1; 147Sm/144Nd = 0.1188). The (87Sr/86Sr)initial and 87Rb/86Sr of the diatexite ((87Sr/86Sr)initial = 0.70568; 87Rb/86Sr = 0.416) are lower than those of the gneiss ((87Sr/86Sr)initial = 0.70857; 87Rb/86Sr = 1.13) and metatexite ((87Sr/86Sr)initial = 0.70792; 87Rb/86Sr = 1.11). The metatexite and gneiss show enrichment of Th and depletion of P and Eu and have a similar chondrite-normalized REE pattern, which shows steep LREE–MREE-enriched and gently declining HREE patterns and negative Eu anomalies, whereas the diatexite shows enrichment of Sr and depletion of Th and Y, and exhibits gently declining LREE and steeply declining HREE pattern and weak Eu depletion. The metatexite migmatite is interpreted to have formed by in situ partial melting in which the melt did not migrate from the source, whereas the diatexite migmatite included an externally derived melt with a juvenile component. The Cretaceous high-temperature metamorphism of the Higo metamorphic terrane is interpreted to reflect emplacement of mantle-derived basalts under a volcanic arc along the eastern margin of the Eurasian continent, and mass transfer and advection of heat via hybrid silicic melts from the lower crust.  相似文献   

10.
Whole-rock major and trace element and Sr-Nd isotopic data, together with zircon LA ICPMS in-situ U-Pb and Hf isotopic data of the syenites and granites in the Tengchong Block are reported in order to understand their petrogenesis and tectonic implications. Zircon U-Pb data gives the emplacement ages of ca. 115.3±0.9 Ma for syenites and 115.7±0.8 Ma for granites, respectively. The syenites are characterized by low SiO_2 content(62.01–63.03 wt%) and notably high Na_2O content(7.04–7.24 wt%) and Na_2O/K_2O ratios(2.02–2.10), low MgO, Fe_2O_3 T and TiO_2, enrichment of LILEs(large-ion lithophile element) such as Rb, Th, U, K, and Pb) and obvious depletion HFSE(high field strength element; e.g. Nb, Ta, P, and Ti) with clearly negative Eu anomalies(d Eu=0.53–0.56). They also display significant negative whole-rock εNd(t) values of-6.8 and zircon εHf(t) values(-9.11 to-0.27, but one is +5.30) and high initial ~(87) Sr/~(86) Sr=0.713013. Based on the data obtained in this study, we suggest that the ca. 115.3 Ma syenites were possibly derived from a sodium-rich continental crustal source, and the fractionation of some ferro-magnesian mineral and plagioclase might occur during the evolution of magma. The granites have high SiO_2 content(71.35–74.47 wt%), metaluminous to peraluminous, low Rb/Ba, Rb/Sr, and Al_2O_3/(MgO+FeOT+TiO_2) ratios and moderate(Al_2O_3+MgO+FeOT+TiO_2) content. They show low initial ~(87) Sr/~(86) Sr(0.703408 to 0.704241) and εNd(t) values(-3.8 to-3.5), plotted into the evolutionary trend between basalts and lower crust. Hence, we suggest that the granites were derived from the melting of mixing sources in the ancient continental crust involving some metabasaltic materials and predominated metasedimentary greywackes. Together with data in the literatures, we infer that the Early Cretaceous magmatism in the Tengchong block was dominated by magmas generated by the partial melting of ancient crustal material, which represent the products that associated to the closure of Bangong-Nujiang Meso-Tethys.  相似文献   

11.
We conducted geochemical and isotopic studies on the Oligocene–Miocene Niyasar plutonic suite in the central Urumieh–Dokhtar magmatic belt, in order better to understand the magma sources and tectonic implications. The Niyasar plutonic suite comprises early Eocene microdiorite, early Oligocene dioritic sills, and middle Miocene tonalite + quartzdiorite and minor diorite assemblages. All samples show a medium-K calc-alkaline, metaluminous affinity and have similar geochemical features, including strong enrichment of large-ion lithophile elements (LILEs, e.g. Rb, Ba, Sr), enrichment of light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs, e.g. Nb, Ta, Ti, P). The chondrite-normalized rare earth element (REE) patterns of microdiorite and dioritic sills are slightly fractionated [(La/Yb)n = 1.1–4] and display weak Eu anomalies (Eu/Eu* = 0.72–1.1). Isotopic data for these mafic mantle-derived rocks display ISr = 0.70604–0.70813, ?Nd (microdiorite: 50 Ma and dioritic sills: 35 Ma, respectively) = +1.6 and ?0.4, TDM = 1.3 Ga, and lead isotopic ratios are (206Pb/204Pb) = 18.62–18.57, (207Pb/204Pb) = 15.61–15.66, and (208Pb/204Pb) = 38.65–38.69. The middle Miocene granitoids (18 Ma) are also characterized by relatively high REE and minor Eu anomalies (Eu/Eu* = 0.77–0.98) and have uniform initial 87Sr/86Sr (0.7065–0.7082), a range of initial Nd isotopic ratios [?Nd(T)] varying from ?2.3 to ?3.7, and Pb isotopic composition (206Pb/204Pb) = 18.67–18.94, (207Pb/204Pb) = 15.63–15.71, and (208Pb/204Pb) = 38.73–39.01. Geochemical and isotopic evidence for these Eocene–Ologocene mafic rocks suggests that the magmas originated from lithospheric mantle with a large involvement of EMII component during subduction of the Neotethyan ocean slab beneath the Central Iranian plate, and were significantly affected by crustal contamination. Geochemical and isotopic data of the middle Miocene granitoids rule out a purely crustal-derived magma genesis, and suggest a mixed mantle–crustal [MASH (melting, assimilation, storage, and homogenization)] origin in a post-collision extensional setting. Sr–Nd isotope modelling shows that the generation of these magmas involved ~60% to 70% of a lower crustal-derived melt and ~30% to 40% of subcontinental lithospheric mantle. All Niyasar plutons exhibit transitional geochemical features, indicating that involvement of an EMII component in the subcontinental mantle and also continental crust beneath the Urumieh–Dokhtar magmatic belt increased from early Eocene to middle Miocene time.  相似文献   

12.
The Upper Cretaceous Torul pluton, located in the Eastern Pontides, is of sub-alkaline affinity and displays features typical of volcanic arc granitoids. It is a composite pluton consisting of granodiorite, biotite hornblende monzogranite, quartz monzodiorite, quartz monzonite and hornblende biotite monzogranite. The oldest syenogranite (77.9 ± 0.3 Ma) and the youngest quartz diorite form small stocks within the pluton. Samples from the granodiorites, biotite hornblende monzogranites, quartz monzodiorites, quartz monzonites and hornblende biotite monzogranites have SiO2 between 57 and 68 wt% and display high-K calc-alkaline, metaluminous to peraluminous characteristics. Chondrite-normalized REE patterns are fractionated (Lacn/Lucn = 6.0?14.2) with pronounced negative Eu anomalies (Eu/Eu* = 0.59–0.84). Initial ?Nd(i) values vary between ?3.1 and ?4.1, initial 87Sr/86Sr values between 0.7058 and 0.7072, and δ18O values between +4.4 and +7.3‰. The quartz diorites are characterized by relatively high Mg-number of 36–38, low contents of Na2O (2.3–2.5 wt%) and SiO2 (52–55 wt%) and medium-K calc-alkaline, metaluminous composition. Chondrite-normalized REE patterns are relatively flat [(La/Yb)cn =  2.8–3.3; (Tb/Yb)cn =  1.2] and show small negative Eu anomalies (Eu/Eu* = 0.74–0.76). Compared to the other rock types, radiogenic isotope signatures of the quartz diorites show higher 87Sr/86Sr (0.7075–0.7079) and lower ?Nd(i) (–4.5 to –5.3). The syenogranites have high SiO2 (70–74 wt%) and display high-K calc-alkaline, peraluminous characteristics. Their REE patterns are characterized by higher Lacn/Lucn (12.9) and Eu/Eu* (0.76–0.77) values compared to the quartz diorites. Isotopic signatures of these rocks [?Nd(i) =  ?4.0 to ?3.3; 87Sr/86Sr(i) =  0.7034?0.7060; δ18 O =  + 4.9 to + 8.2] are largely similar to the other rock types but differ from that of the quartz diorites. Fractionation of plagioclase, hornblende, pyroxene and Fe–Ti oxides played an important role in the evolution of Torul granitoids. The crystallization temperatures of the melts ranged from 800 to 900°C as determined from zircon and apatite saturation thermometry. All these characteristics, combined with low K2O/Na2O, low Al2O3/(FeOT + MgO + TiO2), and low (Na2O + K2O)/(FeOT + MgO + TiO2) ratios suggest an origin through dehydration melting of mafic lower crustal source rocks.  相似文献   

13.
Geophysical data illustrate that the Indian continental lithosphere has northward subducted beneath the Tibet Plateau, reaching the Bangong–Nujiang suture in central Tibet. However, when the Indian continental lithosphere started to subduct, and whether the Indian continental crust has injected into the mantle beneath southern Lhasa block, are not clear. Here we report new results from the Quguosha gabbros of southern Lhasa block, southern Tibet. LA-ICP-MS zircon U–Pb dating of two samples gives a ca. 35 Ma formation age (i.e., the latest Eocene) for the Quguosha gabbros. The Quguosha gabbro samples are geochemically characterized by variable SiO2 and MgO contents, strongly negative Nb–Ta–Ti and slightly negative Eu anomalies, and uniform initial 87Sr/86Sr (0.7056–0.7058) and εNd(t) (− 2.2 to − 3.6). They exhibit Sr–Nd isotopic compositions different from those of the Jurassic–Eocene magmatic rocks with depleted Sr–Nd isotopic characteristics, but somewhat similar to those of Oligocene–Miocene K-rich magmatic rocks with enriched Sr–Nd isotopic characteristics. We therefore propose that an enriched Indian crustal component was added into the lithospheric mantle beneath southern Lhasa by continental subduction at least prior to the latest Eocene (ca. 35 Ma). We interpret the Quguosha mafic magmas to have been generated by partial melting of lithospheric mantle metasomatized by subducted continental sediments, which entered continental subduction channel(s) and then probably accreted or underplated into the overlying mantle during the northward subduction of the Indian continent. Continental subduction likely played a key role in the formation of the Tibetan plateau at an earlier date than previously thought.  相似文献   

14.
Post-collisional (23–8 Ma), potassium-rich (including ultrapotassic and potassic) mafic magmatic rocks occur within the north–south-trending Xuruco lake–Dangre Yongcuo lake (XDY) rift in the Lhasa terrane of the southern Tibetan Plateau, forming an approximately 130-km-long semi-continuous magmatic belt. They include both extrusive and intrusive facies. Major and trace element and Sr–Nd–Pb isotopic data are presented for all of the known exposures within the XDY rift. The potassium-rich, mafic igneous rocks are characterized by high MgO (5.9–10.8 wt.%), K2O (4.81–10.68 wt.%), Ba (1,782–5,618 ppm) and Th (81.3–327.4 ppm) contents, and relatively high SiO2 (52.76–58.32 wt.%) and Al2O3 (11.10–13.67 wt.%). Initial Sr isotopic compositions are extremely radiogenic (0.712600–0.736157), combined with low (206Pb/204Pb) i (18.28–18.96) and (143Nd/144Nd) i (0.511781–0.512046). Chondrite-normalized rare earth element patterns display relatively weak negative Eu anomalies. Primitive mantle-normalized incompatible trace element patterns exhibit strong enrichments in large ion lithophile elements relative to high-field-strength elements and display strongly negative Ta–Nb–Ti anomalies. The combined major and trace element and Sr–Nd–Pb isotopic characteristics of the K-rich igneous rocks suggest that the primitive magmas were produced by 1–10 % partial melting of an asthenospheric mantle source enriched by both fluids and partial melts derived from Indian passive continental margin sediments subducted into the shallow mantle as a consequence of the northward underthrusting of the Indian continental lithosphere beneath Tibet since the India–Asia collision at ~55 Ma. The best-fit model results indicate that a melt with trace element characteristics similar to those of the K-rich rocks could be generated by 8–10 % partial melting of a metasomatized mantle source in the south and 1–2 % melting in the north of the XDY rift. Trace element and Sr–Nd–Pb isotopic modeling indicate that the proportion of fluid derived from the subducted sediments, for which we use as a proxy the Higher Himalayan Crystalline Sequence (HHCS), in the mantle source region increases from north (rear-arc) to south (front-arc), ranging from 0 to 5 %, respectively. Correspondingly, the proportion of the melt derived from the subducted HHCS in the source increases from north (2 %) to south (15 %). The increasing proportion of the fluid and melt component in the mantle source from north to south, together with a southward decreasing trend in the age of the K-rich magmatism within the XDY rift, is inferred to reflect rollback of the subducted Indian lithospheric mantle slab during the period 25–8 Ma. Slab rollback may be linked to a decreasing convergence rate between India and Asia. As a consequence of slab rollback at 25 Ma beneath the Lhasa terrane, its geodynamic setting was transformed from a convergent (55–25 Ma) to an extensional (25–8 Ma) regime. The occurrence of K-rich magmatism during the period 25–8 Ma is a consequence of the decompression melting of an enriched mantle source, which may signal the onset of extension in the southern Tibetan Plateau and provide a petrological record of the extension process.  相似文献   

15.
《International Geology Review》2012,54(13):1626-1640
Dolerite dike swarms are widespread across the North China Craton (NCC) of Hebei Province (China) and Inner Mongolia. Here, we report new geochemical, Sr–Nd–Pb isotope, and U–Pb zircon ages for representative samples of these dikes. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U–Pb analysis yielded consistent Permian ages of 274.8 ± 2.9 and 275.0 ± 4.5 Ma for zircons extracted from two dikes. The dolerites have highly variable compositions (SiO2 = 46.99–56.18 wt.%, TiO2 = 1.27–2.39 wt.%, Al2O3 = 14.42–16.20 wt.%, MgO = 5.18–7.75 wt.%, Fe2O3 = 8.03–13.52 wt.%, CaO = 5.18–9.75 wt.%, Na2O = 2.46–3.79 wt.%, K2O = 0.26–2.35 wt.%, and P2O5 = 0.18–0.37 wt.%) and are light rare earth element (LREE) and large ion lithophile element (LILE, e.g. Rb, Ba, and K, and Pb in sample SXG1-9) enriched, and Th and high field strength element (HFSE, e.g. Nb and Ta in sample SXG1-9, and Ti) depleted. The mafic dikes have relatively uniform (87Sr/86Sr)i values from 0.7031 to 0.7048, (206Pb/204Pb)i from 17.77 to 17.976, (207Pb/204Pb)i from 15.50 to 15.52, (208Pb/204Pb)i from 37.95 to 38.03, and positive ?Nd(t) (3.6–7.3), and variable neodymium model ages (TDM1 = 0.75–0.99 Ga, TDM2 = 0.34–0.74 Ga). These data suggest that the dike magmas were derived from partial melting of a depleted region of the asthenospheric mantle, and that they fractionated olivine, pyroxene, plagioclase, K-feldspar, and Ti-bearing phases without undergoing significant crustal contamination. These mafic dikes within the NCC formed during a period of crustal thinning in response to extension after Permian collision between the NCC and the Siberian Block.  相似文献   

16.
ABSTRACT

Subduction-related basaltic rocks in active continental margins should record information about the lithospheric mantle. Mafic rocks from the Qimantag region of the East Kunlun Orogenic Belt (EKOB), NW China, can be used to constrain the evolution of mantle sources. The Heishan basalts (445 Ma) and Xiarihamu gabbros (427 Ma) display distinct geochemical and isotopic features, with basalts yielding relatively lower Na2O+K2O (1.48–4.16 wt.%) and Mg# (0.50–0.57) than gabbros (Na2O+K2O = 2.96–4.07 wt.%, Mg# = 0.65–0.81). Although the basalts and gabbros show similar enrichment of LILE and depletion of HFSE, the gabbros have higher Th/Y and lower Sm/Th and Nb/U ratios than the basalts, indicative of derivation from a more enriched mantle source. The Heishan basalts have relatively positive εNd(t) values (+4.7 to +5.8) whereas the Xiarihamu gabbros have negative εNd(t) values ranging from ?5.5 to ?3.8. Crustal contamination played an insignificant role in the formation of the basalts and gabbros. Our data suggest that the basalts originated from a depleted mantle source, slightly enriched by subduction-related fluids, whereas the gabbros originated from an enriched mantle source. These findings support a subduction-related progressive lithospheric mantle enrichment model over ~20 Ma beneath the Qimantag region in the Early Palaeozoic.  相似文献   

17.
Andradite-rich garnet is a common U-bearing mineral in a variety of alkalic igneous rocks and skarn deposits, but has been largely neglected as a U–Pb chronometer. In situ laser ablation-inductively coupled plasma mass spectrometry U–Pb dates of andradite-rich garnet from a syenite pluton and two iron skarn deposits in the North China craton demonstrate the suitability and reliability of the mineral in accurately dating magmatic and hydrothermal processes. Two hydrothermal garnets from the iron skarn deposits have homogenous cores and zoned rims (Ad86Gr11 to Ad98Gr1) with 22–118 ppm U, whereas one magmatic garnet from the syenite is texturally and compositionally homogenous (Ad70Gr22 to Ad77Gr14) and has 0.1–20 ppm U. All three garnets have flat time-resolved signals obtained from depth profile analyses for U, indicating structurally bound U. Uranium is correlated with REE in both magmatic and hydrothermal garnets, indicating that the incorporation of U into the garnet is largely controlled by substitution mechanisms. Two hydrothermal garnets yielded U–Pb dates of 129 ± 2 (2σ; MSWD = 0.7) and 130 ± 1 Ma (2σ; MSWD = 0.5), indistinguishable from zircon U–Pb dates of 131 ± 1 and 129 ± 1 Ma for their respective ore-related intrusions. The magmatic garnet has a U–Pb age of 389 ± 3 Ma (2σ; MSWD = 0.6), consistent with a U–Pb zircon date of 388 ± 2 Ma for the syenite. The consistency between the garnet and zircon U–Pb dates confirms the reliability and accuracy of garnet U–Pb dating. Given the occurrence of andradite-rich garnet in alkaline and ultramafic magmatic rocks and hydrothermal ore deposits, our results highlight the potential utilization of garnet as a powerful U–Pb geochronometer for dating magmatism and skarn-related mineralization.  相似文献   

18.
《International Geology Review》2012,54(11):1401-1417
The high-pressure (HP) Piaxtla Suite at Tehuitzingo contains peridotites, gabbros, and serpentinized peridotites, as well as granitoids and metasedimentary rocks. The HP mafic rocks are characterized by low SiO2 (38–52 wt.%) and high Mg# (~48–70), Ni (100–470 ppm), and Cr (180–1750 ppm), typical of cumulate compositions. Trace elements and rare earth element (REE) primitive mantle-normalized patterns display generally flat profiles, indicative of derivation from a primitive mantle with two distinct patterns: (1) gabbroic patterns are characterized by a positive Eu anomaly, low REE abundances, and slightly depleted high REE (HREE) relative to low REE (LREE), typical of cumulus olivine, pyroxene, and plagioclase; and (2) mafic-intermediate gabbroic patterns exhibit very flat profiles characteristic of olivine and clinopyroxene as cumulus minerals. Their Nb/Y and Zr/TiO2 ratios suggest a subalkaline character, whereas low Ti/V ratios indicate that the Tehuitzingo cumulates are island arc tholeiitic basalts that resemble modern, immature oceanic, forearc magmas. These cumulates have high values of ? Nd(t) = 5.3–8.5 and 147Sm/144Nd = 0.18–0.23, which renders calculations of model ages meaningless. Our data are consistent with the Tehuitzingo arc rocks being part of a tectonically extruded Devonian–early Carboniferous arc developed along the west margin of Gondwana.  相似文献   

19.
Zircon U–Pb geochronological and geochemical analyses are reported for a suite of the middle Silurian volcanic rocks from northern West Junggar (NW China), southern Central Asian Orogenic Belt (CAOB), with the aim to investigate the sources, petrogenesis, and tectonic implications. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U–Pb analysis from an andesite yielded a concordant weighted mean 206Pb/238U age of 429 ± 3 Ma, indicating the presence of middle Silurian volcanic rocks in northern West Junggar. The andesite is tholeiite series and characterized by minor variations in compositions (SiO2 = 55.68–59.17 wt.%, Al2O3 = 14.56–17.7 wt.%, TiO2 = 0.55–1.23 wt.%, Na2O + K2O = 3.46–7.16 wt.%, and P2O5 = 0.15–0.37 wt.%), with wider MgO content (2.18–6.48 wt.%) and Mg# (57.4–77.9). All andesitic rocks are enriched in large-ion lithophile elements (LILEs; e.g. Rb, Ba, K, and Th) and light rare earth elements (LREEs), but strongly depleted in some high field strength elements (HFSEs; e.g. Nb, Ta and Ti), with slight negative Eu anomalies (Eu/Eu* = 0.8–1). These features suggest that the andesitic magmas were derived from 2–8% partial melting of a garnet lherzolite depleted mantle source with subducted sediments metasomatized by slab-derived fluids. Combining the current study with those data in existing literature, we conclude that the middle Silurian volcanic rocks formed in an intra-oceanic subduction setting during consumption of the Irtysh–Zaysan Ocean, and further confirm the eastern extension of the early Palaeozoic Boshchekul–Chingiz volcanic arc of East Kazakhstan in China.  相似文献   

20.
The geological record of the Neoproterozoic to early Palaeozoic Proto-Tethyan Ocean in Southeast Asia is not clear. To better constrain the evolution of the Proto-Tethys, we present new geochronology, geochemistry, and petrology of the late Cambrian to Ordovician Pinghe pluton monzogranite from the Baoshan block, western Yunnan, southwest China. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analyses of four zircon samples yield ages of 482–494 and 439–445 Ma for the pluton, interpreted as two episodes within one magmatic event accompanying the whole process of subduction–collision–orogeny between buoyant blocks and oceanic crust of the Proto-Tethys. The monzogranite belongs to the strong peraluminous, high-K, calc-alkaline series and shows characteristics of both I-type and S-type granitic rocks. It is characterized by extremely high Rb/Sr and Rb/Ba but low TiO2, MgO, FeOt, and CaO/Na2O ratios. The monzogranite is also moderately enriched in light rare earth elements (LREEs), depleted in heavy rare earth elements (HREEs), lacks HREE fractionation, and has strongly negative Eu (Eu/Eu* = 0.06–0.49), Ba, Nb, Ta, Sr, and Ti anomalies. Whole-rock εNd(t) and εHf(t) values range from ?8.7 to ?11.6 and ?5.55 to ?9.58, respectively. Nd and Hf two-stage model ages range from 1.66 to 2.06 Ga and 2.14 to 3.00 Ga, respectively, with variable radiogenic 206Pb/204Pb(t) (16.547–18.705), 207Pb/204Pb(t) (15.645–15.765), and 208Pb/204Pb(t) (38.273–38.830). These signatures suggest that the monzogranite magma was derived from partial melting of heterogeneous metapelite, which was generated from Neoarchean to Palaeoproterozoic materials mixed with basaltic magma. The monzogranite magma underwent crystallization differentiation of plagioclase, K-feldspar, and ilmenite. Magmatism to form the Pinghe pluton occurred in a post-collisional setting. Based on the comparison of coeval granites throughout adjacent regions (e.g. Himalayan orogen, Lhasa Terrane, and parts of Gondwana supercontinent), we propose that the Baoshan block was derived from the northern Australian Proto-Tethyan Andean-type active continental margin of Gondwana and experienced subduction of the Proto-Tethyan oceanic crust and accretion of an outboard micro-continent. The Pinghe pluton could have formed when a subducting oceanic slab broke off during collision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号