首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
An extension of an artificial neural network (ANN) approach to solve the magnetotelluric (MT) inverse problem for azimuthally anisotropic resistivities is presented and applied for a real dataset. Three different model classes, containing general 1-D and 2-D azimuthally anisotropic features, have been considered. For each model class, characteristics of three-layer feed forward ANNs trained through an error back propagation algorithm have been adjusted to approximate the inverse modeling function. It appears that, at least for synthetic models, reasonable results would be obtained by applying the amplitudes of the complex impedance tensor elements as inputs. Furthermore, the Levenberg-Marquart algorithm possesses optimal performance as a learning paradigm for this problem. The evaluation of applicability of the trained ANNs for unknown data sets excluded from the learning procedure reveals that the trained ANNs possess acceptable interpolation and extrapolation abilities to estimate model parameters accurately. This method was also successfully used for a field dataset wherein anisotropy had been previously recognized.  相似文献   

2.
A method of approximate magnetotelluric sounding (MTS) data inversion is developed on the basis of the representation of the inverse operator by an artificial neural network in classes of geoelectric structures. A methodology of the neural network inversion of magnetotelluric data is proposed for a family of classes of geoelectric structures and the uncertainty of the inferred results is estimated. A neural network algorithm of MTS data inversion is tested using synthetic 2-D data.  相似文献   

3.
基于遗传神经网络的大地电磁反演   总被引:2,自引:0,他引:2       下载免费PDF全文
为进一步提高大地电磁非线性反演的稳定性、运算效率及准确度,将遗传神经网络算法引入大地电磁反演.首先针对大地电磁二维地电模型建立BP(Back Propagation)神经网络基本框架进行学习训练,网络输入为已知地电模型的视电阻率参数,输出为该地电模型参数;再利用遗传算法对神经网络学习训练过程进行优化,计算出多种地电模型网络连接权值和阈值的最优解;最后将最优连接权值和阈值对未知模型进行反演测试,网络输入为未知地电模型的视电阻率参数,输出为该地电模型参数.模型实验表明:遗传神经网络算法充分结合了遗传算法的全局寻优性和神经网络的局部寻优性,相比单一神经网络算法,在网络学习训练中提高了解的收敛成功率和计算速度,在反演测试中能更准确地逼近真实模型.将遗传神经网络算法与最小二乘正则化反演进行对比,理论模型和实测数据都验证了遗传神经网络算法在大地电磁反演中的可行性和有效性.  相似文献   

4.
The iterative approximation neural network method for solving conditionally well-posed nonlinear inverse problems of geophysics is presented. The method is based on the neural network approximation of the inverse operator. The inverse problem is solved in the class of grid (block) models of the medium on a regularized parameterization grid. The construction principle of this grid relies on using the calculated values of the continuity modulus of the inverse operator and its modifications determining the degree of ambiguity of the solutions. The method provides approximate solutions of inverse problems with the maximal degree of detail given the specified degree of ambiguity with the total number of the sought parameters ~n × 103 of the medium. The a priori and a posteriori estimates of the degree of ambiguity of the approximated solutions are calculated. The work of the method is illustrated by the example of the three-dimensional (3D) inversion of the synthesized 2D areal geoelectrical (audio magnetotelluric sounding, AMTS) data corresponding to the schematic model of a kimberlite pipe.  相似文献   

5.
Five examples, obtained during exploration for hydrocarbons in the Pannonian Basin of Hungary, are used to show how the interpretation of seismic sections can be usefully complemented by results from MT surveys. Selection of the most appropriate MT quantities, considered to be proper ‘MT attributes’ for the purpose of visualization as well as recognition of the subsurface structures and the different inversions of MT data is essential for practical integration of seismic and MT surveys. A new technique providing a semiquantitive MT-attribute pseudosection for the purpose of visualization of the subsurface structures is proposed. The procedure utilizes derivative functions of the phase of MT impedance for visualization and derives estimated depths from the Bostick transformation of Cagniard apparent resistivities. On the basis of the MT-attribute pseudosections, constructed from the phase derivatives and transformed resistivity data, depths are estimated for interfaces between geological formations with significant resistivity contrast. In particular examples, the interface between the Tertiary sediments and the older basement rocks as well as tectonic fracture zones with decreased resistivity can be resolved.  相似文献   

6.
7.
New methods for solving the three-dimensional inverse gravity problem in the class of contact surfaces are described. Based on the approach previously suggested by the authors, new algorithms are developed. Application of these algorithms significantly reduces the number of the iterations and computing time compared to the previous ones. The algorithms have been numerically implemented on the multicore processor. The example of solving the structural inverse gravity problem for a model of four-layer medium (with the use of gravity field measurements) is constructed.  相似文献   

8.
On the basis of the dispersion relation of magnetotelluric response functions (MTRF), a filter coefficient algorithm has been made, with which the corresponding impedance phase data can be estimated using a set of apparent resistivity data. The tests of theoretical models and observed magnetotelluric (MT) data show that this algorithm is effective. Comparing the impedance phase estimated using dispersion relation with the observed phase, it can be checked whether the dispersion relation between the observed apparent resistivities and phase data was satisfied. The use of phase data corrected using the dispersion relation in the joint inversion for MT impedance is advantageous to obtain more reliable inversion results. The problems on the one-dimensional joint inversion for the (MT) apparent resistivity and the apparent resistivity of the frequency electromagnetic sounding (FEMS) with horizontal electric dipole, whose observed frequency bands are linked up each other, are studied. The observed data of two kinds of electromagnetic (EM) methods at two sites are used to inverse, the comparison with the drilling data show the results are more reliable. To supply the phase data of FEMS using the dispersion relation, for the apparent resistivity-phase data and impedance real part-imaginary part apparent resistivities of two kinds of EM methods the imitated MT joint inversions are made, and more similar results also are obtained. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 91–96, 1993. The projects sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

9.
大地电磁的多尺度反演   总被引:17,自引:6,他引:11       下载免费PDF全文
对于迭代方式的参数化反演方法,如何使反演结果稳定地收敛到整体极小仍是目前大地电磁(MT)反演中急需解决的问题.本文利用小波变换理论中的多尺度分析方法将大地电磁反问题分解为依赖于尺度变量的反问题序列,然后按尺度从大到小的次序依次求解,求解过程中前一个尺度反问题的解作为下一个尺度反问题的初始模型,直到来出对应于尺度为0的原反问题的解为止.该方法称为多尺度反演方法.数值试验和实际资料的反演结果表明,该方法可有效改善传统广义逆反演方法易陷入局部极小的弊端.  相似文献   

10.
Artificial neural networks were used to implement an automatic inversion of frequency‐domain airborne electromagnetic (AEM) data that do not require a priori information about the survey area. Two classes of model, i.e. homogeneous half‐space models and horizontally layered half‐space models with two layers, are used in this 1D inversion, and for each data point the selection of the class of 1D model is performed prior to the inversion, also using an artificial neural network. The proposed inversion method was tested in a survey area situated in Austria, northwest of Vienna in the Bohemian Massif. The results of the inversion were compared with the geological setting, logging results, and seismic and gravimetric measurements. This comparison shows a good correlation between the AEM models and the known geological and geophysical data.  相似文献   

11.
Inversion of DC resistivity data using neural networks   总被引:9,自引:0,他引:9  
The inversion of geoelectrical resistivity data is a difficult task due to its non-linear nature. In this work, the neural network (NN) approach is studied to solve both 1D and 2D resistivity inverse problems. The efficiency of a widespread, supervised training network, the back-propagation technique and its applicability to the resistivity problem, is investigated. Several NN paradigms have been tried on a basis of trial-and-error for two types of data set. In the 1D problem, the batch back-propagation paradigm was efficient while another paradigm, called resilient propagation, was used in the 2D problem. The network was trained with synthetic examples and tested on another set of synthetic data as well as on the field data. The neural network gave a result highly correlated with that of conventional serial algorithms. It proved to be a fast, accurate and objective method for depth and resistivity estimation of both 1D and 2D DC resistivity data. The main advantage of using NN for resistivity inversion is that once the network has been trained it can perform the inversion of any vertical electrical sounding data set very rapidly.  相似文献   

12.
Izvestiya, Physics of the Solid Earth - Abstract—The approximation neural network (ANN) method for solving the inverse geoelectric problem in the piecewise constant classes of media with the...  相似文献   

13.
Regularization is the most popular technique to overcome the null space of model parameters in geophysical inverse problems, and is implemented by including a constraint term as well as the data‐misfit term in the objective function being minimized. The weighting of the constraint term relative to the data‐fitting term is controlled by a regularization parameter, and its adjustment to obtain the best model has received much attention. The empirical Bayes approach discussed in this paper determines the optimum value of the regularization parameter from a given data set. The regularization term can be regarded as representing a priori information about the model parameters. The empirical Bayes approach and its more practical variant, Akaike's Bayesian Information Criterion, adjust the regularization parameter automatically in response to the level of data noise and to the suitability of the assumed a priori model information for the given data. When the noise level is high, the regularization parameter is made large, which means that the a priori information is emphasized. If the assumed a priori information is not suitable for the given data, the regularization parameter is made small. Both these behaviours are desirable characteristics for the regularized solutions of practical inverse problems. Four simple examples are presented to illustrate these characteristics for an underdetermined problem, a problem adopting an improper prior constraint and a problem having an unknown data variance, all frequently encountered geophysical inverse problems. Numerical experiments using Akaike's Bayesian Information Criterion for synthetic data provide results consistent with these characteristics. In addition, concerning the selection of an appropriate type of a priori model information, a comparison between four types of difference‐operator model – the zeroth‐, first‐, second‐ and third‐order difference‐operator models – suggests that the automatic determination of the optimum regularization parameter becomes more difficult with increasing order of the difference operators. Accordingly, taking the effect of data noise into account, it is better to employ the lower‐order difference‐operator models for inversions of noisy data.  相似文献   

14.
A new tool for two‐dimensional apparent‐resistivity data modelling and inversion is presented. The study is developed according to the idea that the best way to deal with ill‐posedness of geoelectrical inverse problems lies in constructing algorithms which allow a flexible control of the physical and mathematical elements involved in the resolution. The forward problem is solved through a finite‐difference algorithm, whose main features are a versatile user‐defined discretization of the domain and a new approach to the solution of the inverse Fourier transform. The inversion procedure is based on an iterative smoothness‐constrained least‐squares algorithm. As mentioned, the code is constructed to ensure flexibility in resolution. This is first achieved by starting the inversion from an arbitrarily defined model. In our approach, a Jacobian matrix is calculated at each iteration, using a generalization of Cohn's network sensitivity theorem. Another versatile feature is the issue of introducing a priori information about the solution. Regions of the domain can be constrained to vary between two limits (the lower and upper bounds) by using inequality constraints. A second possibility is to include the starting model in the objective function used to determine an improved estimate of the unknown parameters and to constrain the solution to the above model. Furthermore, the possibility either of defining a discretization of the domain that exactly fits the underground structures or of refining the mesh of the grid certainly leads to more accurate solutions. Control on the mathematical elements in the inversion algorithm is also allowed. The smoothness matrix can be modified in order to penalize roughness in any one direction. An empirical way of assigning the regularization parameter (damping) is defined, but the user can also decide to assign it manually at each iteration. An appropriate tool was constructed with the purpose of handling the inversion results, for example to correct reconstructed models and to check the effects of such changes on the calculated apparent resistivity. Tests on synthetic and real data, in particular in handling indeterminate cases, show that the flexible approach is a good way to build a detailed picture of the prospected area.  相似文献   

15.
当前震后建筑经济损失评估模型得到的震后建筑经济损失评估精确度、效率低,针对单一神经网络易产生局部极值等问题,对神经网络方法进行了改进,提出LM-BP神经网络在震后建筑损失评估模型中的应用。输入样本要素为影响震后建筑经济损失的5项因素,输出样本是震后建筑经济损失评估结果,在此基础上采用LM-BP神经网络将训练转化成最小二乘问题,结合LM算法重新定义隐含层节点数量,构建基于LM-BP的神经网络震后经济损失评估模型,采用该模型获取最优震后建筑经济损失评估结果。仿真实验结果表明,所设计的评估模型最小评估误差为0.1%,相比同类模型具有高精确度的优势,是一种可靠的震后建筑经济损失评估模型。  相似文献   

16.
An analytical solution of direct and inverse problems arising in the study of the internal gravity waves (IGWs) dynamic via recording of the Doppler frequency shift, is presented. The direct problem is to determine the response of the Doppler shift to IGWs in the region of the radio wave reflection point; the inverse problem is the determination of IGW parameters from data on the Doppler frequency shift. Solutions were obtained in an approximation of the isothermal ionosphere for the heights of the F-region. They are presented in a form convenient for their practical use and can have a wide range of applications, including the detection of soliton-like wave structures in the F-region of the ionosphere.  相似文献   

17.
This paper explores some of the newer techniques for acquiring and inverting electromagnetic data. Attention is confined primarily to the 2d magnetotelluric (MT) problem but the inverse methods are applicable to all areas of EM induction. The basis of the EMAP technique of Bostick is presented along with examples to illustrate the efficacy of that method in structural imaging and in overcoming the deleterious effects of near-surface distortions of the electric field. Reflectivity imaging methods and the application of seismic migration techniques to EM problems are also explored as imaging tools. Two new approaches to the solution of the inverse problem are presented. The AIM (Approximate Inverse Mapping) inversion of Oldenburg and Ellis uses a new way to estimate a perturbation in an iterative solution which does not involve linearization of the equations. The RRI (Rapid Relaxation Inverse) of Smith and Booker shows how approximate Fréchet derivatives and sequences of 1d inversions can be used to develop a practical inversion algorithm. The overview is structured to provide insight about the latest inversion techniques and also to touch upon most areas of the inverse problem that must be considered to carry out a practical inversion. These include model parameterization, methods of calculating first order sensitivities, and methods for setting up a linearized inversion.  相似文献   

18.
We consider the iterative numerical method for solving two-dimensional (2D) inverse problems of magnetotelluric sounding, which significantly reduces the computational burden of the inverse problem solution in the class of quasi-layered models. The idea of the method is to replace the operator of the direct 2D problem of calculating the low-frequency electromagnetic field in a quasi-layered medium by a quasi-one dimensional operator at each observation point. The method is applicable for solving the inverse problems of magnetotellurics with either the E- and H-polarized fields and in the case when the inverse problem is simultaneously solved using the impedance values for the fields with both polarizations. We describe the numerical method and present the examples of its application to the numerical solution of a number of model inverse problems of magnetotelluric sounding.  相似文献   

19.
反演问题的时空间分辨率或称时空分辨长度是评估模型精细程度的重要参数,决定了该模型应用的范围和价值,但是分辨长度估算却是比反演更复杂和麻烦的数学问题。除了层析成像中广泛利用理论模型恢复试验定性提取空间分辨长度外,通过求解分辨率矩阵可定量获得分辨长度。通过矩阵操作给出的分辨率矩阵包括三类:直接分辨率矩阵、正则化分辨率矩阵和混合分辨率矩阵。这三类矩阵包含了反演本身不同侧面的信息,因此在一个反演应用中,同时提供这三类分辨率矩阵可更全面地评估反演模型分辨率分布。最近An(2012)提出了从大量随机理论模型及其解中统计出分辨率矩阵的方法。这种分辨率矩阵是从模拟真实反演实验的输入和输出模型中通过反演得到的,因此这种分辨率矩阵更能反映整个反演所涉及到的更多因素和过程;同时由于这种分辨率矩阵计算过程无需进行矩阵操作且不依赖于具体正演和反演方法,因此可以被应用于更普遍的反演问题。实际应用证明统计分辨率分析方法适用于对二维和三维层析成像反演模型进行分辨率分析。  相似文献   

20.
针对测井资料约束下的地震反演具体问题,在假定反演目标和地震资料之间存在某种非线性映射的情况下,用神经网络逼近反演问题中的正演和反演过程,综合构成一个大网络系统,并根据地震反演的具体问题,给出该系统的能量函数.系统采用误差反传播法进行学习,从而实现用神经网络自适应地外推测井资料,有机地将神经网络与地震反演结合起来.对实际资料的测井速度外推结果表明,此法具有好的应用前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号