首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastic and thermoelastic constants of large single crystals of Ca2MgSi2O7 and Ca2ZnSi2O7 have been derived from ultrasonic resonance frequencies of plane-parallel plates and their shift upon variation of temperature, respectively. In addition, coefficients of thermal expansion and dielectric constants were determined. Both species possess quite similar properties. As observed in other isotypic magnesium and zinc compounds, the mean elastic stiffness and the deviation from the Cauchy relations are significantly larger in the zinc compound, due to a covalent contribution of the Zn–O bond. Positive thermoelastic constants T44 and T66 in Ca2MgSi2O7 allow temperature-independent ultrasonic generators and oscillators to be manufactured.  相似文献   

2.
Experiments at high pressures and temperatures were carried out (1) to investigate the crystal-chemical behaviour of Fe4O5–Mg2Fe2O5 solid solutions and (2) to explore the phase relations involving (Mg,Fe)2Fe2O5 (denoted as O5-phase) and Mg–Fe silicates. Multi-anvil experiments were performed at 11–20 GPa and 1100–1600 °C using different starting compositions including two that were Si-bearing. In Si-free experiments the O5-phase coexists with Fe2O3, hp-(Mg,Fe)Fe2O4, (Mg,Fe)3Fe4O9 or an unquenchable phase of different stoichiometry. Si-bearing experiments yielded phase assemblages consisting of the O5-phase together with olivine, wadsleyite or ringwoodite, majoritic garnet or Fe3+-bearing phase B. However, (Mg,Fe)2Fe2O5 does not incorporate Si. Electron microprobe analyses revealed that phase B incorporates significant amounts of Fe2+ and Fe3+ (at least ~?1.0 cations Fe per formula unit). Fe-L2,3-edge energy-loss near-edge structure spectra confirm the presence of ferric iron [Fe3+/Fetot?=?~?0.41(4)] and indicate substitution according to the following charge-balanced exchange: [4]Si4+?+?[6]Mg2+?=?2Fe3+. The ability to accommodate Fe2+ and Fe3+ makes this potential “water-storing” mineral interesting since such substitutions should enlarge its stability field. The thermodynamic properties of Mg2Fe2O5 have been refined, yielding H°1bar,298?=???1981.5 kJ mol??1. Solid solution is complete across the Fe4O5–Mg2Fe2O5 binary. Molar volume decreases essentially linearly with increasing Mg content, consistent with ideal mixing behaviour. The partitioning of Mg and Fe2+ with silicates indicates that (Mg,Fe)2Fe2O5 has a strong preference for Fe2+. Modelling of partitioning with olivine is consistent with the O5-phase exhibiting ideal mixing behaviour. Mg–Fe2+ partitioning between (Mg,Fe)2Fe2O5 and ringwoodite or wadsleyite is influenced by the presence of Fe3+ and OH incorporation in the silicate phases.  相似文献   

3.
During solidification of magma chambers as systems closed to chemical exchange with environs, the residual siliceous melt may follow a trend of rising, constant, or decreasing oxidation state, relative to reference buffers such as nickel?+?nickel oxide (NNO) or fayalite?+?magnetite?+?quartz. Titanomagnetite–hemoilmenite thermometry and oxybarometry on quenched volcanic suites yield temperature versus oxygen fugacity arrays of varied positive and negative slopes, the validity of which has been disputed for several years. We resolve the controversy by introducing a new recorder of magmatic redox evolution employing temperature- and redox-sensitive trace-element abundances in zircon. The zircon/melt partition coefficients of cerium and uranium vary oppositely in response to variation of magma redox state, but vary in tandem as temperature varies. Plots of U/Pr versus Ce4+/Ce3+ in zircon provide a robust test for change in oxidation state of the melt during zircon crystallisation from cooling magma, and the plots discriminate thermally induced from redox-induced variation of Ce4+/Ce3+ in zircon. Temperature-dependent lattice strain causes Ce4+/Ce3+ in zircon to increase strongly as zircon crystallises from cooling magma at constant Ce4+/Ce3+ ratio in the melt. We examine 19 zircon populations from igneous complexes in varied tectonic settings. Variation of zircon Ce4+/Ce3+ due to minor variation in melt oxidation state during crystallisation is resolvable in 11 cases but very subordinate to temperature dependence. In many zircon populations described in published literature, there is no resolvable change in redox state of the melt during tenfold variation of Ce4+/Ce3+ in zircons. Varied magmatic redox trends indicated by different slopes on plots of zircon U/Pr versus Ce4+/Ce3+ are corroborated by Fe–Ti-oxide-based T–?O2 trends of correspondingly varied slopes. Zircon and Fe–Ti-oxide compositions agree that exceptionally, H2O-rich arc magmas tend to follow a trend of rising oxidation state of the melt during late stages of fluid-saturated magmatic differentiation at upper-crustal pressures. We suggest that H2 and/or SO3 and/or Fe2+ loss from the melt to segregating fluid is largely responsible. Conversely, zircon and Fe–Ti-oxide compositions agree in indicating that H2O-poor magmas tend to follow a T–?O2 trend of decreasing oxidation state of the melt during late stages of magmatic differentiation at upper-crustal pressures, because the precipitating mineral assemblage has higher Fe3+/Fe2+ than coexisting rhyolitic melt. We present new evidence showing that the Fe–Ti-oxide oxybarometer calibration by Ghiorso and Evans (Am J Sci 308(9):957–1039, 2008) retrieves experimentally imposed values of ?O2 in laboratory syntheses of Fe–Ti-oxide pairs to a precision of ±?0.2 log unit, over a large experimental temperature range, without systematic bias up to at least log ?O2?≈?NNO?+?4.4. Their titanomagnetite–hemoilmenite geothermometer calibration has large systematic errors in application to Ti-poor oxides that precipitate from very oxidised magmas. A key outcome is validation of Fe–Ti-oxide-based values of melt TiO2 activity for use in Ti-in-zircon thermometry and Ti-in-quartz thermobarometry.  相似文献   

4.
The O2 3?-Y3+ center in fluorite-type structures (CaF2 and SrF2) has been investigated at the density functional theory (DFT) level using the CRYSTAL06 code. Our calculations were performed by means of the hybrid B3PW method in which the Hartree–Fock exchange is mixed with the DFT exchange functional, using Becke’s three parameter method, combined with the non-local correlation functionals by Perdew and Wang. Our calculations confirm the stability and the molecular character of the O2 3?-Y3+ center. The unpaired electron is shown to be almost exclusively localized on and equally distributed between the two oxygen atoms that are separated by a bond distance of 2.47 Å in CaF2 and 2.57 Å in SrF2. The calculated 17O and 19F hyperfine constants for of the O2 3?-Y3+ center are in good agreement with their corresponding experimental values reported by previous electron paramagnetic resonance and electron nuclear double resonance studies, while discrepancies are notable for the 89Y hyperfine constants.  相似文献   

5.
The solubility of Gd2Ti2O7 ceramic in acidic solutions (HCl and HClO4) was studied at 250°C and saturation vapor pressure within pH 2.5–5.2. The dissolution process occurs mainly via two reactions: 0.5 Gd2Ti2O7(cr) + 3H+ = Gd3+ + TiO2(cr) + 1.5 H2O at pH < 3 and 0.5Gd2Ti2O7(cr) + H+ + 0.5H2O = Gd(OH) 2 + TiO2(cr) at pH 3–5. The thermodynamic equilibrium constants were calculated at the 0.95 confidence level as log K (1) o = 4.12 ± 0.47; = ?0.97 ± 0.16 at 250°C. It was shown that Gd3+ undergoes hydrolysis in solutions with pH > 3, and the species Gd(OH) 2 + dominates up to at least pH 5. At pH < 3, Gd occurs in solutions as Gd3+. The second constant of Gd3+ hydrolysis was determined at 250°C as K o = ?5.09 ± 0.5, and the thermodynamic characteristics of the initial Gd2Ti2O7 solid phase were determined: S 298.15 o = 251.4 J/(mol K) and ΔfG 298.15 o = ?3630 ± 10 kJ/mol.  相似文献   

6.
Based on a study of samples found in the Khibiny (Mt. Rasvumchorr: the holotype) and Lovozero (Mts Alluaiv and Vavnbed) alkaline complexes on the Kola Peninsula, Russia, tinnunculite was approved by the IMA Commission on New Minerals, Nomenclature, and Classification as a valid mineral species (IMA no. 2015-02la) and, taking into account a revisory examination of the original material from burnt dumps of coal mines in the southern Urals, it was redefined as crystalline uric acid dihydrate (UAD), C5H4N4O3 · 2H2O. Tinnunculite is poultry manure mineralized in biogeochemical systems, which could be defined as “guano microdeposits.” The mineral occurs as prismatic or tabular crystals up to 0.01 × 0.1 × 0.2 mm in size and clusters of them, as well as crystalline or microglobular crusts. Tinnunculite is transparent or translucent, colorless, white, yellowish, reddish or pale lilac. Crystals show vitreous luster. The mineral is soft and brittle, with a distinct (010) cleavage. Dcalc = 1.68 g/cm3 (holotype). Tinnunculite is optically biaxial (–), α = 1.503(3), β = 1.712(3), γ = 1.74(1), 2Vobs = 40(10)°. The IR spectrum is given. The chemical composition of the holotype sample (electron microprobe data, content of H is calculated by UAD stoichiometry) is as follows, wt %: 37.5 О, 28.4 С, 27.0 N, 3.8 Hcalc, total 96.7. The empirical formula calculated on the basis of (C + N+ O) = 14 apfu is: C4.99H8N4.07O4.94. Tinnunculite is monoclinic, space group (by analogy with synthetic UAD) P21/c. The unit cell parameters of the holotype sample (single crystal XRD data) are a = 7.37(4), b = 6.326(16), c = 17.59(4) Å, β = 90(1)°, V = 820(5) Å3, Z = 4. The strongest reflections in the XRD pattern (d, Å–I[hkl]) are 8.82–84[002], 5.97–15[011], 5.63–24[102?, 102], 4.22–22[112], 3.24–27[114?,114], 3.18–100[210], 3.12–44[211?, 211], 2.576–14[024].  相似文献   

7.
Single-crystal electron paramagnetic resonance (EPR) spectra of a gem-quality jeremejevite, Al6B5O15(F, OH)3, from Cape Cross, Namibia, reveal an S = 1/2 hole center characterized by an 27Al hyperfine structure arising from interaction with two equivalent Al nuclei. Spin-Hamiltonian parameters obtained from single-crystal EPR spectra at 295 K are as follows: g 1 = 2.02899(1), g 2 = 2.02011(2), g 3 = 2.00595(1); A 1/g e β e  = −0.881(1) mT, A 2/g e β e  = −0.951(1) mT, and A 3/g e β e  = −0.972(2) mT, with the orientations of the g 3- and A 3-axes almost coaxial and perpendicular to the Al–O–Al plane; and those of the g 1- and A 1-axes approximately along the Al–Al and Al–OH directions, respectively. These results suggest that this aluminum-associated hole center represents hole trapping on a hydroxyl oxygen atom linked to two equivalent octahedral Al3+ ions, after the removal of the proton (i.e., a VIAl–OVIAl center). Periodic ab initio UHF and DFT calculations confirmed the experimental 27Al hyperfine coupling constants and directions, supporting the proposed structural model. The VIAl–OVIAl center in jeremejevite undergoes the onset of thermal decay at 300 °C and is completely bleached at 525 °C. These data obtained from the VIAl–OVIAl center in jeremejevite provide new insights into analogous centers that have been documented in several other minerals.  相似文献   

8.
Bright bands are observed along filaments in the He I 1083 nm line, while both bright and dark bands are observed along Hα 656.3 nm filaments. The range of brightness variations near He I filaments is 1.005–1.10 times the unperturbed brightness, with an average of 1.031 ± 0.01, while this range is 0.91–1.5 times the unperturbed brightness for Hα filaments. The physical state of the matter in these bands is investigated. Computations of the band brightness have been carried out for various chromospheric models, aimed at explaining the observed features of the bands. Two types of models are considered: with temperature or density variations in the upper chromosphere, and with temperature variations in the middle and lower chromosphere. In the first type of model, the brightness in the He I line is changed, but the Hα brightness is not. In the second type of model, only the Hα brightness is changed. Using the variations of the chromospheric parameters and both types of models, we obtained various combinations of band brightnesses in the He I line and in Hα. The brightnesses of regions were estimated by calculating the profiles of the He I and Hα lines in the corresponding models in a non-LTE approximation. A comparison of the observed and calculated quantities indicates that the enhancement in the brightness in the He I line is due to a decrease in temperature or density in the upper chromosphere (where the temperatures are about 10 000–24 000 K). The enhancement and dimming of the brightness in Hα are due to an increase or decrease of the temperature in the middle and lower chromosphere (where the temperatures are 6000–9000 K) by 800–1000 K. The dependence of the band brightness on distance from the center of the solar disk is also considered. The brightness in the He I line increases from the center to the limb by 2–4%. Computations of the center–limb brightness variaions correspond to the observed results.  相似文献   

9.
The results of isotope-geochemical studies of carbonates of different mineral types from manganese and host rocks of the Famennian manganiferous formation of Pai-Khoi are reported. Kutnahorite ores are characterized by δ13C values from–6.6 to 1.3‰ and δ18O from 20.0 to 27.4‰. Rhodonite–rhodochrosite rocks of the Silovayakha ore occurrence have δ13C from–5.2 to–2.9 and δ18O from 25.4 to 24.3‰. Mineralogically similar rocks of the Nadeiyakha ore occurrence show the lighter carbon and oxygen isotopic compositions: δ13C from–16.4 to–13.1 and δ18O from 24.8 to 22.5‰. Similar isotopic compositions were also obtained for rhodochrosite–kutnahorite rocks of this ore occurrence: δ13C from–13.0 to–10.4‰ and δ18O from 24.6 to 21.7‰. Siderorodochrosite ores differ in the lighter oxygen and carbon isotopic compositions: δ18O from 18.7 to 17.6‰ and δ13C from–10.2 to–9.3‰, respectively. In terms of the carbon and oxygen isotopic compositions, host rocks in general correspond to marine sedimentary carbonates. Geological-mineralogical and isotope data indicate that the formation of the manganese carbonates was related to the hydrothermal ore-bearing fluids with the light isotopic composition of oxygen and carbon dissolved in CO2. The isotopic features indicate an authigenic formation of manganese carbonates under different isotopegeochemical conditions.  相似文献   

10.
According to the compositions of the underground brine resources in the west of Sichuan Basin, solubilities of the ternary systems NaBr–Na2SO4–H2O and KBr–K2SO4–H2O were investigated by isothermal method at 348 K. The equilibrium solid phases, solubilities of salts, and densities of the solutions were determined. On the basis of the experimental data, the phase diagrams and the density-composition diagrams were plotted. In the two ternary systems, the phase diagrams consist of two univariant curves, one invariant point and two crystallization fields. Neither solid solution nor double salts were found. The equilibrium solid phases in the ternary system NaBr–Na2SO4–H2O are NaBr and Na2SO4, and those in the ternary system KBr–K2SO4–H2O are KBr and K2SO4. Using the solubilities data of the two ternary subsystems at 348 K, mixing ion-interaction parameters of Pitzer’s equation θxxx, Ψxxx and Ψxxx were fitted by multiple linear regression method. Based on the chemical model of Pitzer’s electrolyte solution theory, the solubilities of phase equilibria in the two ternary systems NaBr–Na2SO4–H2O and KBr–K2SO4–H2O were calculated with corresponding parameters. The calculation diagrams were plotted. The results showed that the calculated values have a good agreement with experimental data.  相似文献   

11.
The Rb–Sr and 147Sm–143Nd age data obtained for sheeted dolerite dykes and rocks of the Platinum Belt of the Urals within the Tagil segment of the paleoceanic spreading structure (Middle Urals) are discussed. The study of the Rb–Sr isotope systematics of gabbro allowed us to reveal errochronous dependencies, which yielded ages of 415 and 345 Ma at (87Sr/86Sr)0 = 0.70385 ± 0.00068 and 0.7029 ± 0.0010, correspondingly. The 147Sm–143Nd isotope age data demonstrate a specific coincidence of the chronometric ages of the sheeted dolerite dyke complex (426 ± 54, 426 ± 34, and 424 ± 19 Ma) and gabbro from the Revda gabbro–ultramafic massif (431 ± 27 Ma) and from screens between dolerite dykes in the sheeted dyke complex (427 ± 32 Ma, 429 ± 26 Ma). The proximity of the 147Sm–143Nd ages of gabbro and dolerite can be explained by the thermal effect of the basaltic melt, which is the protolith for the dyke complex, on the hosting gabbro.  相似文献   

12.
In situ high-pressure synchrotron X-ray diffraction and Raman spectroscopic studies of orthorhombic CaFe2O4-type β-CaCr2O4 chromite were carried out up to 16.2 and 32.0 GPa at room temperature using multi-anvil apparatus and diamond anvil cell, respectively. No phase transition was observed in this study. Fitting a third-order Birch–Murnaghan equation of state to the P–V data yields a zero-pressure volume of V 0 = 286.8(1) Å3, an isothermal bulk modulus of K 0 = 183(5) GPa and the first pressure derivative of isothermal bulk modulus K 0′ = 4.1(8). Analyses of axial compressibilities show anisotropic elasticity for β-CaCr2O4 since the a-axis is more compressible than the b- and c-axis. Based on the obtained and previous results, the compressibility of several CaFe2O4-type phases was compared. The high-pressure Raman spectra of β-CaCr2O4 were analyzed to determine the pressure dependences and mode Grüneisen parameters of Raman-active bands. The thermal Grüneisen parameter of β-CaCr2O4 is determined to be 0.93(2), which is smaller than those of CaFe2O4-type CaAl2O4 and MgAl2O4.  相似文献   

13.
Calcioolivine has been included into the MDI mineral database in the list of grandfathered minerals. Its history, together with related artificial compounds, is extremely complex: various minerals and compounds received this name, including natural orthorhombic Ca orthosilicate. In this paper, the crystal structure and properties of natural calcioolivine are described for the first time. The new mineral has been found at Mt. Lakargi, Upper Chegem Plateau, the northern Caucasus, Kabarda-Balkaria Republic, Russia. It has been identified in skarnified, primary carbonate xenoliths entrained by middle to late Pliocene silicic ignimbrites of the Upper Chegem caldera. These xenoliths of a few centimeters to a few meters in size are located close to the volcanic vent. Calcioolivine rims relics of larnite and occurs as relict grains among crystals of spurrite, rondorfite, wadalite or secondary hillebrandite, afwillite, thaumasite, and ettringite. Hillebrandite is the major product of alteration of calcioolivine; larnite is relatively more resistant to low-temperature alteration. Spurrite, larnite, tilleyite, kilchoanite, cuspidine, wadalite, rondorfite, reinhardbraunsite, lakargiite (CaZrO3), members of ellestadite series, afwillite, ettringite, katoite, and thaumasite are associated minerals. It is inferred that calcioolivine has been produced as a result of interaction of host carbonate rocks in xenoliths with volcanic lava and gases during eruption. The name calcioolivine was approved by the Commission on New Minerals and Mineral Names, International Mineralogical Association, September 6, 2007 (no. 07-B).  相似文献   

14.
Equilibria in the model melt (NaAlSi3O8(80) + FeO(20))-C-H2 system were experimentally studied at ΔlogfO2(IW) from −2.2 to −5.6, a pressure of 1.5 GPa, and a temperature of 1400°C. The experiments were conducted in a piston-cylinder apparatus using Pt capsules. The low fO2 values were imposed during the experiments by adding 2, 5, and 7 wt % of finely dispersed SiC to NaAlSi3O8(80) + FeO(20) powder. The experimental products were investigated by electron microprobe analysis and Raman spectroscopy. The investigations showed that melting at 1.5 GPa and 1400°C in the stability field of a metallic iron phase produces silicate liquids containing both oxidized and reduced H and C species. Carbon and hydrogen are dissolved in the melt as C-H (CH4) complexes. In addition, OH groups, molecular hydrogen H2, and molecular water H2O were observed in the melts. The proportions of dissolved C and H species strongly depend on oxygen fugacity. With decreasing fO2, the content of O-H species decreases and that of H-C species increases. The obtained data and previous results (Kadik et al., 2004, 2006) allow us to suppose a fundamental change in the character of magmatic transfer of C-O-H components during the evolution of the redox state of the Earth’s mantle in geologic time toward higher fO2 in its interiors.  相似文献   

15.
A new pyroxene with formula (Na0.86Mg0.14)(Mg0.57Ti0.43)Si2O6, synthesized in a high-pressure toroidal ‘anvil-with-hole’ apparatus at P = 7 GPa and T = 1700 °C, was characterized by X-ray single-crystal diffraction and Raman spectroscopy. The compound was found to be monoclinic (R1 = 2.56 %), space group C2/c, with lattice parameters a = 9.687(2), b = 8.814(1), c = 5.290(1) Å, β = 107.853(2)°, V = 430.08(1) Å3. The coexistence of Mg and Ti4+ at the M1 site does not induce strong modifications either to the M1 site or to the adjacent M2 site. The Raman spectrum of synthetic Na–Ti-pyroxene was obtained for the first time and compared with that of Mg2Si2O6 (with very low concentrations of Na and Ti). The structural characterization of the Na–Ti–Mg-pyroxene is important, because the study of its thermodynamic constants provides new constraints on thermobarometry of the upper mantle assemblages.  相似文献   

16.
Reactions and partial melting of peraluminous rocks in the presence of H2O-CO2–salt fluids under parameters of granulite-facies metamorphism were modeled in experiments on interaction between orthopyroxene–cordierite–biotite–plagioclase–quartz metapelite with H2O, H2O-CO2, H2O-CO2-NaCl, and H2O-CO2-KCl fluids at 600 MPa and 850°C. Rock melting in the presence of H2O and equimolar H2O-CO2 fluids generates peraluminous (A/CNK1 > 1.1) melts whose composition corresponds to magnesian calcic or calc–alkaline S-type granitoids. The melts are associated with peritectic phases: magnesian spinel and orthopyroxene containing up to 9 wt % Al2O3. In the presence of H2O-CO2-NaCl fluid, cordierite and orthopyroxene are replaced by the association of K-Na biotite, Na-bearing gedrite, spinel, and albite. The Na2O concentrations in the biotite and gedrite are functions of the NaCl concentrations in the starting fluid. Fluids of the composition H2O-CO2-KCl induce cordierite replacement by biotite with corundum and spinel and by these phases in association with potassium feldspar at X KCl = 0.02 in the fluid. When replaced by these phases, cordierite is excluded from the melting reactions, and the overall melting of the metapelite is controlled by peritectic reactions of biotite and orthopyroxene with plagioclase and quartz. These reactions produce such minerals atypical of metapelites as Ca-Na amphibole and clinopyroxene. The compositions of melts derived in the presence of salt-bearing fluids are shifted toward the region with A/CNK < 1.1, as is typical of so-called peraluminous granites of type I. An increase in the concentrations of salts in the fluids leads to depletion of the melts in Al2O3 and CaO and enrichment in alkalis. These relations suggest that the protoliths of I-type peraluminous granites might have been metapelites that were melted when interacting with H2O-CO2-salt fluids. The compositions of the melts can evolve from those with A/CNK > 1.1 (typical of S-type granites) toward those with A/CNK = 1.0–1.1 in response to an increase in the concentrations of alkali salts in the fluids within a few mole percent. Our experiments demonstrate that the origin of new mineral assemblages in metapelite in equilibrium with H2O-CO2-salt fluids is controlled by the activities of alkaline components, while the H2O and CO2 activities play subordinate roles. This conclusion is consistent with the results obtained by simulating metapelite mineral assemblages by Gibbs free energy minimization (using the PERPE_X software), as shown in log(\({a_{{H_2}O}}\))–log(\({a_{N{a_2}O}}\)) and log(\({a_{{H_2}O}}\))–log(\({a_{{K_2}O}}\)) diagrams.  相似文献   

17.
The paper reports detailed data on phlogopite from kimberlite of three facies types in the Arkhangelsk Diamondiferous Province (ADP): (i) massive magmatic kimberlite (Ermakovskaya-7 Pipe), (ii) transitional type between massive volcaniclastic and magmatic kimberlite (Grib Pipe), and (iii) volcanic kimberlite (Karpinskii-1 and Karpinskii-2 pipes). Kimberlite from the Ermakovskaya-7 Pipe contains only groundmass phlogopite. Kimberlite from the Grib Pipe contains a number of phlogopite populations: megacrysts, macrocrysts, matrix phlogopite, and this mineral in xenoliths. Phlogopite macrocrysts and matrix phlogopite define a single compositional trend reflecting the evolution of the kimberlite melt. The composition points of phlogopite from the xenoliths lie on a single crystallization trend, i.e., the mineral also crystallized from kimberlite melt, which likely actively metasomatized the host rocks from which the xenoliths were captured. Phlogopite from volcaniclastic kimberlite from the Karpinskii-1 and Karpinskii-2 pipes does not show either any clearly distinct petrographic setting or compositional differentiation. The kimberlite was dated by the Rb–Sr technique on phlogopite and additionally by the 40Ar/39Ar method. Because it is highly probable that phlogopite from all pipes crystallized from kimberlite melt, the crystallization age of the kimberlite can be defined as 376 ± 3 Ma for the Grib Pipe, 380 ± 2 Ma for the Karpinskii-1 pipe, 375 ± 2 Ma for the Karpinskii-2 Pipe, and 377 ± 0.4 Ma for the Ermakovskaya-7 Pipe. The age of the pipes coincides within the error and suggests that the melts of the pipes were emplaced almost simultaneously. Our geochronologic data on kimberlite emplacement in ADP lie within the range of 380 ± 2 to 375 ± Ma and coincide with most age values for Devonian alkaline–ultramafic complexes in the Kola Province: 379 ± 5 Ma; Arzamastsev and Wu, 2014). These data indicate that the kimberlite was formed during the early evolution of the Kola Province, when alkaline–ultramafic complexes (including those with carbonatite) were emplaced.  相似文献   

18.
The radiation sensitivity, time stability and optical sensitivity of [Si45−] paramagnetic centers in natural zircon crystals, particularly those from the Late Neopleistocenic tuff of the Elbrus Volcano, have been studied. Optical bleaching was shown to result in the recombination of [Si45−] centers, while the concentration of centers increases in the absence of light due to the internal radiation background. The data obtained show the infeasibility of using [Si45−] centers in zircons as paleodosimeters in conventional dating methods using electron paramagnetic resonance (EPR) spectroscopy. New specific techniques need to be developed for EPR dating of zircons.  相似文献   

19.
The MgO and P2O5-promoted γ-Al2O3 supports with alkaline and acidic natures, respectively, were prepared, impregnated with Mo atoms, and compared for dibenzothiophene (DBT) hydrodesulfurization (HDS) reaction. Ultraviolet spectroscopy and the principal component analysis were used to identify the impact of the supports on the reaction pathways. The catalysts were characterized by BET surface analysis, X-ray diffraction, temperature-programmed reduction, Fourier transform infrared, and X-ray photoelectron spectroscopy. The γ-Al2O3-supported catalyst favors the hydrogenation pathway relative to the MgO-supported catalyst, which facilitates the direct desulfurization route. The different performance was attributed to the dissimilar Mo phases that emerged during the activation procedure. The activation under sulfo-reductive condition changed the Mo atoms on γ-Al2O3 support into the sulfide phase while extra oxidation took place for the MgO-supported catalyst. The migration and consumption of loosely bonded bulk oxygen atoms with under-coordinated Mo atoms on the MgO support were introduced as a possible reason for such extra oxidation. DFT calculations predicted an interaction between the Mo/MgO catalyst and DBT via the electron donation from the catalyst oxygen atoms to the aromatic rings, resulting in weakening and breaking of the C–S bonds. In spite of the higher resistance of the MgO-supported catalyst toward coking and its superior activity, its lower hydrogenation capability suggested using a dual-function catalyst. Accordingly, two catalysts were mixed and the synergism was observed in the HDS reaction of thiophene.  相似文献   

20.
This work reports the results of lithological and isotopic study of carbonate rocks from the Pechishchi stratotype section (Kazan) and three adjacent sections of Kazanian rocks of the Volga-Vyatka region at the eastern Russian Platform. These sections were recovered by the Kremeshki, Popovtsevo, and Chimbulat quarries (near the town of Sovetsk, southeastern Kirov district). Lithological features and wide variations of δ13C (from −6.0 to 6.8‰) and δ18 O (from 22.9 to 33.4 ‰) indicate that the rocks were formed in a shallow-marine basin with rapidly varying conditions of sedimentation which characterize different facies (and/or paleoecological) zones: lagoonal, supralittoral, littoral, shoal. They also suggest processes of postsedimentary alteration (mainly, under supergene conditions). Numerous short-term hiatuses are also recorded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号