首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate petrologic and physical aspects of melt extraction on the parent asteroid of the ureilite meteorites (UPB). We first develop a petrologic model for simultaneous melting and smelting (reduction of FeO by C) at various depths. For a model starting composition, determined from petrologic constraints to have been CV-like except for elevated Ca/Al (2.5 × CI), we determine (1) degree of melting, (2) the evolution of mg, (3) production of CO + CO2 gas and (4) the evolution of mineralogy in the residue as a function of temperature and pressure. We then use these relationships to examine implications of fractional vs. batch melt extraction.In the shallowest source regions (∼30 bars), melting and smelting begin simultaneously at ∼1050 °C, so that mg and the abundance of low-Ca pyroxene (initially pigeonite, ultimately pigeonite + orthopyroxene) begin to increase immediately. However, in the deepest source regions (∼100 bars), smelting does not begin until ∼1200 °C, so that mg begins to increase and low-Ca pyroxene (pigeonite) appears only after ∼21% melting. The final residues in these two cases, obtained just after the demise of augite, match the end-members of the ureilite mg range (∼94-76) in pyroxene abundance and type. In all source regions, production of CO + CO2 by smelting varies over the course of melting. The onset of smelting results in a burst of gas production and very high incremental gas/melt ratios (up to ∼2.5 by mass); after a few % (s)melting, however, these values drastically decline (to <0.05 in the final increments).Physical modelling based on these relationships indicates that melts would begin to migrate upwards after only ∼1-2% melting, and thereafter would migrate continuously (fractionally) and rapidly (reaching the surface in < a year) in a network of veins/dikes. All melts produced during the smelting stage in each source region have gas contents sufficient to cause them to erupt explosively and be lost. However, since in all but the shallowest source regions part of the melting sequence occurs without smelting, fractional melting implies that a significant fraction of UPB melts may have erupted more placidly to form a thin crust (∼3.3 km thick for a 100 km radius body).Our calculations suggest that melt extraction was so rapid that equilibrium trace element partitioning may not have been attained. We present a model for disequilibrium fractional melting (in which REE partitioning is limited by diffusion) on the UPB, and demonstrate that it produces a good match to the ureilite data. The disequilibrium model may also apply to trace siderophile elements, and might help explain the “overabundance” of these elements in ureilites relative to predictions from the smelting model.Our results suggest that melt extraction on the UPB was a rapid, fractional process, which can explain the preservation of a primitive oxygen isotopic signature on the UPB.  相似文献   

2.
On October 7, 2008, a small asteroid named 2008 TC3 was detected in space about 19 h prior to its impact on Earth. Numerous world-wide observations of the object while still in space allowed a very precise determination of its impact area: the Nubian Desert of northern Sudan, Africa. The asteroid had a pre-atmospheric diameter of ∼4 m; its weight is reported with values between ∼8 and 83 t, and the bulk density with ∼2–3 g/cm3, translating into a bulk porosity in the range of ∼20–50%. Several dedicated field campaigns in the predicted strewn field resulted in the recovery of more than 700 (monolithological) meteorite fragments with a total weight of ∼10.5 kg. These meteorites were collectively named “Almahata Sitta”, after the nearby train station 6, and initially classified as an anomalous polymict ureilite. Further work, however, showed that Almahata Sitta is not only a ureilite but a complex polymict breccia containing chemically and texturally highly variable meteorite fragments, including different ureilites, a ureilite-related andesite, metal-sulfide assemblages related to ureilites, and various chondrite classes (enstatite, ordinary, carbonaceous, Rumuruti-like). It was shown that that chondrites and ureilites derive from one parent body, i.e., asteroid 2008 TC3, making this object, in combination with the remotely sensed physical parameters, a loosely aggregated, rubble-pile-like object. Detailed examinations have been conducted and mineral-chemical data for 110 samples have been collected, but more work on the remaining samples is mandatory.  相似文献   

3.
Metal segregation and silicate melting on asteroids are the most incisive differentiation events in the early evolution of planetary bodies. The timing of these events can be constrained using the short-lived 182Hf-182W radionuclide system. Here we present new 182Hf-182W data for major types of primitive achondrites including acapulcoites, winonaites and one lodranite. These meteorites are of particular interest because they show only limited evidence for partial melting of silicates and are therefore intermediate between chondrites and achondrites.For acapulcoites we derived a 182Hf-182W age of ΔtCAI = 4.1 +1.2/−1.1 Ma. A model age for winonaite separates calculated from the intercept of the isochron defines an age of ΔtCAI = 4.8 +3.1/−2.6 Ma (assuming a bulk Hf/W ratio of ∼1.2). Both ages most likely define primary magmatic events on the respective parent bodies, such as melting of metal, although metal stayed in place and did not segregate to form a core. A later thermal event is responsible for resetting of the winonaite isochron, yielding an age of ΔtCAI = 14.3 +2.7/−2.2 Ma, significantly younger than the model age. Assuming a co-genetic relationship between winonaites and silicates present in IAB iron meteorites (based on oxygen isotope composition) and including data by Schulz et al. (2009), a common parent body chronology can be established. Magmatic activity occurred between ∼1.5 and 5 Ma after CAIs. More than 5 Ma later, intensive thermal metamorphism has redistributed Hf-W. Average cooling rates calculated for the winonaite/IAB parent asteroid range between ∼35 and ∼4 K/Ma, most likely reflecting different burial depths. Cooling rates obtained for acapulcoites were ∼40 K/Ma to ∼720 K and then ∼3 K/Ma to ∼550 K.Accretion and subsequent magmatism on the acapulcoite parent body occurred slightly later if compared to most achondrite parent bodies (e.g., angrites, ureilites and eucrites), in this case supporting the concept of an inverse correlation between accretion-age of asteroids and intensity of heating in their interiors as expected from heating by 26Al and 60Fe decay. However, the early accretion of the parent asteroid of primitive IAB silicates (∼1.0 Ma after CAIs; Schulz et al., 2009) and the possibly impact-induced melting-history of winonaites show that this concept is too simplistic. Parent body size, impact-driven melting as well as heat-insulating regolith cover also need to be considered in the early history of asteroid differentiation.  相似文献   

4.
The abundances of the highly siderophile elements (HSE) Ru, Pd, Re, Os, Ir, and Pt were determined by isotope dilution mass spectrometry for 22 ureilite bulk rock samples, including monomict, augite-bearing, and polymict lithologies. This report adds significantly to the quantity of available Pt and Pd abundances in ureilites, as these elements were rarely determined in previous neutron activation studies. The CI-normalized HSE abundance patterns of all ureilites analyzed here except ALHA 81101 show marked depletions in the more volatile Pd, with CI chondrite-normalized Pd/Os ratios (excluding ALHA 81101) averaging 0.19 ± 0.23 (2σ). This value is too low to be directly derived from any known chondrite group. Instead, the HSE bulk rock abundances and HSE interelement ratios in ureilites can be understood as physical mixtures of two end member compositions. One component, best represented by sample ALHA 78019, is characterized by superchondritic abundances of refractory HSE (RHSE—Ru, Re, Os, Ir, and Pt), but subchondritic Pd/RHSE, and is consistent with residual metal after extraction of a S-bearing metallic partial melt from carbonaceous chondrite-like precursor materials. The other component, best represented by sample ALHA 81101, is RHSE-poor and has HSE abundances in chondritic proportions. The genesis of the second component is unclear. It could represent regions within the ureilite parent body (UPB), in which metallic phases were completely molten and partially drained, or it might represent chondritic contamination that was added during disruption and brecciation of the UPB. Removal of carbon-rich melts does not seem to play an important role in ureilite petrogenesis. Removal of such melts would quickly deplete the ureilite precursors in Re/Os and As/Au, which is inconsistent with measured osmium isotope abundances, and also with literature As/Au data for the ureilites. Removal of 26Al during silicate melting may have acted as a switch that turned off further metal extraction from ureilite source regions.  相似文献   

5.
Ureilites are ultramafic achondrites that exhibit heterogeneity in mg# and oxygen isotope ratios between different meteorites. Polymict ureilites represent near-surface material of the ureilite parent asteroid(s). Electron microprobe analyses of >500 olivine and pyroxene clasts in several polymict ureilites reveal a statistically identical range of compositions to that shown by unbrecciated ureilites, suggesting derivation from a single parent asteroid. Many ureilitic clasts have identical compositions to the anomalously high Mn/Mg olivines and pyroxenes from the Hughes 009 unbrecciated ureilite (here termed the “Hughes cluster”). Some polymict samples also contain lithic clasts derived from oxidized impactors. The presence of several common distinctive lithologies within polymict ureilites is additional evidence that ureilites were derived from a single parent asteroid.In situ oxygen three isotope analyses were made on individual ureilite minerals and lithic clasts, using a secondary ion mass spectrometer (SIMS) with precision typically better than 0.2-0.4‰ (2SD) for δ18O and δ17O. Oxygen isotope ratios of ureilitic clasts fall on a narrow trend along the CCAM line, covering the range for unbrecciated ureilites, and show a good anti-correlation with mineral mg#. SIMS analysis identifies one ferroan lithic clast as an R-chondrite, while a second ferroan clast is unlike any known meteorite. An exotic enstatite grain is derived from an enstatite chondrite or aubrite, and another pyroxene grain with Δ17O of −0.4 ± 0.2‰ is unrelated to any known meteorite type.Ureilitic olivine clasts with mg#s < 85 are much more common than those with mg# > 85 which include the melt-inclusion-bearing “Hughes cluster” ureilites. Thus melt was present in regions of the parent ureilite asteroid with a bulk mg# > 85 when the asteroid was disrupted by impact, giving rise to two types of ureilites: common ferroan ones that were residual after melting and less common magnesian ones that were still partially molten when disruption occurred. One or more daughter asteroids re-accreted from the remnants of the mantle of the proto-ureilite asteroid. Polymict ureilite meteorites represent regolith that subsequently formed on the surface of a daughter asteroid, including impact-derived material from at least six different meteoritic sources.  相似文献   

6.
Polymict ureilites DaG 164/165, DaG 319, DaG 665, and EET 83309 are regolith breccias composed mainly of monomict ureilite-like material, but containing ∼2 vol% of feldspathic components. We characterized 171 feldspathic clasts in these meteorites in terms of texture, mineralogy, and mineral compositions. Based on this characterization we identified three populations of clasts, each of which appears to represent a common igneous (generally basaltic) lithology and whose mafic minerals show a normal igneous fractionation trend of near-constant Fe/Mn ratio over a range of Fe/Mg ratios that extend to much higher values than those in monomict ureilites. The melts represented by these populations are unlikely to be impact melts, because the ubiquitous presence of carbon in polymict ureilites (the regolith of the ureilite parent body) implies that impact melts would have crystallized under conditions of carbon redox control and therefore have highly magnesian mafic mineral compositions with constant Mn/Mg ratio. Therefore, these melts appear to be indigenous products of igneous differentiation on the ureilite parent body (UPB), complementary to the olivine-pigeonite residues represented by the majority of monomict ureilites.The most abundant population is characterized by albitic plagioclase in association with pyroxenes, phosphates, ilmenite, silica, and incompatible-element enriched glass. Model calculations suggest that it formed by extensive fractional crystallization of the earliest melt(s) of precursor materials from which the most magnesian (shallowest) olivine-pigeonite ureilites formed. A less abundant population, characterized by labradoritic plagioclase, may have formed from melts complementary to more ferroan olivine-pigeonite ureilites, and derived from deeper in the UPB. The third population, characterized by the presence of olivine and augite, could only have formed from melts produced at greater depths in the UPB than the olivine-pigeonite ureilites. Many other feldspathic clasts cannot be positively associated with any of these three populations, because their mafic mineral compositions exhibit carbon redox control. However, they may be products of early crystallization of basaltic melts produced on the UPB, before carbon was exhausted by reduction.Partial melting on the ureilite parent body was a fractional (or incremental) process. Melts were produced early in UPB history, and most likely extracted rapidly, thus preserving primitive chemical and oxygen isotopic signatures in the residues.  相似文献   

7.
A characteristic feature of ureilite meteorites is reduction of FeO. But the reduction is usually confined to the rims of olivine. In the LAR 04315, LAP 03587 and Almahata Sitta ureilites, pyroxene was extensively reduced by impact smelting. In LAR 04315, the impact caused nearly all of the original pigeonite to melt or otherwise become sufficiently structurally compromised to allow smelting, and yet a minor proportion of the pyroxene escaped smelting and survived with its original composition (En74.1Wo10.2). Olivine mosaicism confirms that LAR 04315 experienced a major shock event. The smelted pyroxenes also show a distinctive patchiness in their interference colors (although each grain’s basic optical continuity, often including twinning, is still discernible). They also have reduced compositions, are ubiquitously porous (∼15%), and contain sprinklings of Fe-metal and felsic glass. For the most part the olivine underwent only very slight reduction. Much of the (small) pyroxene component of LAP 03587 shows the same oddly porous texture. LAR 04315 also contains large traces of silica and felsic glass (with a typical composition of, in wt%, 61 SiO2, 23 Al2O3, 11 CaO, 3.7 Na2O) glass; these two phases together form selvages that line the walls of many of the largest voids in the rock. Silica is a by-product of pyroxene smelting. The felsic glass probably derives largely from interstitial basaltic melt that predated the impact. However, the comparatively stiff surrounding/included silica may have promoted unusually high melt retention within LAR 04315 through the smelting episode (one aspect of which was a major stream-out, through the same large voids, of COx gas). The impact-smelted pyroxene of LAP 03587 is enigmatic because this ureilite also features little-shocked euhedral graphite laths and no olivine mosaicism. The fine-grained ureilitic component of Almahata Sitta appears to have likewise formed by impact smelting, but with more extensive melting of pyroxene (especially a Ca-rich pyroxene component), more pulverization and melting of olivine, and more displacement of both. However, in places the original coarse-equant ureilite texture is still discernible in relict form. Ordinarily, an impact shock melts olivine before, or at least no later than, pyroxene. But in the case of LAR 04315 and LAP 03587, the great shock event evidently occurred when the material was already anatectic or very nearly so; and thus the difference in melting temperature between pyroxene and olivine, ∼300 degrees lower for pyroxene, was decisive. If literature inferences of extremely fast cooling rates, implying shallow burial depths, are accurate, the proportion of COx gas generated by ureilite smelting exceeded by a very large factor (of order 103 but possibly much greater) the volume represented as porosity in the final ureilites. The outflow of so much gas may have, by near-surface explosive expansion and jetting, enhanced the thoroughness of the impact-triggered catastrophic impact disruption of the parent asteroid.  相似文献   

8.
Silicate-bearing iron meteorites differ from other iron meteorites in containing variable amounts of silicates, ranging from minor to stony-iron proportions (∼50%). These irons provide important constraints on the evolution of planetesimals and asteroids, especially with regard to the nature of metal–silicate separation and mixing. I present a review and synthesis of available data, including a compilation and interpretation of host metal trace-element compositions, oxygen-isotope compositions, textures, mineralogy, phase chemistries, and bulk compositions of silicate portions, ages of silicate and metal portions, and thermal histories. Case studies for the petrogeneses of igneous silicate lithologies from different groups are provided. Silicate-bearing irons were formed on multiple parent bodies under different conditions. The IAB/IIICD irons have silicates that are mainly chondritic in composition, but include some igneous lithologies, and were derived from a volatile-rich asteroid that underwent small amounts of silicate partial melting but larger amounts of metallic melting. A large proportion of IIE irons contain fractionated alkali-silica-rich inclusions formed as partial melts of chondrite, although other IIE irons have silicates of chondritic composition. The IIEs were derived from an H-chondrite-like asteroid that experienced more significant melting than the IAB asteroid. The two stony-iron IVAs were derived from an extensively melted and apparently chemically processed L or LL-like asteroid that also produced a metallic core. Ungrouped silicate-bearing irons were derived from seven additional asteroids. Hf–W age data imply that metal–silicate separation occurred within 0–10 Ma of CAI formation for these irons, suggesting internal heating by 26Al. Chronometers were partly re-set at later times, mainly earlier for the IABs and later for the IIEs, including one late (3.60 ± 0.15 Ga) strong impact that affected the “young silicate” IIEs Watson (unfractionated silicate, and probable impact melt), Netschaëvo (unfractionated, and metamorphosed), and Kodaikanal (fractionated). Kodaikanal probably did not undergo differentiation in this late impact, but the similar ages of the “young silicate” IIEs imply that relatively undifferentiated and differentiated materials co-existed on the same asteroid. The thermal histories and petrogeneses of fractionated IIE irons and IVA stony irons are best accommodated by a model of disruption and reassembly of partly molten asteroids.  相似文献   

9.
Studies of meteorites are based mostly on samples that fell to Earth in the recent past (i.e., a few million years at most). The Morokweng LL-chondrite meteorite is a particularly interesting specimen as its fall is much older (ca. 145 Ma) than most other meteorites and because it is the only macro-meteorite clast (width intersected in drill core: 25 cm) found in a melt sheet of a large impact structure. When applied to the Morokweng meteorite, 40Ar/39Ar thermochronology provides an opportunity to study (1) effects associated with pre-impact and post-impact processes and (2) collision events within a potentially distinct and as yet unsampled asteroid population.A single multi-grain aliquot yielded an inverse isochron age of 625 ± 163 Ma. This suggests a major in-space collisional event at this time. We have modeled the diffusion of 40Ar within the meteorite and plagioclase during and after the ∼145 Ma impact on Earth to tentatively explain why pre-terrestrial impact 40Ar has been preserved within the plagioclase grains. The ∼145 Ma terrestrial impact age is recorded in the low-retentivity sites of the meteorite plagioclase grains that yielded a composite inverse isochron age at 141 ± 15 Ma and thus, confirms that age information about major (terrestrial or extraterrestrial) impacts can be recorded in the K-rich mineral phases of a meteorite and measured by the 40Ar/39Ar technique. More studies on fossil meteorites need to be carried out to understand if the rough 0.6 Ga age proposed here corresponds to major LL-chondrite asteroid population destructions or, rather, to an isolated collision event.  相似文献   

10.
Spatially resolved argon isotope measurements have been performed on neutron-irradiated samples of two Martian basalts (Los Angeles and Zagami) and two Martian olivine-phyric basalts (Dar al Gani (DaG) 476 and North West Africa (NWA) 1068). With a ∼50 μm diameter focused infrared laser beam, it has been possible to distinguish between argon isotopic signatures from host rock (matrix) minerals and localized shock melt products (pockets and veins). The concentrations of argon in analyzed phases from all four meteorites have been quantified using the measured J values, 40Ar/39Ar ratios and K2O wt% in each phase. Melt pockets contain, on average, 10 times more gas (7-24 ppb 40Ar) than shock veins and matrix minerals (0.3-3 ppb 40Ar). The 40Ar/36Ar ratio of the Martian atmosphere, estimated from melt pocket argon extractions corrected for cosmogenic 36Ar, is: Los Angeles (∼1852), Zagami (∼1744) and NWA 1068 (∼1403). In addition, Los Angeles shows evidence for variable mixing of two distinct trapped noble gas reservoirs: (1) Martian atmosphere in melt pockets, and (2) a trapped component, possibly Martian interior (40Ar/36Ar: 480-490) in matrix minerals. Average apparent 40Ar/39Ar ages determined for matrix minerals in the four analyzed meteorites are 1290 Ma (Los Angeles), 692 Ma (Zagami), 515 Ma (NWA 1068) and 1427 Ma (DaG 476). These 40Ar/39Ar apparent ages are substantially older than the ∼170-474 Ma radiometric ages given by other isotope dating techniques and reveal the presence of trapped 40Ar. Cosmic ray exposure (CRE) ages were measured using spallogenic 36Ar and 38Ar production. Los Angeles (3.1 ± 0.2 Ma), Zagami (2.9 ± 0.4 Ma) and NWA 1068 (2.0 ± 0.5 Ma) yielded ages within the range of previous determinations. DaG 476, however, yielded a young CRE age (0.7 ± 0.25 Ma), attributed to terrestrial alteration. The high spatial variation of argon indicates that the incorporation of Martian atmospheric argon into near-surface rocks is controlled by localized glass-bearing melts produced by shock processes. In particular, the larger (mm-size) melt pockets contain near end-member Martian atmospheric argon. Based on petrography, composition and argon isotopic data we conclude that the investigated melt pockets formed by localized in situ shock melting associated with ejection. Three processes may have led to atmosphere incorporation: (1) argon implantation due to atmospheric shock front collision with the Martian surface, (2) transformation of an atmosphere-filled cavity into a localized melt zone, and (3) shock implantation of atmosphere trapped in cracks, pores and fissures.  相似文献   

11.
The recently recovered paired Antarctic achondrites Graves Nunatak 06128 and 06129 (GRA) are meteorites that represent unique high-temperature asteroidal processes that are identified in only a few other meteorites. The GRA meteorites contain high abundances of sodic plagioclase, relatively Fe-rich pyroxenes and olivine, abundant phosphates, and low temperature alteration. They represent products of very early planetesimal melting (4565.9 ± 0.3 Ma) of an unsampled geochemical reservoir from an asteroid that has characteristics similar to the brachinite parent body. The magmatism represented by these meteorites is contrary to the commonly held belief that the earliest stages of melting on all planetary bodies during the first 2-30 Ma of solar system history were fundamentally basaltic in nature. These sodic plagioclase-rich rocks represent a series of early asteroidal high-temperature processes: (stage 1) melting and partial extraction of a low-temperature Fe-Ni-S melt, (stage 2) small degrees of disequilibrium partial melting of a sodium- or alkali-rich chondritic parent body with additional incorporation of Fe-Ni-S melt that was not fully extracted during stage 1, (stage 3) volatile-enhanced rapid extraction and emplacement of the Na-rich, high-normative plagioclase melt, (stage 4) final emplacement and accumulation of plagioclase and phosphates, (stage 5) subsolidus reequilibration of lithology between 962 and 600 °C at an fO2 of IW to IW + 1.1, and (stage 6) replacement of merrillite and pyroxene by Cl-apatite resulting from the interaction between magmatic minerals and a Cl-rich fluid/residuum melt. The subsolidus events started as early as 4561.1 Ma and may have continued for upwards of 144 million years.The existence of assemblages similar to GRA on several other planetary bodies with different geochemical characteristics (ureilite, winonaites, IAB irons) implies that this type of early asteroidal melting was not rare. Whereas, eucrites and angrites represent extensive melting of a parent body with low concentrations of moderately-volatile elements, GRA represents low-degrees of melting of a parent body with chondritic abundances of moderately volatile elements. The interpretation of the low-temperature mineral assemblage is somewhat ambiguous. Textural features suggest multiple episodes of alteration. The earliest stage follows the interaction of magmatic assemblages with a Cl-rich fluid. The last episode of alteration appears to cross-cut the fusion crust and earlier stages of alteration. Stable isotopic measurements of the alteration can be interpreted as indicating that an extraterrestrial volatile component was preserved in GRA.  相似文献   

12.
This experimental study explores the petrogenesis of ureilites by a partial melting/smelting process. Experiments have been performed over temperature (1150-1280 °C), pressure (5-12.5 MPa), and low oxygen fugacity (graphite-CO gas) conditions appropriate for a hypothetical ureilite parent body ∼200 km in size. Experimental and modeling results indicate that a partial melting/smelting model of ureilite petrogenesis can explain many of the unique characteristics displayed by this meteorite group. Compositional information preserved in the pigeonite-olivine ureilites was used to estimate the composition of melts in equilibrium with the ureilites. The results of 20 experiments saturated with olivine, pyroxene, metal, and liquid with appropriate ureilite compositions are used to calibrate the phase coefficients and pressure-temperature dependence of the smelting reaction. The calibrated coefficients are used to model the behavior of a hypothetical residue that is experiencing fractional smelting. The residue is initially olivine-rich and smelting progressively depletes the olivine content and enriches the pyroxene and metal contents of the residues. The modeled residue composition at 1260 °C best reproduces the trend of ureilite bulk compositions. The model results also indicate that as a ureilite residue undergoes isothermal decompression smelting over a range of temperatures, Ca/Al values and Cr2O3 contents are enriched at lower temperatures (below ∼1240 °C) and tend to decrease at higher temperatures. Therefore, fractional smelting can account for the high Ca/Al and Cr2O3 wt% values observed in ureilites. We propose that ureilites were generated from an olivine-rich, cpx-bearing residue. Smelting began when the residue was partially melted and contained liquid, olivine, and carbon. These residues experienced varying degrees of fractional smelting to produce the compositional variability observed within the pigeonite-bearing ureilites. Variations in mineral composition, modal proportions, and isotopic signatures are best described by heterogeneous accretion of the ureilite parent body followed by minimal and variable degrees of igneous processing.  相似文献   

13.
We present a summary of late Paleoproterozoic to Neoproterozoic mafic magmatism in the Siberian craton, including recently published U–Pb and 40Ar–39Ar dates. These new precise ages suggest that at least some of the previously published K–Ar ages of Siberian mafic bodies should be ignored. The time–space geochronological chart, or the ‘barcode’ of mafic magmatic events shows significant differences between northern and southern Siberia. Both are characterized by ∼1900–1700 Ma magmatic events, but then there was an almost 1 Ga mafic magmatic ‘pause’ in south Siberia until ∼800 Ma. Meanwhile there are indications of multiple mafic magmatic events in North Siberia (Anabar shield and Olenek uplift) between ∼1600 and 1000 Ma. A series of magmatic events probably related to the breakup of Rodinia occurred in southern Siberia after ∼800 Ma. So far, there are no indications of late Neoproterozoic mafic magmatism in North Siberia. Ca. 1000–950 Ma mafic sills were reported from Meso- to Neo-Proterozoic sedimentary successions in the Sette-Daban area on the east side of the Siberian craton, but their tectonic setting is debated. Recent Ar–Ar dates of ∼1750 Ma for NW-trending dykes in the Aldan and Anabar shields, together with similar-age NNE-trending Baikal uplift dykes in south-eastern Siberia suggest the existence of a giant radial dyke swarm possibly related to a mantle plume centred in the Vilyui River area.  相似文献   

14.
The majority of the 143 ureilite meteorites are monomict (unbrecciated) ultramafic rocks, which represent the mantle (olivine+low-Ca pyroxene residues and less abundant cumulates) of a partially melted (25–30%), carbon-rich asteroid 125 km in radius. Accumulated petrologic and geochemical studies of these meteorites have led to a picture of a ureilite parent body (UPB) that was stratified in mg#, pyroxene abundance and pyroxene type, due to the pressure dependence of carbon redox control, and which preserved a pre-magmatic heterogeneity in Δ17O. The absence, however, of ureilitic crustal rocks (i.e. basalts) in the meteorite record, leads to significant gaps in our knowledge of the geologic history of the UPB.

Ureilitic breccias provide considerable information that cannot be obtained from the monomict samples, and help to fill in those gaps. Fourteen ureilites are polymict breccias (at least three of which contain solar wind gases) that formed in a regolith. They contain a variety of clast types representing indigenous ureilitic lithologies not known among the monomict samples, as well as several types of non-indigenous impactor materials. In addition, one ureilite (FRO 93008) is a dimict breccia, consisting of two ultramafic lithologies that could not have formed in close proximity on the UPB.

Several feldspathic lithologies representing melts complementary to the monomict ureilite residues or cumulates have been recognized in polymict ureilites. From these lithologies we infer that melt extraction on the UPB was a rapid, fractional process in which trace element and oxygen isotopic equilibrium was not achieved. The majority of melts that reached the surface erupted explosively (due to high contents of CO/CO2) and were lost into space. Thus, it is likely that the UPB never had an extensive basaltic crust. Melts generated at the shallowest depths and late fractionates, in which carbon had largely been consumed by reduction, were the most likely to have been preserved. Our sample of the UPB is limited to depths equivalent to 100 bars pressure or less, but minor augite-bearing feldspathic lithologies and related cumulates may represent melts derived from deeper.

In addition, we infer that the UPB was catastrophically disrupted, while still hot, by an impacting projectile. Meter-sized ejecta from this impact reaccreted into one or more daughter bodies, on which the brecciated ureilites formed. Ureilite meteorites are derived from these offspring, rather than from the UPB. The remnant of the original UPB may consist largely of olivine plus augite, and thus not resemble the majority of ureilites.  相似文献   


15.
Melt inclusions in ureilites occur only in the small augite- and orthopyroxene-bearing subgroups. Previously [Goodrich C.A., Fioretti A.M., Tribaudino M. and Molin G. (2001) Primary trapped melt inclusions in olivine in the olivine-augite-orthopyroxene ureilite Hughes 009. Geochim. Cosmochim. Acta65, 621-652] we described melt inclusions in olivine in the olivine-augite-orthopyroxene ureilite Hughes 009 (Hughes). FRO 90054/93008 (FRO) is a near-twin of Hughes, and has abundant melt inclusions in all three primary silicates. We use these inclusions to reconstruct the major, minor and rare earth element composition of the Hughes/FRO parent magma and evaluate models for the petrogenesis of augite-bearing ureilites.Hughes and FRO consist of 23-47 vol % olivine (Fo 87.3 and 87.6, respectively), 7-52 vol % augite (mg 89.2, Wo 37.0 and mg 88.8, Wo 38.0, respectively), and 12-56 vol % orthopyroxene (mg 88.3, Wo 4.9 and mg 88.0, Wo 4.8, respectively). They have coarse-grained (?3 mm), highly-equilibrated textures, with poikilitic relationships indicating the crystallization sequence olivine → augite → orthopyroxene. FRO is more shocked than Hughes, experienced greater secondary reduction, and is more weathered. The two meteorites are probably derived from the same lithologic unit.Melt inclusions in olivine consist of glass ± daughter cpx ± metal-sulfide-phosphide spherules ± chromite, and have completely reequilibrated Fe/Mg with their hosts. We follow the method of Goodrich et al. (2001) for reconstructing the composition of the primary trapped liquid they represent (olPTL), but correct an error in our treatment of the effects of reequilibration. Inclusions in augite consist of glass, which shows only partial reequilibration of Fe/Mg. The composition of the primary trapped liquid they represent (augPTL) is reconstructed by reverse fractional crystallization of wall augite from the most ferroan glass. Inclusions in orthopyroxene consist of glass + 30-50 vol % daughter cpx. The cpx shows complete, but the glass only partial, reequilibration of Fe/Mg. A range of possible compositions for the primary trapped liquid they represent (opxPTL) is calculated by modal recombination of glass and cpx, followed by addition of wall orthopyroxene and adjustment of Fe/Mg for equilibrium with the primary orthopyroxene. Only a small subset of these compositions is plausible on the basis of being orthopyroxene-saturated.Results indicate that olPTL, assumed to represent the parent magma of these rocks, was saturated only with olivine and in equilibrium with Fo ∼ 83. AugPTL and opxPTL are very similar in composition; both are close to augite + orthopyroxene co-saturation and in equilibrium with Fo 87/8. We suggest that olPTL was reduced to Fo 87/8 due to smelting during ascent, and show that this produces a composition very similar to that of augPTL and opxPTL.REE data for each of the three primary silicates and the least evolved melt inclusions in olivine are used to calculate REE abundances in the Hughes/FRO parent magma. All four methods yield very similar results, indicating a REE pattern that is strongly LREE-depleted (Sm/La = 3.3-3.7), with a small negative Eu anomaly (Eu/Eu* = 0.82) and slight HREE-depletion (Gd/Lu = 1.4-1.6).The Hughes/FRO parent magma provides a robust constraint on models for the petrogenesis of augite-bearing ureilites. Its major, minor and rare earth element composition suggests derivation through mixing and/or assimilation processes, rather than as a primary melt on the ureilite parent body.  相似文献   

16.
Abundances and isotopic compositions of nitrogen and argon have been investigated in bulk samples as well as in acid-resistant C-rich residues of a suite of ureilites consisting of six monomict (Haverö, Kenna, Lahrauli, ALH81101, ALH82130, LEW85328), three polymict (Nilpena, EET87720, EET83309), and the diamond-free ureilite ALH78019. Nitrogen in bulk ureilites varies from 6.3 ppm (in ALH 78019) to ∼55 ppm (in ALH82130), whereas C-rich acid residues have ∼65 to ∼530 ppm N, showing approximately an order of magnitude enrichment, compared with the bulk ureilites, somewhat less than trapped noble gases. Unlike trapped noble gases that show uniform isotopic composition, nitrogen shows a wide variation in δ15N values within a given ureilite as well as among different ureilites. The variations observed in δ15N among the ureilites studied here suggest the presence of at least five nitrogen components. The characteristics of these five N components and their carrier phases have been identified through their release temperature during pyrolysis and combustion, their association with trapped noble gases, and their carbon (monitored as CO + CO2 generated during combustion). Carrier phases are as follows: 1) Amorphous C, as found in diamond-free ureilite ALH78019, combusting at ≤500°C, with δ15N = -21‰ and accompanied by trapped noble gases. Amorphous C in all diamond-bearing ureilites has evolved from this primary component through almost complete loss of noble gases, but only partial N loss, leading to variable enrichments in 15N. 2) Amorphous C as found in EET83309, with similar release characteristics as component 1, δ15N ≥ 50‰ and associated with trapped noble gases. 3) Graphite, as clearly seen in ALH78019, combusting at ≥700°C, δ15N ≥ 19‰ and devoid of noble gases. 4) Diamond, combusting at 600-800°C, δ15N ≤ -100‰ and accompanied by trapped noble gases. 5) Acid-soluble phases (silicates and metal) as inferred from mass balance are expected to contain a large proportion of nitrogen (18 to 75%) with δ15N in the range -25‰ to 600‰. Each of the ureilites contains at least three N components carried by acid-resistant C phases (amorphous C of type 1 or 2, graphite, and diamond) and one acid-soluble phase in different proportions, resulting in the observed heterogeneity in δ15N. In addition to these five widespread components, EET83309 needs an additional sixth N component carried by a C phase, combusting at <700°C, with δ15N ≥ 153‰ and accompanied by noble gases. It could be either noble gas-bearing graphite or more likely cohenite. Some excursions in the δ15N release patterns of polymict ureilites are suggestive of contributions from foreign clasts that might be present in them.Nitrogen isotopic systematics of EET83309 clearly confirm the absence of diamond in this polymict ureilite, whereas the presence of diamond is clearly indicated for ALH82130. Amorphous C in ALH78019 exhibits close similarities to phase Q of chondrites.The uniform δ15N value of −113 ± 13 ‰ for diamond from both monomict and polymict ureilites and its independence from bulk ureilite δ15N, Δ17O, and %Fo clearly suggest that the occurrence of diamond in ureilites is not a consequence of parent body-related process. The large differences between the δ15N of diamond and other C phases among ureilites do not favor in situ shock conversion of graphite or amorphous C into diamond. A nebular origin for diamond as well as the other C phases is most favored by these data. Also the preservation of the nitrogen isotopic heterogeneity among the carbon phases and the silicates will be more consistent with ureilite formation models akin to “nebular sedimentation” than to “magmatic” type.  相似文献   

17.
Secondary ion mass spectrometer (SIMS) oxygen isotope analyses were performed on 24 clasts, representing 9 clast types, in the Dar al Gani (DaG) 319 polymict ureilite with precisions better than 1‰. Olivine-rich clasts with typical ureilitic textures and mineral compositions have oxygen isotopic compositions that are identical to those of the monomict ureilites and plot along the CCAM (Carbonaceous Chondrite Anhydrous Mineral) line. Other igneous clasts, including plagioclase-bearing clasts, also plot along the CCAM line, indicating that they were derived from the ureilite parent body (UPB). Thus, we suggest that some of the plagioclase-bearing clasts in the polymict ureilites represent the “missing basaltic component” produced by partial melting on the UPB.Trace element concentrations (Mg, K, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Rb, Sr and Ba) in ureilitic plagioclase and glass from 13 clasts were obtained by using the SIMS high mass resolution method. The trace element contents of the plagioclase generally show monotonic variations with anorthite content (mol%) that are consistent with partial melting and fractional crystallization. Incompatible trace element concentrations (K, Ti, and Ba) are low and variable for plagioclase with An > 40, indicating that the parental magmas for some clasts were derived from a depleted source. We performed partial melt modeling for CI and CM precursor compositions and compared the results to the observed trace element (K, Ba, and Sr) abundances in the plagioclase. Our results indicate that (1) the UPB evolved from a alkali-rich carbonaceous chondritic precursor, (2) parent melts of porphyritic clasts could have formed by 5-20% equilibrium partial melting and subsequent fractional crystallization, and (3) parent melts of the incompatible trace element-depleted clasts could be derived from fractional melting, where low degree (<10%) partial melts were repeatedly extracted from their solid sources.Thus, both the oxygen isotopic and trace element compositions of the plagioclase bearing clasts in DaG-319 suggest that the UPB underwent localized low degree-partial melting events. The partial melts could have been repeatedly extracted from the precursor, resulting in the formation of the olivine-pigeonite monomict ureilites as the final residue.  相似文献   

18.
Group IVA is a large magmatic group of iron meteorites. The mean Δ17O (=δ17O − 0.52·δ18O) of the silicates is ∼+1.2‰, similar to the highest values in L chondrites and the lowest values in LL chondrites; δ18O values are also in the L/LL range. This strongly suggests that IVA irons formed by melting L-LL parental material, but the mean Ni content of IVA irons (83 mg/g) is much lower than that of a presumed L-LL parent (∼170 mg/g) and the low-Ca pyroxene present in two IVA meteorites is Fs13, much lower than the Fs20-29 values in L and LL chondrites. Thus, formation from L-LL precursors requires extensive addition of metallic Fe, probably produced by reduction of FeS and FeO. Group IVA also has S/Ni, Ga/Ni, and Ge/Ni ratios that are much lower than those in L-LL chondrites or any chondrite group that preserves nebular compositions, implying loss of these volatile elements during asteroidal processing. We suggest that these reduction and loss processes occurred near the surface of the asteroid during impact heating, and resulted partly from reduction by C, and partly from the thermal dissociation of FeS and FeO with loss of O and S. The hot (∼1770 K) low-viscosity melt quickly moved through channels in the porous asteroid to form a core. Two members of the IVA group, São João Nepomuceno (hereafter, SJN) and Steinbach, contain moderate amounts of orthopyroxene and silica, and minor amounts of low-Ca clinopyroxene. Even though SJN formed after ∼26% crystallization and Steinbach formed after ∼77% crystallization of the IVA core, both could have originated within several tens of meters of the core-mantle interface if 99% of the crystallization occurred from the center outwards. Two other members of the group (Gibeon and Bishop Canyon) contain tabular tridymite, which we infer to have initially formed as veins deposited from a cooling SiO-rich vapor. The silicates were clearly introduced into IVA irons after the initial magma crystallized. Because the γ-iron crystals in SJN are typically about 5 cm across, an order of magnitude smaller than in IVA irons that do not contain massive silicates, we infer that the metal was in the γ-iron field when the silicates were injected. The SJN and Steinbach silicate compositions are near the low-Ca-pyroxene/silica eutectic compositions. We suggest that a tectonic event produced a eutectic-like liquid and injected it together with unmelted pyroxene grains into fissures in the solid metal core. Published estimates of IVA metallographic cooling rates range from 20 to 3000 K/Ma, leading to a hypothesized breakup of the core during a major impact followed by scrambling of the core and mantle debris [Haack, H., Scott, E.R.D., Love, S.G., Brearley, A. 1996. Thermal histories of IVA stony-iron and iron meteorites: evidence for asteroid fragmentation and reaccretion. Geochim. Cosmochim. Acta60, 3103-3113]. This scrambling model is physically implausible and cannot explain the strong correlation of estimated cooling rates with metal composition. Previous workers concluded that the low-Ca clinopyroxene in SJN and Steinbach formed from protopyroxene by quenching at a cooling rate of 1012 K/Ma, and suggested that this also supported an impact-scrambling model. This implausible spike in cooling rate by a factor of 1010 can be avoided if the low-Ca clinopyroxene were formed by a late shock event that converted orthopyroxene to clinopyroxene followed by minimal growth in the clinopyroxene field, probably because melt was also produced. We suggest that metallographic cooling-rate estimates (e.g., based on island taenite) giving similar values throughout the metal compositional range are more plausible, and that the IVA parent asteroid can be modeled by monotonic cooling followed by a high-temperature impact event that introduced silicates into the metal and a low-temperature impact event that partially converted orthopyroxene into low-Ca clinopyroxene.  相似文献   

19.
GRA 95209 may provide our best opportunity to date to understand the earliest stages of core formation in asteroidal bodies. This lodranite preserves a physically, chemically, and mineralogically complex set of metal-sulfide veins. High-resolution X-ray computed tomography revealed three distinct lithologies. The dominant mixed metal-silicate-sulfide matrix is cut by metal-rich, graphite-bearing veins exceeding 1 cm in width and grades into a volumetrically minor metal-poor region. Silicate compositions and modal abundances are typical for lodranites, while the mineralogy of the metal-sulfide component is complex and differs among the three lithologies. Kamacite and troilite occur with chromite, tetrataenite, schreibersite, graphite, and a range of phosphates. An 39Ar-40Ar age of 4.521 ± 0.006 Ga measures the time of closure of the K-Ar system. Carbon rosettes within the metal-rich vein are nitrogen-poor, well crystallized, include kamacite sub-grains of composition comparable to the host metal, and are essentially isotopically homogeneous (δ13C ∼ −33‰). In contrast, carbon rosettes within metal of the metal-poor lithology are N-poor, poorly crystallized, include kamacite grains that are Ni-poor compared to their host metal, and are isotopically heterogeneous (δ13C ranging from −50 to +80‰) even within a single metal grain. The silicate portion of GRA 95209 is similar to the lodranite EET 84302, sharing a common texture, silicate mineral compositions, and Ar-Ar age. GRA 95209 and EET 84302 are intermediate between acapulcoites and lodranites. Both experienced Fe,Ni-FeS melting with extensive melt migration, but record only the onset of silicate partial melting with limited migration of silicate melt. The complex metal-sulfide veins in GRA 95209 resulted from low-degree partial melting and melt migration and intruded the matrix lithology. Reactions between solid minerals and melt, including oxidation-reduction reactions, produced the array of phosphates, schreibersite, and tetrataenite. Extensive reduction in the metal-rich vein resulted from its origin in a hotter portion of the asteroid. This difference in thermal history is supported by the graphite structures and isotopic compositions. The graphite rosettes in the metal-rich vein are consistent with high-temperature igneous processing. In contrast, the carbon in the metal-poor lithology appears to preserve a record of formation in the nebula prior to parent-body formation. Carbon incorporated from the solar nebula into a differentiating asteroid is preferentially incorporated in metal-sulfide melts that form a core, but does not achieve isotopic homogeneity until extensive thermal processing occurs.  相似文献   

20.
We evaluate initial (26Al/27Al)I, (53Mn/55Mn)I, and (182Hf/180Hf)I ratios, together with 207Pb/206Pb ages for igneous differentiated meteorites and chondrules from ordinary chondrites for consistency with radioactive decay of the parent nuclides within a common, closed isotopic system, i.e., the early solar nebula. The relative initial isotopic abundances of 26Al, 53Mn, and 182Hf in differentiated meteorites and chondrules are consistent with decay from common solar system initial values, here denoted by I(Al)SS, I(Mn)SS, and I(Hf)SS, respectively. I(Mn)SS and I(Hf)SS = 9.1 ± 1.7 × 10−6 and 1.07 ± 0.08 × 10−4, respectively, correspond to “canonical” I(Al)SS = 5.1 × 10−5. I(Hf)SS so determined is consistent with I(Hf)SS = 9.72 ± 0.44 × 10−5 directly determined from an internal Hf-W isochron for CAI minerals. I(Mn)SS is within error of the lowest value directly measured for CAIs. We suggest that erratically higher values measured for CAIs in carbonaceous chondrites may reflect proton irradiation of unaccreted CAIs by the early Sun after other asteroids destined for melting by 26Al decay had already accreted. The 53Mn incorporated within such asteroids would have been shielded from further “local” spallogenic contributions from within the solar system. The relative initial isotopic abundances of the short-lived nuclides are less consistent with the 207Pb/206Pb ages of the corresponding materials than with one another. The best consistency of short- and long-lived chronometers is obtained for (182Hf/180Hf)I and the 207Pb/206Pb ages of angrites. (182Hf/180Hf)I decreases with decreasing 207Pb/206Pb ages at the rate expected from the 8.90 ± 0.09 Ma half-life of 182Hf. The model solar system age thus determined is TSS,Hf-W = 4568.3 ± 0.7 Ma. (26Al/27Al)I and (53Mn/55Mn)I are less consistent with 207Pb/206Pb ages of the corresponding meteorites, but yield TSS,Mn-Cr = 4568.2 ± 0.5 Ma relative to I(Al)SS = 5.1 × 10−5 and a 207Pb/206Pb age of 4558.55 ± 0.15 Ma for the LEW86010 angrite. The Mn-Cr method with I(Mn)SS = 9.1 ± 1.7 × 10−6 is useful for dating accretion (if identified with chondrule formation), primary igneous events, and secondary mineralization on asteroid parent bodies. All of these events appear to have occurred approximately contemporaneously on different asteroid parent bodies. For I(Mn)SS = 9.1 ± 1.7 × 10−6, parent body differentiation is found to extend at least to ∼5 Ma post-TSS, i.e., until differentiation of the angrite parent body ∼4563.5 Ma ago, or ∼4564.5 Ma ago using the directly measured 207Pb/206Pb ages of the D’Orbigny-clan angrites. The ∼1 Ma difference is characteristic of a remaining inconsistency for the D’Orbigny-clan between the Al-Mg and Mn-Cr chronometers on one hand, and the 207Pb/206Pb chronometer on the other. Differentiation of the IIIAB iron meteorite and ureilite parent bodies probably occurred slightly later than for the angrite parent body, and at nearly the same time as one another as shown by the Mn-Cr ages of IIIAB irons and ureilites, respectively. The latest recorded episodes of secondary mineralization are for carbonates on the CI carbonaceous chondrite parent body and fayalites on the CV carbonaceous chondrite parent body, both extending to ∼10 Ma post-TSS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号