首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
An analytic solution has been found in the Roche approximation for the axially symmetric structure of a hydrostatically equilibrium atmosphere of a neutron star produced by collapse. A hydrodynamic (quasione-dimensional) model for the collapse of a rotating iron core in a massive star gives rise to a heterogeneous rotating protoneutron star with an extended atmosphere composed of matter from the outer part of the iron core with differential rotation (Imshennik and Nadyozhin, 1992). The equation of state of a completely degenerate iron gas with an arbitrary degree of relativity is taken for the atmospheric matter. We construct a family of toroidal model atmospheres with total masses M≈ 0.1?2M and total angular momenta J≈(1?5.5)×49 erg s, which are acceptable for the outer part of the collapsed iron core, in accordance with the hydrodynamic model, as a function of constant parameters ω0 and r 0 of the specified differential rotation law Ω=ω0exp[?(rsinθ)2/r 0 2 ] in spherical coordinates. The assumed rotation law is also qualitatively consistent with the hydrodynamic model for the collapse of an iron core.  相似文献   

2.
Keiji Ohtsuki 《Icarus》2006,183(2):384-395
We examine rotation rates of gravitating particles in low optical depth rings, on the basis of the evolution equation of particle rotational energy derived by Ohtsuki [Ohtsuki, K., 2006. Rotation rate and velocity dispersion of planetary ring particles with size distribution. I. Formulation and analytic calculation. Icarus 183, 373-383]. We obtain the rates of evolution of particle rotation rate and velocity dispersion, using three-body orbital integration that takes into account distribution of random velocities and rotation rates. The obtained stirring and friction rates are used to calculate the evolution of velocity dispersion and rotation rate for particles in one- and two-size component rings as well as those with a narrow size distribution, and agreement with N-body simulation is confirmed. Then, we perform calculations to examine equilibrium rotation rates and velocity dispersion of gravitating ring particles with a broad size distribution, from 1 cm up to 10 m. We find that small particles spin rapidly with 〈ω21/2/Ω?102-103, where ω and Ω are the particle rotation rate and its orbital angular frequency, respectively, while the largest particles spin slowly, with 〈ω21/2/Ω?1. The vertical scale height of rapidly rotating small particles is much larger than that of slowly rotating large particles. Thus, rotational states of ring particles have vertical heterogeneity, which should be taken into account in modeling thermal infrared emission from Saturn's rings.  相似文献   

3.
For half-space (Z>0), homogeneous, collisonal and warm plasma, the expressions for fields and penetration depth δ/δ e (in the unit of ion collisionless cold plasma penetration depth, i.e., when v i =0, υ0i =) are derived and discussed numerically. It is concluded that the propagation of transverse waves is only slightly affected by the ion collisions and the applied magnetic field when the plasma frequence is greater than the wave frequency (ω pe >ω). For the case of ω pe ≤ω, the damping of the wave is not affected by the changes in the ion collision frequency and the ion temperature. However, in this case, the propagation of the wave is drastically affected by the applied magnetic field and the wave damps quickly as the magnetic field strength or the gyrofrequency (Ω e ) increases.  相似文献   

4.
We study the evolution of an extrasolar planetary system with two planets, for planar motion, starting from an exact resonant periodic motion and increasing the deviation from the equilibrium solution. We keep the semimajor axes and the eccentricities of the two planets fixed and we change the initial conditions by rotating the orbit of the outer planet by Δω. In this way the resonance is preserved, but we deviate from the exact periodicity and there is a transition from order to chaos as the deviation increases. There are three different routes to chaos, as far as the evolution of (ω 2 ? ω 1) is concerned: (a) Libration → rotation → chaos, with intermittent transition from libration to rotation in between, (b) libration → chaos and (c) libration → intermittent interchange between libration and rotation → chaos. This indicates that resonant planetary systems where the angle (ω 2 ? ω 1) librates or rotates are not different, but are closely connected to the exact periodic motion.  相似文献   

5.
6.
The known extrasolar planets exhibit a wide range of orbital eccentricities e. This has a profound influence on their rotations and climates. Because of tides in their interiors, mostly solid exoplanets are expected eventually to despin to a state of spin-orbit resonance, where the orbital period is some integer or half-integer times the rotation period. The most important of these resonances is the synchronous state, where the planet's spin period exactly equals its orbital period (like Earth's Moon, and indeed most of the regular satellites in the Solar System). Such planets seem doomed to roast on one side and freeze on the other. However, synchronous planets rock back and forth by an angle of ∼2Arcsine with respect to the sub-stellar point. For e=0.055 (as for the Moon), this optical libration amounts to only ∼6°; but for a synchronous planet with e=0.50, for example, it would rise to ∼59°. This greatly expands the temperate “twilight zone” near the terminator and considerably improves the planet's prospects for habitability. For e?0.72389, the optical libration exceeds 90°; for such planets, the sector of permanent night vanishes, while the sunniest region splits in two. Furthermore, the synchronous state is not the only possible spin resonance. For example, Mercury (with e≈0.206) has an orbital period exactly 1.5 times its rotation period. A terrestrial exoplanet with e=0.40, say, is liable to have an orbital period of 2.0, 2.5, or 3.0 times its spin period. The corresponding insolation patterns are generally complicated, and all different from the synchronous state. Yet these non-synchronous resonances also protect certain longitudes from the worst extremes of temperature and solar radiation, and improve the planet's habitability, compared to non-resonant rotation. These results also have implications for the direct detectability of extrasolar planets, and the interpretation of their thermal emissions.  相似文献   

7.
The paper contains a numerical simulation of the nonlinear coupling between the kinetic Alfvén wave and the ion acoustic wave for an intermediate β-plasma (m e/m i?β?1). For this study, we have introduced the nonlinear ponderomotive force (due to the finite frequency (ω 0<ω ci) kinetic Alfvén wave) in the derivation of the ion acoustic wave. The main aim of the present paper is to study the nonlinear effects associated with the different driving finite frequencies (ω 0<ω ci) of the pump kinetic Alfvén wave on the formation of localized structures and a turbulent spectrum applicable to the solar wind around 1 AU. As a result, we found that the different driving frequencies of the pump kinetic Alfvén wave affect the formation of the localized structures. We have also studied the turbulent scaling which follows (~k ?3.6) for ω 0/ω ci≈0.2, (~k ?3.4) for ω 0/ω ci≈0.3 and (~k ?3.2) for ω 0/ω ci≈0.4, at small scales. Further, we have also found that different finite driving frequencies of the pump kinetic Alfvén wave affect the turbulence scaling at small scales, which may affect the heating of the plasma particles in solar wind. The present study is correlated with the observation made by the Cluster spacecraft for the solar wind around 1 AU.  相似文献   

8.
Tidal evolution of Mimas, Enceladus, and Dione   总被引:2,自引:0,他引:2  
Jennifer Meyer  Jack Wisdom 《Icarus》2008,193(1):213-223
The tidal evolution through several resonances involving Mimas, Enceladus, and/or Dione is studied numerically with an averaged resonance model. We find that, in the Enceladus-Dione 2:1 e-Enceladus type resonance, Enceladus evolves chaotically in the future for some values of k2/Q. Past evolution of the system is marked by temporary capture into the Enceladus-Dione 4:2 ee-mixed resonance. We find that the free libration of the Enceladus-Dione 2:1 e-Enceladus resonance angle of 1.5° can be explained by a recent passage of the system through a secondary resonance. In simulations with passage through the secondary resonance, the system enters the current Enceladus-Dione resonance close to tidal equilibrium and thus the equilibrium value of tidal heating of 1.1(18,000/QS) GW applies. We find that the current anomalously large eccentricity of Mimas can be explained by passage through several past resonances. In all cases, escape from the resonance occurs by unstable growth of the libration angle, sometimes with the help of a secondary resonance. Explanation of the current eccentricity of Mimas by evolution through these resonances implies that the Q of Saturn is below 100,000. Though the eccentricity of Enceladus can be excited to moderate values by capture in the Mimas-Enceladus 3:2 e-Enceladus resonance, the libration amplitude damps and the system does not escape. Thus past occupancy of this resonance and consequent tidal heating of Enceladus is excluded. The construction of a coherent history places constraints on the allowed values of k2/Q for the satellites.  相似文献   

9.
V.V. Kouprianov 《Icarus》2005,176(1):224-234
The problem of observability of chaotic regimes in the rotation of planetary satellites is studied. The analysis is based on the inertial and orbital data available for all satellites discovered up to now. The Lyapunov spectra of the spatial chaotic rotation and the full range of variation of the spin rate are computed numerically by integrating the equations of the rotational motion; the initial data are taken inside the main chaotic layer near the separatrices of synchronous resonance in phase space. The model of a triaxial satellite in a fixed elliptic orbit is adopted. A short Lyapunov time along with a large range of variation of the spin rate are used as criteria for observability of the chaotic motion. Independently, analysis of stability of the synchronous state with respect to tilting the axis of rotation provides a test for the physical opportunity for a satellite to rotate chaotically. Finally, a calculation of the times of despinning due to tidal evolution shows whether a satellite's spin could evolve close to the synchronous state. Apart from Hyperion, already known to rotate chaotically, only Prometheus and Pandora, the 16th and 17th satellites of Saturn, pass all these four tests.  相似文献   

10.
Based on published data, we have collected information about Galactic maser sources with measured distances. In particular, 44 Galactic maser sources located in star-forming regions have trigonometric parallaxes, proper motions, and radial velocities. In addition, ten more radio sources with incomplete information are known, but their parallaxes have been measured with a high accuracy. For all 54 sources, we have calculated the corrections for the well-known Lutz-Kelker bias. Based on a sample of 44 sources, we have refined the parameters of the Galactic rotation curve. Thus, at R 0 = 8kpc, the peculiar velocity components for the Sun are (U , V , W ) = (7.5, 17.6, 8.4) ± (1.2, 1.2, 1.2) km s?1 and the angular velocity components are ω 0 = ?28.7 ± 0.5 km s?1 kpc?1, ω 0′ = +4.17 ± 0.10 km s?1 kpc?2, and ω0″ = ?0.87 ± 0.06 km s?1 kpc?3. The corresponding Oort constants are A = 16.7 ± 0.6 km s?1 kpc?1 and B = ?12.0 ± 1.0 km s?1 kpc?1; the circular rotation velocity of the solar neighborhood around the Galactic center is V 0 = 230 ± 16 km s?1. We have found that the corrections for the Lutz-Kelker bias affect the determination of the angular velocity ω 0 most strongly; their effect on the remaining parameters is statistically insignificant. Within themodel of a two-armed spiral pattern, we have determined the pattern pitch angle $i = - 6_.^ \circ 5$ and the phase of the Sun in the spiral wave χ 0 = 150°.  相似文献   

11.
Data on three recently discovered satellites of Uranus are used to determine basic evolutional parameters of their orbits: the extreme eccentricities and inclinations, as well as the circulation periods of the pericenter arguments and of the longitudes of the ascending nodes. The evolution is mainly investigated by analytically solving Hill’s double-averaged problem for the Uranus-Sun-satellite system, in which Uranus’s orbital eccentricity e U and inclination i U to the ecliptic are assumed to be zero. For the real model of Uranus’s evolving orbit with e U≠0 and i U≠0, we refine the evolutional parameters of the satellite orbits by numerically integrating the averaged system. Having analyzed the configuration and dynamics of the orbits of Uranus’s five outer satellites, we have revealed the possibility of their mutual crossings and obtained approximate temporal estimates.  相似文献   

12.
Matija ?uk 《Icarus》2011,211(1):97-100
The Moon has long been known to have an overall shape not consistent with expected past tidal forces. It has recently been suggested (Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652-655) that the present lunar moments of inertia indicate a past high-eccentricity orbit and, possibly, a past non-synchronous spin-orbit resonance. Here I show that the match between the lunar shape and the proposed orbital and spin states is much less conclusive than initially proposed. Garrick-Bethell et al. (Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652-655) spin and shape evolution scenarios also completely ignore the physics of the capture into such resonances, which require prior permanent deformation, as well as tidal despinning to the relevant resonance. If the early lunar orbit was eccentric, the Moon would have been rotating at an equilibrium non-synchronous rate determined by it eccentricity. This equilibrium supersynchronous rotation would be much too fast to allow a synchronous spin-orbit lock at e = 0.49, while the capture into the 3:2 resonance is possible only for a very constrained lunar eccentricity history and assuming some early permanent lunar tri-axiality. Here I show that large impacts in the early history of the Moon would have frequently disrupted this putative resonant rotation, making the rotation and eccentricity solutions of Garrick-Bethell et al. (Garrick-Bethell, I., Wisdom, J., Zuber, M.T. [2006]. Science 313, 652-655) unstable. I conclude that the present lunar shape cannot be used to support the hypothesis of an early eccentric lunar orbit.  相似文献   

13.
The 64 asteroids with reliably known rotational properties [rotation period P, magnitude B(1, 0) and maximum change of magnitude Δm] are studied. A plot of B(1,0) vs P illustrates that smaller asteroids tend to rotate faster than larger asteroids. The mean P for all 64 asteroids is 8.8 hr. The class of irregular asteroids (taken to be those with Δm >0.38, i.e., those whose axes differ by more than 40%) called group C are studied separately; they are shown to rotate much faster (mean P = 7.7 hr) than the remaining more regular asteroids (mean P = 9.2 hr). The smaller bodies are more irregular on the average. These results are interpreted in terms of a model in which collisions break asteroids into irregular fragments. Since angular momentum is transmitted in such collisions, significant increases in the mean can occur in the angular velocity of the largest fragment. The effect of interasteroid collisions on the mean orbital parameters is briefly discussed and is shown to be masked by selection effects.  相似文献   

14.
Observations by the Mars Color Imager (MARCI) on board the Mars Reconnaissance Orbiter (MRO) in two ultraviolet (UV, Bands 6 and 7; 258 nm, and 320 nm, respectively) and one visible (Band 1, 436 nm) channels of the 2007 planet encircling dust storm are combined with those made by the two Mars Exploration Rovers (MERs) to better characterize the single scattering albedo (ω0) of martian dust aerosols. Exploiting the low contrast of the surface in the UV (and blue) as well as the reduced importance of surface reflectance under very dusty conditions, we utilize the sampling of photometric angles by the MARCI cross-track geometry to synthesize an analog of the classical Emergence Phase Function (EPF). This so-called “pseudo-EPF”, used in conjunction with the “ground-truth” measurements provided by the MERs, is able to effectively isolate the effects of the dust ω0. The motivation for this approach is the elimination of a significant portion of the type of uncertainty involved in many previous radiative transfer analyses. Furthermore, we produce a self-consistent set of complex refractive indices (m=n+ik) through our use of an explicit microphysical representation of the aerosol scattering properties. Because of uncertainty in the exact size of the dust particles during the epoch of the observations, we consider two effective particle radii (reff) to cover the range anticipated from the literature: 1.6 and 1.8 μm. The resulting set of model-data comparisons, ω0, and m are presented along with an assessment of potential sources of error and uncertainty. Analysis of the Band 1 results is limited to ω0 as a “proof-of-concept” for our approach through a comparison to contemporaneous CRISM EPF results at 440 nm. The derived ω0 are: assuming , and 0.765, for Bands 6, 7, and 1, respectively; for , for the same band order. For either reff case, the total estimated error is 0.022, 0.019, and 0.010, again for Bands 6, 7, and 1. We briefly discuss our retrievals, including the asymmetry parameter (g) associated with our model phase functions, within the context of previous efforts, with an emphasis on the improved precision of our results compared to those in the literature. We also suggest several applications of our results, including an extension of the dust climatological record using MARCI Band 7 pseudo-EPFs outside of 2007 global dust event. Initial work on this particular application using a sample of 135 pseudo-EPFs near the MERs suggests that optical depth retrievals with a precision in the range 0.2-0.4 may be possible under moderate loading conditions (i.e., τ < 1.5).  相似文献   

15.
Adding the angular velocity of sidereal solar rotation and the apparent rotational effect of the Earth's revolution vectorially, a new synodic solar rotation vector has been obtained. The sidereal and synodic solar rotation axes (and equators) are separated. Using the known parameters of the Earth's orbital motion, the synodic rotation angular velocity and the inclination of the synodic equator, the corresponding sidereal rotation parameters have been calculated (ω1 = 2.915 × 10#X2212;6 rad s#X2212;1 and i 1 = 6.076). Various linear rotational velocities at the solar globe are briefly described.  相似文献   

16.
C.A. Hibbitts  J. Szanyi 《Icarus》2007,191(1):371-380
CO2 is known to adsorb onto clay and other minerals when a significant atmospheric pressure is present. We have found that CO2 can also adsorb onto some clays when the CO2 partial pressure is effectively zero under ultra-high vacuum (UHV) if cooled to the surface temperatures of the icy satellites of Jupiter and Saturn. The strength of adsorption and the spectral characteristics of the adsorbed CO2 infrared (IR) ν3 absorption band near 4.25 μm depend on the composition and temperature of the adsorbent. CO2 remains adsorbed onto the clay mineral montmorillonite for >10 s of min when exposed to a vacuum of ∼1×10−8 Torr at ∼125 K. CO2 does not adsorb onto serpentine, goethite, or palagonite under these conditions. A small amount may adsorb onto kaolinite. When heated above 150 K under vacuum, the CO2 desorbs from the montmorillonite within a few minutes. The ν3 absorption band of CO2 adsorbed onto montmorillonite at 125 K is similar to that of the CO2 detected on the saturnian and Galilean satellites and is markedly different from CO2 adsorbed onto montmorillonite at room temperature. We infer the adsorption process is physisorption and postulate that this mechanism may explain the presence and spectral characteristics of the CO2 detected in the surfaces of these outer satellites.  相似文献   

17.
Joseph Masiero 《Icarus》2010,207(2):795-799
We have investigated the effect of rotation on the polarization of scattered light for the near-Earth asteroid (1943) Anteros using the Dual Beam Imaging Polarimeter on the University of Hawaii’s 2.2 m telescope. Anteros is an L-type asteroid that has not been previously observed polarimetrically. We find weak but significant variations in the polarization of Anteros as a function of rotation, indicating albedo changes across the surface. Specifically, we find that Anteros has a background albedo of pv = 0.18 ± 0.02 with a dark spot of pv < 0.09 covering <2% of the surface.  相似文献   

18.
Ke Zhang  Francis Nimmo 《Icarus》2009,204(2):597-609
We study the orbital behavior of Saturn’s satellites Enceladus and Dione during their passage through the 2:1 mean-motion resonances to constrain their interior structures, parameterized by the quantity k2/Q (assumed constant). Enceladus’ evolution after escape from the second-order e-Enceladus e-Dione resonance requires that (k2/Q)Enceladus<8×10-4, for that QSaturn>18,000. This result is in agreement with [Meyer, J., Wisdom, J., 2008b. Icarus 193, 213-223]. The present-day libration amplitude of Enceladus requires that (k2/Q)Enceladus>1.2×10-4, assuming that QSaturn<105. Dione’s present-day eccentricity indicates that (k2/Q)Dione?3×10-4 for QSaturn>18,000. Assuming Maxwellian viscoelastic behavior, we find that for Enceladus a convective ice shell overlying an ocean is too dissipative to match the orbital constraints. We conclude that a conductive shell overlying an ocean is more likely, and discuss the implications of this result. Dione’s ice shell is also likely to be conductive, but our results are less constraining.  相似文献   

19.
Each of the Galilean satellites, as well as most other satellites whose initial rotations have been substantially altered by tidal dissipation, has been widely assumed to rotate synchronously with its orbital mean motion. Such rotation would require a small permanent asymmetry in the mass distribution in order to overcome the small mean tidal torque. Since Io and Europa may be substantially fluid, they may not have the strenght to support the required permanent asymmetry. Thus, each may rotate at the unknown but slightly nonsynchronous rate that corresponds to zero mean tidal torque. This behaviour may be observable by Galileo spacecraft imaging. It may help explain the longitudinal variation of volcanism on Io and the cracking of Europa's crust.  相似文献   

20.
Epimetheus, a small moon of Saturn, has a rotational libration (an oscillation about synchronous rotation) of 5.9°±1.2°, placing Epimetheus in the company of Earth’s Moon and Mars’ Phobos as the only natural satellites for which forced rotational libration has been detected. The forced libration is caused by the satellite’s slightly eccentric orbit and non-spherical shape.Detection of a moon’s forced libration allows us to probe its interior by comparing the measured amplitude to that predicted by a shape model assuming constant density. A discrepancy between the two would indicate internal density asymmetries. For Epimetheus, the uncertainties in the shape model are large enough to account for the measured libration amplitude. For Janus, on the other hand, although we cannot rule out synchronous rotation, a permanent offset of several degrees between Janus’ minimum moment of inertia (long axis) and the equilibrium sub-Saturn point may indicate that Janus does have modest internal density asymmetries.The rotation states of Janus and Epimetheus experience a perturbation every 4 years, as the two moons “swap” orbits. The sudden change in the orbital periods produces a free libration about synchronous rotation that is subsequently damped by internal friction. We calculate that this free libration is small in amplitude (<0.1°) and decays quickly (a few weeks, at most), and is thus below the current limits for detection using Cassini images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号