首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Yamamoto 《Icarus》2002,158(1):87-97
This paper reports the results of experiments on projectile impact into regolith targets at various impact angles. Copper projectiles of 240 mg are accelerated to 197 to 272 m s−1 using an electromagnetic gun. The ejecta are detected by thin Al foil targets as secondary targets, and the resulting holes on the foil are measured to derive the spatial distribution of the ejecta. The ejecta that penetrated the foil are concentrated toward the downrange azimuths of impacting projectiles in oblique impacts. In order to investigate the ejecta velocity distribution, the nondimensional volume of ejecta with velocities higher than a given value is calculated from the spatial distribution. In the case of the vertical impact of the projectile, most ejecta have velocities lower than 24% of the projectile speed (∼50 m s−1), and there are only several ejecta with velocities higher than 72 m s−1. This result confirms the existence of an upper limit to the ejection velocity in the ejecta velocity distribution (Hartmann cutoff velocity) (W. K. Hartmann, 1985, Icarus63, 69-98). On the other hand, it is found that, in the oblique impacts, there are a large number of ejecta with velocities higher than the Hartmann cutoff velocity. The relative quantity of ejecta above the Hartmann cutoff velocity increases as the projectile impact angle decreases. Taking these results with the results of S. Yamamoto and A. M. Nakamura (1997, Icarus128, 160-170) from impact experiments using an impact angle of 30°, it can be concluded that the ejecta from these regolith targets exhibit a bimodal velocity distribution. Below a few tens of m s−1, we see the expected velocity distribution of ejecta, but above this velocity we see a separate group of high-velocity ejecta.  相似文献   

2.
We measured the velocity distributions of impact ejecta with velocities higher than ∼100 m s−1 (high-velocity ejecta) for impacts at variable impact angle α into unconsolidated targets of small soda-lime glass spheres. Polycarbonate projectiles with mass of 0.49 g were accelerated to ∼250 m s−1 by a single-stage light-gas gun. The impact ejecta are detected by thin aluminum foils placed around the targets. We analyzed the holes on the aluminum foils to derive the total number and volume of ejecta that penetrated the aluminum foils. Using the minimum velocity of the ejecta for penetration, determined experimentally, the velocity distributions of the high-velocity ejecta were obtained at α=15°, 30°, 45°, 60°, and 90°. The velocity distribution of the high-velocity ejecta is shown to depend on impact angle. The quantity of the high-velocity ejecta for vertical impact (α=90°) is considerably lower than derived from a power-law relation for the velocity distribution on the low-velocity ejecta (less than 10 m s−1). On the other hand, in oblique impacts, the quantity of the high-velocity ejecta increases with decreasing impact angle, and becomes comparable to those derived from the power-law relation. We attempt to scale the high-velocity ejecta for oblique impacts to a new scaling law, in which the velocity distribution is scaled by the cube of projectile radius (scaled volume) and a horizontal component of impactor velocity (scaled ejection velocity), respectively. The high-velocity ejecta data shows a good correlation between the scaled volume and the scaled ejection velocity.  相似文献   

3.
In this paper we investigate the formation of the Cretaceous-Paleogene (K-Pg) boundary layer through numerical modeling. The K-Pg layer is widely agreed to be composed of meteoritic material and target rock from the Chicxulub impact site, that has been ejected around the globe and mixed with local material during final deposition. The observed composition and thickness of the K-Pg boundary layer changes with azimuth and distance from the impact site. We have run a suite of numerical simulations to investigate whether we can replicate the observational data, with a focus on the distal K-Pg layer and the impact glasses at proximal sites such as Beloc, Haiti. Previous models of the K-Pg ejecta have assumed an initial velocity distribution and tracked the ejecta to its final destination. Here, we attempt to model the entire process, from impact to the arrival of the ejecta around the globe. Our models replicate the observed ejecta thickness at proximal sites, and the modeled ejecta is composed of sediments and silicate basement rocks, in agreement with observational data. Models that use a 45° impact angle are able to replicate the total ejecta and iridium volume at distal sites, and the majority of the ejecta is composed of meteorite and target sediments. Sub-vertical impacts generate too little iridium, and oblique impacts of ?30 degrees generate too much. However, in contrast to observations, models that involve ballistic transport of ejecta lead to ejecta thickness decreasing with increasing distance, and are unable to transport shocked minerals (quartz and zircon) from the Chicxulub basement rocks around the globe. We suggest that much of the K-Pg ejecta is transported non-ballistically, and that the most plausible mechanism is through re-distribution from a hot, expanding atmosphere. The results are important for future investigations of the environmental effects of the Chicxulub impact.  相似文献   

4.
K. Miljkovi?  N.J. Mason 《Icarus》2011,214(2):739-747
Using the light gas gun at the Open University’s Hypervelocity Impact facility, a series of impact experiments exploring impacts into water ice and gypsum have been performed. Fragmentation of solid ejecta was recorded using two different methods, analysed and compared with the total ejecta. Preliminary results show that the size distribution of the ejecta fragments from water ice is very similar to those from gypsum. These results also represent a step towards a better understanding of ejecta fragmentation in geological materials, including icy surfaces in the Solar System.  相似文献   

5.
Collisions between planetary ring particles and in some protoplanetary disk environments occur at speeds below 10 m/s. The particles involved in these low-velocity collisions have negligible gravity and may be made of or coated with smaller dust grains and aggregates. We undertook microgravity impact experiments to better understand the dissipation of energy and production of ejecta in these collisions. Here we report the results of impact experiments of solid projectiles into beds of granular material at impact velocities from 0.2 to 2.3 m/s performed under near-weightless conditions on the NASA KC-135 Weightless Wonder V. Impactors of various densities and radii of 1 and 2 cm were launched into targets of quartz sand, JSC-1 lunar regolith simulant, and JSC-Mars-1 martian regolith simulant. Most impacts were at normal or near-normal incidence angles, though some impacts were at oblique angles. Oblique impacts led to much higher ejection velocities and ejecta masses than normal impacts. For normal incidence impacts, characteristic ejecta velocities increase with impactor kinetic energy, KE, as approximately KE0.5. Ejecta masses could not be measured accurately due to the nature of the experiment, but qualitatively also increased with impactor kinetic energy. Some experiments were near the threshold velocity of 0.2 m/s identified in previous microgravity impact experiments as the minimum velocity needed to produce ejecta [Colwell, J.E., 2003. Icarus 164, 188-196], and the experimental scatter is large at these low speeds in the airplane experiment. A more precise exploration of the transition from low-ejecta-mass impacts to high-ejecta-mass impacts requires a longer and smoother period of reduced gravity. Coefficient of restitution measurements are not possible due to the varying acceleration of the airplane throughout the experiment.  相似文献   

6.
Ejecta from impact craters   总被引:2,自引:0,他引:2  
An important feature of impacts into Solar System bodies is the fate of crater ejecta, the near-surface material launched during the highly dynamic crater formation process. Laboratory measurements of impact crater ejecta from 18 studies are summarized. The data are examined and used to assess our understanding of how the ejecta velocity and mass distributions depend on the conditions of an impact event. The effects of impact speed on the ejecta are reasonably well understood, but the dependences on target properties such as strength and porosity are only poorly constrained. A point-source scaling model for the ejecta mass and velocity distributions is developed and fit to the data for several classes of materials distinguished by porosity.  相似文献   

7.
The depth and duration of energy and momentum coupling in an impact shapes the formation of the crater. The earliest stages of crater growth (when the projectile transfers its energy and momentum to the target) are unrecoverable when the event is described by late stage parameters, which collapse the initial conditions of the impact into a singular point in time and space. During the coupling phase, the details of the impact are mapped into the ejecta flow field. In this experimental study, we present new experimental and computational measurements of the ejecta distribution and crater growth extending from early times into main-stage ballistic flow for hypervelocity impacts over a range of projectile densities. Specifically, we assess the effect of projectile density on coupling depth and location in porous particulate (sand) targets. A non-invasive high-speed imaging technique is employed to capture the velocity of individual ejecta particles very early in the cratering event as a function of both time and launch position. These data reveal that the effects of early-stage coupling, such as non-constant ejection angles, manifest not only in early-time behavior but also extend to main-stage crater growth. Time-resolved comparisons with hydrocode calculations provide both benchmarking and insight into the parameters controlling the ejection process. Measurements of the launch position and metrics for the transient diameter to depth ratio as a function of time demonstrate non-proportional crater growth throughout much of excavation. Low-density projectiles couple closer to the surface, thereby leading to lower ejection angles and larger effective diameter to depth ratios. These results have implications for the ballistic emplacement of ejecta on planetary surfaces, and are essential to interpreting temporally resolved data from impact missions.  相似文献   

8.
We compare three previously independently studied crater morphologies - excess ejecta craters, perched craters, and pedestal craters - each of which has been proposed to form from impacts into an ice-rich surface layer. Our analysis identifies the specific similarities and differences between the crater types; the commonalities provide significant evidence for a genetic relationship among the morphologies. We use new surveys of excess ejecta and perched craters in the southern hemisphere in conjunction with prior studies of all of the morphologies to create a comprehensive overview of their geographic distributions and physical characteristics. From these analyses, we conclude that excess ejecta craters and perched craters are likely to have formed from the same mechanism, with excess ejecta craters appearing fresh while perched craters have experienced post-impact modification and infilling. Impacts that led to these two morphologies overwhelmed the ice-rich layer, penetrating into the underlying martian regolith, resulting in the excavation of rock that formed the blocky ejecta necessary to armor the surface and preserve the ice-rich deposits. Pedestal craters, which tend to be smaller in diameter, have the same average deposit thickness as excess ejecta and perched craters, and form in the same geographic regions. They rarely have ejecta around their crater rims, instead exhibiting a smooth pedestal surface. We interpret this to mean that they form from impacts into the same type of ice-rich paleodeposit, but that they do not penetrate through the icy surface layer, and thus do not generate a blocky ejecta covering. Instead, a process related to the impact event appears to produce a thin, indurated surface lag deposit that serves to preserve the ice-rich material. These results provide a new basis to identify the presence of Amazonian non-polar ice-rich deposits, to map their distribution in space and time, and to assess Amazonian climate history. Specifically, the ages, distribution and physical attributes of the crater types suggest that tens to hundreds of meters of ice-rich material has been episodically emplaced at mid latitudes in both hemispheres throughout the Amazonian due to obliquity-driven climate variations. These deposits likely accumulated more frequently in the northern lowlands, resulting in a larger population of all three crater morphologies in the northern hemisphere.  相似文献   

9.
Impact cratering on porous asteroids   总被引:1,自引:0,他引:1  
The increasing evidence that many or even most asteroids are rubble piles underscores the need to understand how porous structures respond to impact. Experiments are reported in which craters are formed in porous, crushable, silicate materials by impacts at 2 km/s. Target porosity ranged from 34 to 96%. The experiments were performed at elevated acceleration on a centrifuge to provide similarity conditions that reproduce the physics of the formation of asteroid craters as large as several tens of kilometers in diameter.Crater and ejecta blanket formation in these highly porous materials is found to be markedly different from that observed in typical dry soils of low or moderate porosity. In highly porous materials, the compaction of the target material introduces a new cratering mechanism. The ejection velocities are substantially lower than those for impacts in less porous materials. The experiments imply that, while small craters on porous asteroids should produce ejecta blankets in the usual fashion, large craters form without ejecta blankets. In large impacts, most of the ejected material never escapes the crater. However, a significant crater bowl remains because of the volume created by permanent compaction of the target material. Over time, multiple cratering events can significantly increase the global density of an asteroid.  相似文献   

10.
The present study focuses both on the influence of impact scale on ejecta expansion and on specific features of ejecta deposits around relatively small craters (i.e., those a few kilometers in width). The numerical model is based on the SOVA multimaterial multidimensional hydrocode, considering subaerial vertical impacts only, applying a 2‐D version of the code to projectiles of 100, 300, and 1000 m diameter. Ejecta can roughly be divided into two categories: “ballistic” ejecta and “convective” ejecta; the ballistic ejecta are the ejecta with which the air interacts only slightly, while the convective ejecta motion is entirely defined by the air flow. The degree of particle/air interaction can be defined by the time/length of particle travel before deceleration. Ejecta size‐distributions for the impacts modeled can be described by the same power law, but the size of maximum fragment increases with scale. There is no qualitative difference between the 100 m diameter projectile case and the 300 m diameter projectile impact. In both cases, fine ejecta decelerate in the air at a small distance from launching point and then rise to the stratosphere by air flows induced by the impacts. In the 1000 m‐scale impact, the mass of ejecta is so large that it moves the atmosphere itself to high altitudes. Thus, the atmosphere cannot decelerate even the fine ejecta and they consequently expand to the rarefied upper atmosphere. In the upper atmosphere, even fine ejecta move more or less ballistically and therefore may travel to high altitudes.  相似文献   

11.
Takaaki Takeda  Keiji Ohtsuki 《Icarus》2009,202(2):514-524
Expanding on our previous N-body simulation of impacts between initially non-rotating rubble-pile objects [Takeda, T., Ohtsuki, K., 2007. Icarus 189, 256-273], we examine effects of initial rotation of targets on mass dispersal and change of spin rates. Numerical results show that the collisional energy needed to disrupt a rubble-pile object is not sensitive to initial rotation of the target, in most of the parameter range studied in our simulations. We find that initial rotation of targets is slowed down through disruptive impacts for a wide range of parameters. The spin-down is caused by escape of high-velocity ejecta and asymmetric re-accumulation of fragments. When these effects are significant, rotation is slowed down even when the angular momentum added by an impactor is in the same direction as the initial rotation of the target. Spin-down is most efficient when the impact occurs in the equatorial plane of the target, because in this case most of the ejected fragments originate from the equatorial region of the target and a significant amount of angular momentum can be easily removed. In the case of impacts from directions inclined relative to the target's equatorial plane, spin-down still occurs with reduced degree, unless impacts occur onto the pole region from the vertical direction. Our results suggest that such spin-down through disruptive impacts may have played an important role in spin evolution of asteroids through collisions in the gravity-dominated regime.  相似文献   

12.
Vertical impacts on the Earth of asteroids 500-3000 km in diameter at 15 km/s have been numerically modelled using the hydrodynamic SOVA code. This code has been modified for the spherical system of coordinates well suited for simulations of very large impacts when the entire Earth is involved in motion. The simulations include cratering process, upward motion of deep mantle layers, fall of ejecta on the Earth, escape of matter to space, and formation of rock vapour atmospheres. The calculations were made for the period preceding disappearance of rock vapour atmospheres caused by radiation several years after the largest impacts. For very large vertical impacts at 15 km/s, escaping masses proved to be negligibly small. Quantities of kinetic, internal, potential, and radiated away energies are obtained as functions of time and space. After the impacts, a global layer of condensed ejecta covers the whole of the Earth's surface and the ejecta energy is sufficient to vaporise an ocean 3 km deep. The mass of rock vapour atmosphere is 10-23% of the impactor mass. This atmosphere has a greater mass than the water atmosphere if impactor is 2000 km in diameter or larger.  相似文献   

13.
Velocity distributions are determined for ejecta from 14 experimental impacts into regolithlike powders in near-vacuum conditions at velocities from 5 to 2321 m/sec. Of the two powders, the finer produces slower ejecta. Ejecta include conical sheets with ray-producing jets and (in the fastest impacts at Vimp ? 700 m/sec) high-speed vertical plumes of uncertain nature. Velocities in the conical sheets and jets increase with impact velocity (Sect. 6). Ejecta velocities also increase as impact energy and crater size increase; a suggested method of estimating ejecta velocity distributions in large-scale impacts involves homologous scaling according to R/Rcrater, where R is radial distances from the crater (Sect. 7). The data are consistent with Holsapple-Schmidt scaling relationships (Sect. 8). The fraction of initial total impact energy partitioned into ejecta kinetic energy increases from around 0.1% for the slow impacts to around 10% for the fast impacts, with the main increase probably at the onset of the hypervelocity impact regime (Sect. 9). Crater shapes are discussed, including an example of a possible “frozen” transient cavity (Sect. 10). Ejecta blanket thickness distributions (as a function of R) vary with target material and impact speed, but the results measured for hypervelocity impacts agree with published experimental and theoretical values (Sect. 11). The low ejecta velocities for powder targets relative to rock targets, together with the paucity of powder ejecta in low-speed impacts ( < 1 projectile mass for Vimp ≈ 10 m/sec) enhance early planetary accretion effeciency beyond that in some earlier theoretical models; 100% efficient accretion is found for certain primordial conditions (Sect. 12).  相似文献   

14.
We report on hydrodynamic calculations of impacts of large (multi-kilometer) objects on Saturn’s moon Titan. We assess escape from Titan, and evaluate the hypothesis that escaping ejecta blackened the leading hemisphere of Iapetus and peppered the surface of Hyperion.We carried out two- and three-dimensional simulations of impactors ranging in size from 4 to 100 km diameter, impact velocities between 7 and 15 km s−1, and impact angles from 0° to 75° from the vertical. We used the ZEUSMP2 hydrocode for the calculations. Simulations were made using three different geometries: three-dimensional Cartesian, two-dimensional axisymmetric spherical polar, and two-dimensional plane polar. Three-dimensional Cartesian geometry calculations were carried out over a limited domain (e.g. 240 km on a side for an impactor of size di = 10 km), and the results compared to ones with the same parameters done by Artemieva and Lunine (2005); in general the comparison was good. Being computationally less demanding, two-dimensional calculations were possible for much larger domains, covering global regions of the satellite (from 800 km below Titan’s surface to the exobase altitude 1700 km above the surface). Axisymmetric spherical polar calculations were carried out for vertical impacts. Two-dimensional plane-polar geometry calculations were made for both vertical and oblique impacts. In general, calculations among all three geometries gave consistent results.Our basic result is that the amount of escaping material is less than or approximately equal to the impactor mass even for the most favorable cases. Amounts of escaping material scaled most strongly as a function of velocity, with high-velocity impacts generating the largest amount, as expected. Dependence of the relative amount of escaping mass fesc = mesc/Mi on impactor diameter di was weak. Oblique impacts (impact angle θi > 45°) were more effective than vertical or near-vertical impacts; ratios of mesc/Mi ∼ 1-2 were found in the simulations.  相似文献   

15.
New three-dimensional hydrodynamic simulations of hypervelocity impacts into the crust of Titan were undertaken to determine the fraction of liquid water generated on the surface of Saturn's largest moon over its history and, hence, the potential for surface—modification of hydrocarbons and nitriles by exposure to liquid water. We model in detail an individual impact event in terms of ejecta produced and melt generated, and use this to estimate melt production over Titan's history, taking into account the total flux of the impactors and its decay over time. Our estimates show that a global melt layer at any time after the very beginning of Titan's history is improbable; but transient melting local to newly formed craters has occurred over large parts of the surface. Local maxima of the melt are connected with the largest impact events. We also calculate the amount of volatiles delivered at the impact with various impact velocities (from 3 km/s for possible Hyperion fragments to 11 km/s for Jupiter family comets) and their retention as a possible source of Titan's atmosphere. We find the probability of impact ejecta escaping Titan with its modern dense and thick atmosphere is rather low, and dispersal of Titan organics throughout the rest of the Solar System requires impactors tens of kilometers in diameter. Water ice melting and exposure of organics to liquid water has been widespread because of impacts, but burial or obscuration of craters by organic deposits or cryovolcanism is aided by viscous relaxation. The largest impactors may breach an ammonia-water mantle layer, creating a circular albedo contrast rather than a crater.  相似文献   

16.
Abstract— A simple analytical solution for subsurface particle motions during impact cratering is useful for tracking the evolution of the transient crater shape at late times. A specific example of such an analytical solution is Maxwell's Z‐Model, which is based on a point‐source assumption. Here, the parameters for this model are constrained using measured ejection angles from both vertical and oblique experimental impacts at the NASA Ames Vertical Gun Range. Data from experiments reveal that impacts at angles as high as 45° to the target's surface generate subsurface flow‐fields that are significantly different from those created by vertical impacts. The initial momentum of the projectile induces a subsurface momentum‐driven flow‐field that evolves in three dimensions of space and in time to an excavation flow‐field during both vertical and oblique impacts. A single, stationary point‐source model (specifically Maxwell's Z‐Model), however, is found inadequate to explain this detailed evolution of the subsurface flow‐field during oblique impacts. Because 45° is the most likely impact angle on planetary surfaces, a new analytical model based on a migrating point‐source could prove quite useful. Such a model must address the effects of the subsurface flow‐field evolution on crater excavation, ejecta deposition, and transient crater morphometry.  相似文献   

17.
We simulate the production and orbital evolution of escaping ejecta due to cometary impacts on Io. The model includes the four Galilean satellites, Amalthea, Thebe, Jupiter's gravitational moments, Saturn and the Sun. Five scenarios are examined: an impact at the apex, the sub-jovian point, the anti-jovian point, the antapex, and at the south pole of Io. We estimate that on average a cometary impact injects thrice its mass (in the form of Io surface material) into jovicentric orbit. The majority of the escaping debris comes back to Io, but a sizeable fraction (between 5.0 and 8.7%) manages to reach Europa, and a smaller fraction Ganymede (between 1.5 and 4.6%). Smaller fractions reached Amalthea Thebe, Callisto, and Jupiter itself. For million year time scales, the mass transfer to Europa is estimated as 1.8-3.1×1014 g/Myr. The median time for transfer of ejecta from Io to Europa is ∼56 years.  相似文献   

18.
We present results of 161 numerical simulations of impacts into 100-km diameter asteroids, examining debris trajectories to search for the formation of bound satellite systems. Our simulations utilize a 3-dimensional smooth-particle hydrodynamics (SPH) code to model the impact between the colliding asteroids. The outcomes of the SPH models are handed off as the initial conditions for N-body simulations, which follow the trajectories of the ejecta fragments to search for the formation of satellite systems. Our results show that catastrophic and large-scale cratering collisions create numerous fragments whose trajectories can be changed by particle-particle interactions and by the reaccretion of material onto the remaining target body. Some impact debris can enter into orbit around the remaining target body, which is a gravitationally reaccreted rubble pile, to form a SMAshed Target Satellite (SMATS). Numerous smaller fragments escaping the largest remnant may have similar trajectories such that many become bound to one another, forming Escaping Ejecta Binaries (EEBs). Our simulations so far seem to be able to produce satellite systems qualitatively similar to observed systems in the main asteroid belt. We find that impacts of 34-km diameter projectiles striking at 3 km s−1 at impact angles of ∼30° appear to be particularly efficient at producing relatively large satellites around the largest remnant as well as large numbers of modest-size binaries among their escaping ejecta.  相似文献   

19.
We present results of 161 numerical simulations of impacts into 100-km diameter asteroids, examining debris trajectories to search for the formation of bound satellite systems. Our simulations utilize a 3-dimensional smooth-particle hydrodynamics (SPH) code to model the impact between the colliding asteroids. The outcomes of the SPH models are handed off as the initial conditions for N-body simulations, which follow the trajectories of the ejecta fragments to search for the formation of satellite systems. Our results show that catastrophic and large-scale cratering collisions create numerous fragments whose trajectories can be changed by particle-particle interactions and by the reaccretion of material onto the remaining target body. Some impact debris can enter into orbit around the remaining target body, which is a gravitationally reaccreted rubble pile, to form a SMAshed Target Satellite (SMATS). Numerous smaller fragments escaping the largest remnant may have similar trajectories such that many become bound to one another, forming Escaping Ejecta Binaries (EEBs). Our simulations so far seem to be able to produce satellite systems qualitatively similar to observed systems in the main asteroid belt. We find that impacts of 34-km diameter projectiles striking at 3 km s−1 at impact angles of ∼30° appear to be particularly efficient at producing relatively large satellites around the largest remnant as well as large numbers of modest-size binaries among their escaping ejecta.  相似文献   

20.
Numerical simulation of impact cratering on granular material   总被引:1,自引:0,他引:1  
Koji Wada  Hiroki Senshu 《Icarus》2006,180(2):528-545
A new numerical code based on the Distinct Element Method (DEM) is developed to study the impact cratering processes on granular material. This code has a potential advantage to simulate the cratering process on granular material, since the movement of discrete particles can be treated. To show the physical plausibility of this code, we conduct 3-D numerical simulations of vertical impact into granular material targets that consist of 384,000 particles, and compare the results with those from experimental studies. It is shown that the excavation stage of cratering derived from experimental studies is represented well by our simulation: the size of the crater cavity, and the ejecta velocity and angle distributions are consistent with those obtained in laboratory experiments. The impact simulation code developed in this study is thus suggested to be useful for the analysis of the impact cratering process on granular material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号