首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface composition of Europa is of special interest due to the information it might provide regarding the presence of a subsurface ocean. One source of this information is the infrared reflectance spectrum. Certain surface regions of Europa exhibit distorted H2O vibrational overtone bands in the 1.5 and 2.0 μm region, as measured by the Galileo mission Near Infrared Mapping Spectrometer (NIMS). These bands are clearly the result of highly concentrated solvated contaminants. However, two interpretations of their identity have been presented. One emphasizes hydrated salt minerals and the other sulfuric acid, although each does not specifically rule out some of the other. It has been pointed out that accurate chemical identification of the surface composition must depend on integrating spectral data with geochemical models, and information on the tenuous atmosphere sputtered from the surface. It is also extremely important to apply detailed chemistry when interpreting the spectral data, including knowledge of mineral dissolution chemistry and the subsequent optical signatures of ion solvation in low-temperature ice. We present studies of flash frozen acid and salt mixtures as Europa surface analogs and demonstrate that solvated protons, metal cations and inorganic anions all influence the spectra and must all, collectively, be considered when assigning Europa spectral features. These laboratory data show best correlation with NIMS Europa spectra for multi-component mixtures of sodium and magnesium bearing sulfate salts mixed with sulfuric acid. The data provide a concentration upper bound of 50-mol% for MgSO4 and 40-mol% for Na2SO4. This newly reported higher sodium and proton content is consistent with low-temperature aqueous differentiation and hydrothermal processing of carbonaceous chondrite-forming materials during the formation and early evolution of Europa.  相似文献   

2.
Loki is the largest patera and the most energetic hotspot on Jupiter's moon Io, in turn the most volcanically active body in the Solar System, but the nature of the activity remains enigmatic. We present detailed analysis of Galileo Near-Infrared Mapping Spectrometer (NIMS) and PhotoPolarimeter/Radiometer (PPR) observations covering the 1.5-100 μm wavelength range during the I24, I27, and I32 flybys. The general pattern of activity during these flybys is consistent with previously proposed models of a resurfacing wave periodically crossing a silicate lava lake. In particular our analysis of the I32 NIMS observations shows, over much of the observed patera, surface temperatures and implied ages closely matching those expected for a wave advancing counterclockwise at 0.94-1.38 km/day. The age pattern is different than other published analyses which do not show as clearly this azimuthal pattern. Our analysis also shows two additional distinctly different patera surfaces. The first is located along the inner and outer margins where components with a 3.00-4.70-μm color temperature of 425 K exist. The second is located at the southwestern margin where components with a 550-K color temperature exist. Although the high temperatures could be caused by disruption of a lava lake crust, some additional mechanism is required to explain why the southwest margin is different from the inner or outer ones. Finally, analysis of the temperature profiles across the patera reveal a smoothness that is difficult to explain by simple lava cooling models. Paradoxically, at a subpixel level, wide temperature distributions exist which may be difficult to explain by just the presence of hot cracks in the lava crust. The resurfacing wave and lava cooling models explain well the overall characteristics of the observations. However, additional physical processes, perhaps involving heat transport by volatiles, are needed to explain the more subtle features.  相似文献   

3.
We present new 1.45-1.75 μm spectra of Europa's dark non-ice material with a spectral resolution (λ/δλ) of 1200, obtained by using adaptive optics on the Keck telescope to spatially separate the spectrum of the non-ice material from that of the surrounding ice-rich regions. Despite the great increase in spectral resolution over the previous best spectra of the non-ice material, taken with Galileo's near-infrared mapping spectrometer (NIMS) with λ/δλ=66, no new fine-scale spectral structure is revealed. The smoothness of the spectra is inconsistent with available laboratory spectra of crystalline hydrated salts at Europa temperatures, but is more consistent with various combinations of non-crystalline hydrated salts and/or hydrated sulfuric acid, as have been matched to the lower-resolution NIMS spectra.  相似文献   

4.
This investigation uses linear mixture modeling employing cryogenic laboratory reference spectra to estimate surface compositions and water ice grain sizes of Europa’s ridged plains and smooth low albedo plains. Near-infrared spectra for 23 exposures of ridged plains materials are analyzed along with 11 spectra representing low albedo plains. Modeling indicates that these geologic units differ both in the relative abundance of non-ice hydrated species and in the abundance and grain sizes of water ice. The background ridged plains in our study area appear to consist predominantly of water ice (∼46%) with approximately equal amounts (on average) of hydrated sulfuric acid (∼27%) and hydrated salts (∼27%). The solutions for the smooth low albedo plains are dominated by hydrated salts (∼62%), with a relatively low mean abundance of water ice (∼10%), and an abundance of hydrated sulfuric acid similar to that found in ridged plains (∼27%). The model yields larger water ice grain sizes (100 μm versus 50-75 μm) in the ridged plains. The 1.5-μm water ice absorption band minimum is found at shorter wavelengths in the low albedo plains deposits than in the ridged plains (1.498 ± .003 μm versus 1.504 ± .001 μm). The 2.0-μm band minimum in the low albedo plains exhibits a somewhat larger blueshift (1.964 ± .006 μm versus 1.983 ± .006 μm for the ridged plains).The study area spans longitudes from 168° to 185°W, which includes Europa’s leading side-trailing side boundary. A well-defined spatial gradient of sulfuric acid hydrate abundance is found for both geologic units, with concentrations increasing in the direction of the trailing side apex. We associate this distribution with the exogenic effects of magnetospheric charged particle bombardment and associated chemical processing of surface materials (the radiolytic sulfur cycle). However, one family of low albedo plains exposures exhibits sulfuric acid hydrate abundances up to 33% lower than found for adjacent exposures, suggesting that these materials have undergone less processing, thus implying that these deposits may have been emplaced more recently.Modeling identifies high abundances (to 30%) of magnesium sulfate brines in the low albedo plains exposures. Our investigation marks the first spectroscopic identification of MgSO4 brine on Europa. We also find significantly higher abundances of sodium-bearing species (bloedite and mirabilite) in the low albedo plains. The results illuminate the role of radiolytic processes in modifying the surface composition of Europa, and may provide new constraints for models of the composition of Europa’s putative subsurface ocean.  相似文献   

5.
The Visual and Infrared Mapping Spectrometer (VIMS) observed the Galilean satellites during the Cassini spacecraft's 2000/2001 flyby of Jupiter, providing compositional and thermal information about their surfaces. The Cassini spacecraft approached the jovian system no closer than about 126 Jupiter radii, about 9 million kilometers, at a phase angle of <90°, resulting in only sub-pixel observations by VIMS of the Galilean satellites. Nevertheless, most of the spectral features discovered by the Near Infrared Mapping Spectrometer (NIMS) aboard the Galileo spacecraft during more than four years of observations have been identified in the VIMS data analyzed so far, including a possible 13C absorption. In addition, VIMS made observations in the visible part of the spectrum and at several new phase angles for all the Galilean satellites and the calculated phase functions are presented. In the process of analyzing these data, the VIMS radiometric and spectral calibrations were better determined in preparation for entry into the Saturn system. Treatment of these data is presented as an example of the VIMS data reduction, calibration and analysis process and a detailed explanation is given of the calibration process applied to the Jupiter data.  相似文献   

6.
We have obtained reflectivity spectra of the trailing and leading sides of all four Galilean satellites with circular variable filter wheel spectrometers operating in the 0.7- to 5.5-μm spectral interval. These observations were obtained at an altitude of 41,000 ft from the Kuiper Airborne Observatory. Features seen in these data include a 2.9-μm band present in the spectra of both sides of Callisto; the well-known 1.5-μm and 2.0-μm combination bands and the previously more poorly defined 3.1-μm fundamental of water ice observed in the spectra of both sides of Europa and Ganymede; and features centered at 1.35 ± 0.1, 2.55 ± 0.1, and 4.05 ± 0.05 μm noted in the spectra of both sides of Io. In an effort to interpret these data, we have compared them with laboratory spectra as well as synthetic spectra constructed with a simple multiple-scattering theory. We attribute the 2.9-μm feature of Callisto's spectra primarily to bound water, with the product of fractional abundance of bound water and mean grain radius in micrometers equaling approximately 3.5 × 10?1 for both sides of the satellite. The fractional amounts of water ice cover on the trailing side of Ganymede, its leading side, and the leading side of Europa were found to be 50 ± 15, 65 ± 15, and 85% or greater, respectively. The bare ground areas on Ganymede have reflectivity properties in the 0.7- to 2.5-μm spectral region comparable to those of Callisto's surface and also have significant quantities of bound water, as does Callisto. Interpretation of the spectrum for the trailing side of Europa is complicated by magnetospheric particle bombardment which causes a perceptible broadening of strong bands, but the ice cover on this side is probably comparable to that on the leading side. These irradiation effects may be responsible for much of the difference in the visual geometric albedos of the two sides of Europa. Minor, but significant, amounts of ferrous-bearing material (either ferrous salts or alkali feldspars but not olivines or pyroxenes) account for the 1.35-μm feature of Io. The two longer wavelength bands are most likely attributable to nitrate salts. Ferrous salts and nitrates can jointly also account for much of the spectral variation in Io's visible reflectivity, thereby eliminating the need to postulate large quantities of sulfur. The absence of noticeable features near 3-μm wavelength in Io's spectra leads to upper bounds of 10% on the fractional cover of water and ammonia ice and 10?3 on the relative abundance of bound water and hydroxylated material on Io. The two sides of Io have similar compositions. We suggest that the systematic increase in fractional water ice cover from Callisto to Ganymede to Europa is bought about by variations in efficiencies of recoating the satellite's surface by interior water brought to the surface, and by the deposition of extrinsic dust. The most important component of the latter is debris, derived from the outer irregular satellites of Jupiter, which impacts the Galilean satellites at relatively low velocities. Europa has the largest water ice cover because its crust is thinnest and thus the frequency of water recoating is the greatest, and because it is farthest from the sources of low-velocity dust. While models which depict Io's surface as consisting primarily of very fine-grained ice are no longer viable, we are unable to definitively distinguish between the salt assemblage and alkali feldspar models. The salt model can better account for Io's reflectivity spectrum from 0.3 to 5 μm, but the absence of appreciable quantities of bound water and hydroxylated material may not be readily understood within the context of that model.  相似文献   

7.
Sulfuric acid hydrate has been proposed as an important species on Europa's surface, the acid being produced by radiolysis of surficial sulfur compounds. We investigated the spectral properties of disordered and crystalline forms of sulfuric acid and suggest that the hydration properties of Europa's hypothesized sulfuric acid lie between two end members: liquid sulfuric acid and its higher crystalline hydrates. The spectra of these end members are similar except for spectral shifts at the band edges. We measured the optical constants of sulfuric acid octahydrate and used these with simple radiative transfer calculations to fit Europa spectra obtained by Galileo's Near Infrared Mapping Spectrometer (NIMS). The global distribution of the hydrate that we associate here with hydrated sulfuric acid shows a strong trailing-side enhancement with a maximum fractional hydrate abundance of 90% by volume, corresponding to a sulfur atom to water molecule ratio of 10%. The hydrate concentration spatially correlates with the ultraviolet and visible absorption of the surface and with the sulfur dioxide concentration. The asymmetric global distribution is consistent with Iogenic plasma ion implantation as the source of the sulfur, possibly modified by electron irradiation and sputtering effects. The variegated distribution also correlates with geologic forms. A high spatial resolution image shows resolved lineae with less hydrate appearing within the lineae than in nearby crustal material. The low concentration of hydrated material in these lineae argues against their conveying sulfurous material to the surface from the putative ocean.  相似文献   

8.
New near-infrared (0.65–2.5 μm) reflectance spectra of the Galilean satellites with 1.5% spectral resolution and ≈2% intensity precision are presented. These spectra more precisely define the water ice absorption features previously identified on Europa, Ganymede, and Callisto at 1.55 and 2.0 μm. In addition, previously unreported spectral features due to water ice are seen at 1.25, 1.06, 0.90, and 0.81 μm on Europa, and at 1.25, 1.04, and possibly 0.71 μm on Ganymede. Unreported absorption features in Callisto's spectrum occur at 1.2 μm, probably due to H2O, and a weak, broad band extending from 0.75 to 0.95 μm, due possibly to other minerals. The spectrum of Io has only weak absorption features at 1.15 μm and between 0.8 and 1.0 μm. No water absorptions are positively identified in the Io spectra, indicating an upper limit of areal water frost coverage of 2% (leading and trailing sides). It is found for Callisto, Ganymede, and Europa that the water ice absorption features are due to free water and not to water bound or absorbed onto minerals. The areal coverage of water frost is ≈ 100% on Europa (trailing side), ≈65% on Ganymede (leading side), and 20–30% on Callisto (leading side). An upper limit of ≈5% bound water (in addition to the 20–30% ice) may be present on Callisto, based on the strong 3-μm band seen by other investigators. A summary of spectra of the satellites from 0.325 to about 5 μm to aid in laboratory and interpretation studies is also presented.  相似文献   

9.
The Pele region of Io has been the site of vigorous volcanic activity from the time of the first Voyager I observations in 1979 up through the final Galileo ones in 2001. There is high-temperature thermal emission from a visibly dark area that is thought to be a rapidly overturning lava lake, and is also the source of a large sulfur-rich plume. We present a new analysis of Voyager I visible wavelength images, and Galileo Solid State Imager (SSI) and Near Infrared Mapping Spectrometer (NIMS) thermal emission observations which better define the morphology of the region and the intensity of the emission. The observations show remarkable correlations between the locations of the emission and the features seen in the Voyager images, which provide insight into eruption mechanisms and constrain the longevity of the activity. We also analyze an additional wavelength channel of NIMS data (1.87 μm) which paradoxically, because of reduced sensitivity, allows us to estimate temperatures at the peak locations of emission. Measurements of eruption temperatures on Io are crucial because they provide our best clues to the composition of the magma. High color temperatures indicative of ultramafic composition have been reported for the Pillan hot spot and possibly for Pele, although recent work has called into question the requirement for magma temperatures above those expected for ordinary basalts. Our new analysis of the Pele emission near the peak of the hot spot shows color temperatures near the upper end of the basalt range during the I27 and I32 encounters. In order to analyze the observed color temperatures we also present an analytical model for the thermal emission from fire-fountains, which should prove generally useful for analyzing similar data. This is a modification of the lava flow emission model presented in Howell (Howell, R.R. [1997]. Icarus 127, 394-407), adapted to the fire-fountain cooling curves first discussed in Keszthelyi et al. (Keszthelyi, L., Jaeger, W., Milazzo, M., Radebaugh, J., Davies, A.G., Mitchell, K.L. [2007]. Icarus 192, 491-502). When applied to the I32 observations we obtain a fire-fountain mass eruption rate of 5.1 × 105 kg s−1 for the main vent area and 1.4 × 104 kg s−1 for each of two smaller vent regions to the west. These fire-fountain rates suggest a solution to the puzzling lack of extensive lava flows in the Pele region. Much of the erupted lava may be ejected at high speed into the fire-fountains and plumes, creating dispersed pyroclastic deposits rather than flows. We compare gas and silicate mass eruption rates and discuss briefly the dynamics of this ejection model and the observational evidence.  相似文献   

10.
We present individual spectra 0.8-2.5 μm of the leading and trailing hemispheres of Enceladus obtained with the CorMASS spectrograph on the 1.8 m Vatican Advanced Technology Telescope (VATT) at the Mount Graham International Observatory. While the absorption bands of water ice dominate the spectrum of both hemispheres, most of these bands are stronger on the leading hemisphere than the trailing hemisphere. In addition, longward of 1 μm, the continuum slope is greater on the leading hemisphere than the trailing hemisphere. These differences could be produced by the presence of particles on the trailing side that are smaller and/or microstructurally more complex than those on the leading side, consistent with the preferential erosion or structural degradation of regolith particle grains on the trailing side by magnetospheric sweeping. We also explore compositional differences between the two hemispheres by applying Hapke spectrophotometric mixture models to the spectra whose components include water ice and ammonia hydrate (1% NH3⋅H2O). We find that spectral models which include as much as 25% by weight ammonia hydrate intimately mixed with water ice and covering 80% of the illuminated area of the satellite fit the observed spectrum of both the leading and trailing hemispheres. Areal (checkerboard) mixing models of ammonia hydrate and water ice fit the leading hemisphere with 15% of the surface comprised of ammonia hydrate and the trailing hemisphere with 10% ammonia hydrate. Therefore, while these spectral data do not contain an unambiguous detection of ammonia hydrate on Enceladus, our spectral models do not preclude the presence of a modest amount of 1% NH3⋅H2O on both hemispheres. We examine spectral differences and similarities between both hemispheres and the tenuous E ring within which Enceladus orbits. The spectral resolution (R=λλ) of these CorMASS data (R∼300) is comparable to but nevertheless higher than that of the Visual-Infrared Mapping Spectrometer (VIMS) (R=225) onboard the Cassini spacecraft.  相似文献   

11.
Zamama, Culann, and Tupan Patera are three large, persistent volcanic centers on the jovian moon Io. As part of an ongoing project to quantify contributions from individual volcanic centers to Io’s thermal budget, we have quantified the radiant flux from all suitable observations made by the Galileo Near Infrared Mapping Spectrometer (NIMS) of these volcanoes, in some cases filling omissions in previous analyses. At Zamama, after a long period of cooling, we see a peak in thermal emission that corresponds with new plume activity. Subsequently, toward the end of the Galileo epoch, thermal emission from Zamama drops off in a manner consistent with a greatly reduced eruption rate and the cooling of emplaced flows. Culann exhibits possible episodic activity. We present the full Tupan Patera NIMS dataset and derive new estimates of thermal output and temporal behavior. Eruption rates at these three volcanoes are on the order of 30 m3 s−1, consistent with a previous analysis of NIMS observations of Prometheus, and nearly an order of magnitude greater than Kilauea volcano, Hawai’i, Earth’s most active volcano. We propose that future missions to the jovian system could better constrain activity at these volcanoes and others where similar styles of activity are taking place by obtaining data on a time scale of, ideally, at least one observation per day. Observations at similar or even shorter timescales are desirable during initial waxing phases of eruption episodes. These eruptions are identifiable from their characteristic spectral signatures and temporal behavior.  相似文献   

12.
The surface composition of Titan is of great importance for understanding both the internal evolution of Titan and its atmosphere. The Visual and Infrared Mapping Spectrometer (VIMS) investigation on Cassini is observing Titan from 0.35 to 5.11 μm with spatial resolution down to a few kilometers during each flyby of the spacecraft as it orbits Saturn. Our search for spectral diversity using seven methane transmission windows in the near infrared suggests that spectrally distinct units exist on the surface of Titan and that most of the surface can be modeled using only a few distinct spectral units: water frost, CO2 frost, atmospheric scattering, and an unknown material bright at 2 μm. A dark, spectrally neutral material is also implied. Use of an atmospheric scattering component with spectral mixing analysis may provide a method for partially removing atmospheric effects. In some locations, atmospheric scattering accounts for the majority of the signal. There are also small regions with unusual spectra that may be due to low signal and high noise and/or may be exotic materials of interest. Further, we searched within the methane windows for spectral features associated with Titan's surface. Only the 5-μm and, to a lesser extent, the 2-μm window provide a reasonable opportunity for this, as the shorter-wavelength windows are too narrow and the 2.8-μm window is cluttered with an unknown atmospheric constituent. We find evidence for only one spectral feature: near 4.92 μm for the 5-μm bright Tui Regio region. CO2 frost with grains smaller than about 10 μm is the best candidate we have found so far to explain this absorption as well as the feature's spectral contrast between the 2.7- and the 2.8-μm atmosphere subwindows. This suggested CO2 identification is supported by the presence of an endmember in the spectral mixture analysis that is consistent with CO2 frost with large grain sizes. We find no other absorption features that are statistically significant, including those reported earlier by others. These results are consistent with but greatly extend our early analysis that treated only the Ta data set [McCord, T.B., et al., 2006a. Planet. Space Sci. 54, 1524-1539]. In the spectral feature search process, we explored in detail the noise characteristics of the VIMS data within the 5-μm window, which has generally very low signal (4-20 DN), due to the measurement conditions and low illumination levels. We find noise of nearly Gaussian statistics except for some erratic darks and noise spikes, and the data set seems generally well behaved. We present examples of our attempt to improve on the standard VIMS pipeline data calibration.  相似文献   

13.
Theoretical predictions of non-synchronous rotation and of polar wander on Europa have been tested by comparing tectonic features observed in Voyager and Galileo spacecraft images with tidal stresses. Evidence for non-synchronous rotation comes from studying changes in global scale lineaments formed over time, from the character of strike-slip faults, and from comparison of distinctively shaped cycloidal cracks with the longitudes at which such shapes should have formed, in theory. The study of cycloids constrains the rotation period (relative to the direction of Jupiter) to less than 250 000 years, while direct comparison of the orientation of Europa in Voyager and Galileo images shows the rotation is slow, with a period of >12 000 years. Comparison of strike-slip faults with their theoretical locations of formation provides evidence for substantial polar wander, supported by the distribution of various thermally produced features.  相似文献   

14.
Galileo's Solid State Imaging experiment (SSI) obtained 36 visible wavelength images of Jupiter's ring system during the nominal mission (Ockert-Bell et al., 1999, Icarus 138, 188-213) and another 21 during the extended mission. The Near Infrared Mapping Spectrometer (NIMS) recorded an observation of Jupiter's main ring during orbit C3 at wavelengths from 0.7 to 5.2 μm; a second observation was attempted during orbit E4. We analyze the high phase angle NIMS and SSI observations to constrain the size distribution of the main ring's micron-sized dust population. This portion of the population is best constrained at high phase angles, as the light scattering behavior of small dust grains dominates at these geometries and contributions from larger ring particles are negligible. High phase angle images of the main ring obtained by the Voyager spacecraft covered phase angles between 173.8° and 176.9° (Showalter et al., 1987, Icarus 69, 458-498). Galileo images extend this range up to 178.6°. We model the Galileo phase curve and the ring spectra from the C3 NIMS ring observation as the combination of two power law distributions. Our analysis of the main ring phase curve and the NIMS spectra suggests the size distribution of the smallest ring particles is a power law with an index of 2.0±0.3 below a size of ∼15 μm that transitions to a power law with an index of 5.0±1.5 at larger sizes. This combined power law distribution, or “broken power law” distribution, yields a better fit to the NIMS data than do the power law distributions that have previously been fit to the Voyager imaging data (Showalter et al., 1987, Icarus 69, 458-498). The broken power law distribution reconciles the results of Showalter et al. (1987, Icarus 69, 458-498) and McMuldroch et al. (2000, Icarus 146, 1-11), who also analyzed the NIMS data, and can be considered as an obvious extension of a simple power law. This more complex size distribution could indicate that ring particle production rates and/or lifetimes vary with size and may relate to the physical processes that control their evolution. The significant near arm/far arm asymmetry reported elsewhere (see Showalter et al., 1987, Icarus 69, 458-498; Ockert-Bell et al., 1999, Icarus 138, 188-213) persists in the data even after the main ring is isolated in the SSI images. However, the sense of the asymmetry seen in Galileo images differs from that seen in Voyager images. We interpret this asymmetry as a broad-scale, azimuthal brightness variation. No consistent association with the magnetic field of Jupiter has been observed. It is possible that these longitudinal variations may be similar to the random brightness fluctuations observed in Saturn's F ring by Voyager (Smith et al., 1982, Science 215, 504-537) and during the 1995 ring plane crossings (Nicholson et al., 1996, Science 272, 509-515; Bosh and Rivkin, 1996, Science 272, 518-521; Poulet et al., 2000, Icarus 144, 135-148). Stochastic events may thus play a significant role in the evolution of the jovian main ring.  相似文献   

15.
We have used Galileo spacecraft data to produce a geomorphologic map of the Culann-Tohil region of Io's antijovian hemisphere. This region includes a newly discovered shield volcano, Ts?i Goab Tholus and a neighboring bright flow field, Ts?i Goab Fluctus, the active Culann Patera and the enigmatic Tohil Mons-Radegast Patera-Tohil Patera complex. Analysis of Voyager global color and Galileo Solid-State Imaging (SSI) high-resolution, regional (50-330 m/pixel), and global color (1.4 km/pixel) images, along with available Galileo Near-Infrared Mapping Spectrometer (NIMS) data, suggests that 16 distinct geologic units can be defined and characterized in this region, including 5 types of diffuse deposits. Ts?i Goab Fluctus is the center of a low-temperature hotspot detected by NIMS late during the Galileo mission, and could represent the best case for active effusive sulfur volcanism detected by Galileo. The Culann volcanic center has produced a range of explosive and effusive deposits, including an outer yellowish ring of enhanced sulfur dioxide (SO2), an inner red ring of SO2 with short-chain sulfur (S3-S4) contaminants, and two irregular green diffuse deposits (one in Tohil Patera) apparently produced by the interaction of dark, silicate lava flows with sulfurous contaminants ballistically-emplaced from Culann's eruption plume(s). Fresh and red-mantled dark lava flows west of the Culann vent can be contrasted with unusual red-brown flows east of the vent. These red-brown flows have a distinct color that is suggestive of a compositional difference, although whether this is due to surface alteration or distinct lava compositions cannot be determined. The main massif of Tohil Mons is covered with ridges and grooves, defining a unit of tectonically disrupted crustal materials. Tohil Mons also contains a younger unit of mottled crustal materials that were displaced by mass wasting processes. Neighboring Radegast Patera contains a NIMS hotspot and a young lava lake of dark silicate flows, whereas the southwest portion of Tohil Patera contains white flow-like units, perhaps consisting of ‘ponds’ of effusively emplaced SO2. From 0°-15° S the hummocky bright plains unit away from volcanic centers contains scarps, grooves, pits, graben, and channel-like features, some of which have been modified by erosion. Although the most active volcanic centers appear to be found in structural lows (as indicated by mapping of scarps), DEMs derived from stereo images show that, with the exception of Tohil Mons, there is less than 1 km of relief in the Culann-Tohil region. There is no discernable correlation between centers of active volcanism and topography.  相似文献   

16.
Louise Prockter  Paul Schenk 《Icarus》2005,177(2):305-326
Europa's Castalia Macula region was comprehensively imaged by the Galileo spacecraft on several orbits, at both local and regional resolutions and with different illumination geometries. Using these datasets we have mapped and identified the different geological units within the Castalia area, and derived digital elevation models (DEMs) of the topography within most of the Castalia Macula region. Using these data sets in combination allows us to map the geology and topography of this area in greater detail than perhaps any other site on Europa. Castalia Macula consists of unusually dark and reddish material, most of which is confined to a broad topographic depression 350 m deep located between two large uplifted domes 900 and 750 m high, to the north and south, respectively. The preservation of topography at the bottom of Castalia Macula indicates that dark material initially filled the depression to a certain depth but was subsequently removed via drainage, resulting in a dark stain up to the original equipotential surface. Superposition and topographic relationships suggest that the Castalia Macula plains deposit formed prior to uplift of both domes, and at least two distinct episodes of chaos formation have occurred near and on top of the northern dome. It appears that Castalia Macula is comparatively young and was active relatively recently, therefore it could provide an ideal place to sample material that has recently been erupted from the subsurface, and may have been in communication with Europa's ocean. These factors combine to make Castalia Macula a very attractive site for a future Europa lander.  相似文献   

17.
Narrowband reflectance spectra (0.53-1.0 μm) of Iapetus' leading and trailing sides were obtained in 2000 to test the presence of an absorption feature located near 0.67 μm seen in reflectance spectra of Iapetus' dark material and Hyperion's surface material. No feature was observed. The difference in reflectance across the UV/VIS/NIR spectral region, and the dependence of the presence or absence of this absorption feature on angular separation from the apex of Iapetus in its orbit, phase angle, and heliocentric distance (affecting temperature), were examined. A trend of increased reddening, and the presence of the absorption feature, correlate with an angular separation from the apex of ? approximately 10°. Spectral information is lost when the contribution of the bright water ice signal to the reflectance spectrum increases sufficiently. In order to optimize compositional studies of Iapetus, we encourage future ground-based and space-based spectral observations to maximize the concentration of dark material in the instrumental field of view.  相似文献   

18.
We have compiled a global geological map of Ganymede that represents the most recent understanding of the satellite based on Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. We discuss the material properties of geological units defined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS with the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. We also use crater density measurements obtained from our mapping efforts to examine age relationships amongst the various defined units. These efforts have resulted in a more complete understanding of the major geological processes operating on Ganymede, especially the roles of cryovolcanic and tectonic processes in the formation of might materials. They have also clarified the characteristics of the geological units that comprise the satellite’s surface, the stratigraphic relationships of those geological units and structures, and the geological history inferred from those relationships. For instance, the characteristics and stratigraphic relationships of dark lineated material and reticulate material suggest they represent an intermediate stage between dark cratered material and light material units.  相似文献   

19.
We produced geologic maps from two regional mosaics of Galileo images across the leading and trailing hemispheres of Europa in order to investigate the temporal distribution of units in the visible geologic record. Five principal terrain types were identified (plains, bands, ridges, chaos, and crater materials), which are interpreted to result from (1) tectonic fracturing and lineament building, (2) cryovolcanic reworking of surface units, with possible emplacement of sub-surface materials, and (3) impact cratering. The geologic histories of both mapped areas are essentially similar and reflect some common trends: Tectonic resurfacing dominates the early geologic record with the formation of background plains by intricate superposition of lineaments, the opening of wide bands with infilling of inter-plate gaps, and the buildup of ridges and ridge complexes along prominent fractures in the ice. It also appears that lineaments are narrower and more widely spaced with time. The lack of impact craters overprinted by lineaments indicate that the degree of tectonic resurfacing decreased rapidly after ridged plains formation. In contrast, the degree of cryovolcanic resurfacing appears to increase with time, as chaos formation dominates the later parts of the geologic record. These trends, and the transition from tectonic- to cryovolcanic-dominated resurfacing could be attributed to the gradual thickening of Europa's cryosphere during the visible geologic history, that comprises the last 2% or 30-80 Myr of Europa's history: An originally thin, brittle ice shell could be pervasively fractured or melted through by tidal and endogenic processes; the degree of fracturing and plate displacements decreased with time in a thickening shell, and lineaments became narrower and more widely spaced; formation of chaos regions could have occurred where the thickness threshold for solid-state convection was exceeded, and can be aided by preferential tidal heating of more ductile ice. In a long-term context it is not clear at this point whether this inferred thickening trend would reflect a drastic change in the thermal evolution of the satellite, or cyclic or irregular episodes of tectonic and cryovolcanic activity.  相似文献   

20.
The Galileo photopolarimeter–radiometer (PPR) made over 100 observations of Europa’s surface temperature. We have used these data to constrain a diurnal thermal model and, thus, map the thermal inertia and bolometric albedo over 20% of the surface. We find an increased thermal inertia at mid-latitudes that is widespread in longitude and does not appear to correlate with geology, albedo, or other observables. Our derived thermophysical properties can be used to predict volatile stability across the surface over the course of a day and in planning of infrared instruments on future missions. Furthermore, while observations in the thermal infrared can and have been used to find endogenic activity, no such activity was detected at Europa. We have calculated the detection limits of these PPR observations and find that 100 km2 hotspots with temperatures of 116–1200 K could exist undetected on the surface, depending on the location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号