首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present results regarding the dynamical meteorology of Jupiter’s White Ovals at different points in their evolution. Starting from the era with three White Ovals FA, BC, and DE (Galileo), continuing to the post-merger epoch with only one Oval BA (Cassini), and finally to Oval BA’s current reddened state (New Horizons), we demonstrate that the dynamics of their flow have similarly evolved along with their appearance. In the Galileo epoch, Oval DE had an elliptical shape with peak zonal wind speeds of ∼90 m s−1 in both its northern and southern peripheries. During the post-merger epoch, Oval BA’s shape was more triangular and less elliptical than Oval DE; in addition to widening in the north-south direction, its northern periphery was 20 m s−1 slower, and its southern periphery was 20 m s−1 faster than Oval DE’s flow during the Galileo era. Finally, in the New Horizons era, the reddened Oval BA had evolved back to a classical elliptical form. The northern periphery of Oval BA increased in speed by 20 m s−1 from Cassini to New Horizons, ending up at a speed nearly identical to that of the northern periphery of Oval DE during Galileo. However, the peak speeds along the southern rim of the newly formed Oval BA were consistently faster than the corresponding speeds in Oval DE, and they increased still further between Cassini and New Horizons, ending up at ∼140-150 m s−1. Relative vorticity maps of Oval BA reveal a cyclonic ring surrounding its outer periphery, similar to the ring present around the Great Red Spot. The cyclonic ring around Oval BA in 2007 appears to be moderately stronger than observed in 1997 and 2001, suggesting that this may be associated with the coloration of the vortex. The modest strengthening of the winds in Oval BA, the appearance of red aerosols, and the appearance of a turbulent, cyclonic feature to Oval BA’s northwest create a strong resemblance with the Great Red Spot from both a dynamical and morphological perspective.In addition to the White Ovals, we also measure the winds within two compact cyclonic regions, one in the Galileo data set and one in the Cassini data set. In the images, these cyclonic features appear turbulent and filamentary, but our wind field reveals that the flow manifests as a coherent high-speed collar surrounding relatively quiescent interiors. Our relative vorticity maps show that the vorticity likewise concentrates in a collar near the outermost periphery, unlike the White Ovals which have peak relative vorticity magnitudes near the center of the vortex. The cyclones contain several localized bright regions consistent with the characteristics of thunderstorms identified in other studies. Although less studied than their anticyclonic cousins, these cyclones may offer crucial insights into the planet’s cloud-level energetics and dynamical meteorology.  相似文献   

2.
We show that between 1996 and 2006, the area circumscribed by the high-speed collar of the Great Red Spot (GRS) shrunk by 15%, while the peak velocities within its collar remained constant. This shrinkage indicates a dynamical change in the GRS because the region circumscribed by the collar is nearly coincident with the location of the potential vorticity anomaly of the GRS. It was previously observed that the area of the clouds associated with the GRS has been shrinking. However, the cloud cover of the GRS is not coincident with the location of its potential vorticity anomaly or any other of its known dynamical features. We show that the peak velocities of the Oval BA were nearly the same in 2000, when the Oval was white, and in 2006, when it was red, as were all of the other features of the two velocities fields. To measure temporal changes in the GRS and Oval, we extracted velocities from images taken with Galileo, Cassini, and the Hubble Space Telescope using a new iterative method called Advection Corrected Correlation Image Velocimetry (ACCIV). ACCIV finds correlations over image pairs with 10-h time separations when other automated velocity-extraction methods are limited to time separations of 2 h or less. Typically, ACCIV velocities produced from images separated by 10 h had errors that are 3-6 times smaller than similar velocities extracted from images separated by 2 h or less. ACCIV produces velocity fields containing hundreds of thousands of independent correlation vectors (tie-points). Dense velocity fields are needed to locate the loci of peak velocities and other features.  相似文献   

3.
We analyze velocity fields of the Great Red Spot (GRS) and Oval BA that were previously extracted from Cassini, Galileo, and Hubble Space Telescope images (Asay-Davis, X.S., Marcus, P.S., Wong, M., de Pater, I. [2009]. Icarus 203, 164-188). Our analyses use reduced-parameter models in which the GRS, Oval BA, and surrounding zonal (east-west) flows are assumed to have piece-wise-constant potential vorticity (PV), but with finite-sized transition regions between the pieces of constant PV rather than sharp steps. The shapes of the regions of constant PV are computed such that the flow is a steady, equilibrium solution of the 2D quasigeostrophic equations when viewed in a frame translating uniformly in the east-west direction. All parameter values of the models, including the magnitudes of the PV, areas of the regions with constant PV, locations of the transition regions, widths of the transition regions, and the value of the Rossby deformation radius, are found with a genetic algorithm such that the velocity produced by the equilibrium solution is a “best-fit” to the observed velocity fields. A Monte Carlo method is used to estimate the uncertainties in the best-fit parameter values.The best-fit results show that there were significant changes (greater than the uncertainties) in the PV of the GRS between Galileo in 1996 and Hubble in 2006. In particular, the shape of the PV anomaly of the GRS became rounder, and the area of the PV anomaly of the GRS decreased by 18%, although the magnitudes of PV in the anomaly remained constant. In contrast, neither the area nor the magnitude of the PV anomaly of the Oval BA changed from 2000, when its cloud cover was white, to 2006, when its cloud cover was red. The best-fit results also show that the areas of the PV anomalies of the GRS and of the Oval BA are smaller than the areas of their corresponding cloud covers at all times. Using the best-fit values of the Rossby deformation radius, we show that the Brunt-Väisälä frequency is 15% larger at 33°S than at 23°S. As expected (Marcus, 1993), the best-fit results show that the PV of the zonal flow has “jumps” at the latitudes of the maxima of the eastward-going jet streams. However, a surprising result is that a large “jump” in the PV of the zonal flow occurs at the location of a maximum of the westward going jet stream neighboring the GRS. Another surprise is that the jumps in the PV of the zonal flow do not all have the same sign, which implies that there is not a monotonic “staircase” of zonal PV from north to south as was anticipated ( [Marcus, 1993] and [McIntyre, 2008]).  相似文献   

4.
We present observations at near-infrared wavelengths (1-5 μm) of Jupiter’s north polar region and Northern Red Oval (NN-LRS-1). The observations were taken with the near-infrared camera NIRC2 coupled to the adaptive optics system on the 10-m W.M. Keck Telescope on UT 21 August 2010. At 5-μm Jupiter’s disk reveals considerable structure, including small bright rings which appear to surround all small vortices. It is striking, though, that no such ring is seen around the Northern Red Oval. In de Pater et al. [2010a. Icarus 210, 742-762], we showed that such rings also exist around all small vortices in Jupiter’s southern hemisphere, and are absent around the Great Red Spot and Red Oval BA. We show here that the vertical structure and extent of the Northern Red Oval is very similar to that of Jupiter’s Red Oval BA. These new observations of the Northern Red Oval, therefore, support the idea of a dichotomy between small and large anticyclones, in which ovals larger than about two Rossby deformation radii do not have 5-μm bright rings. In de Pater et al. [2010a. Icarus 210, 742-762], we explained this difference in terms of the secondary circulations within the vortices. We further compare the brightness distribution of our new 5-μm images with previously published radio observations of Jupiter, highlighting the depletion of NH3 gas over areas that are bright at 5 μm.  相似文献   

5.
We have produced mosaics of the Great Red Spot (GRS) using images taken by the Galileo spacecraft in May 2000, and have measured the winds of the GRS using an automated algorithm that does not require manual cloud tracking. Our technique yields a high-density, regular grid of wind velocity vectors that is advantageous over a limited number of scattered wind vectors that result from manual cloud tracking. The high-velocity collar of the GRS is clearly seen from our velocity vector map, and highest wind velocities are measured to be around 170 m s−1. The high resolution of the mosaics has also enabled us to map turbulent eddies inside the chaotic central region of the GRS, similar to those mapped by Sada et al. [Sada, P.V., Beebe, R.F., Conrath, B.J., 1996. Icarus 119, 311-335]. Using the wind velocity measurements, we computed particle trajectories around the GRS as well as maps of relative and absolute vorticities. We have discovered a narrow ring of cyclonic vorticity that surrounds the main anti-cyclonic high-velocity collar. This narrow ring appears to correspond to a ring surrounding the GRS that is bright in 5 μm [Terrile, R.J., Beebe, R.F., 1979. Science 204, 948-951]. It appears that this cyclonic ring is not a transient feature of the GRS, as we have discovered it in a re-analysis of Galileo data taken in 1996 first analyzed by Vasavada et al. [Vasavada, A.R., and 13 colleagues, 1998. Icarus 135, 265-275]. We also calculate how absolute vorticity changes as a function of latitude along a trajectory around the GRS and compare these measurements to similar ones performed by Dowling and Ingersoll [Dowling, T.E., Ingersoll, A.P., 1988. J. Atmos. Sci. 45, 1380-1396] using Voyager data. We show no dramatic evolution in the structure of the GRS since the Voyager era except for additional evidence for a counter-rotating GRS core, an increase in velocity in the main velocity collar, and an overall decrease in the length of the GRS.  相似文献   

6.
We have measured the internal velocity field in jovian synoptic-scale cyclones and anticyclones by tracking cloud elements in very high spatial resolution images obtained by the Voyager 1 and 2 (in 1979) and Galileo (1996-2000) spacecrafts. In total we have studied 24 different closed vortices (6 cyclones, 18 anticyclones) spanning a latitude range from ∼60° N to 60° S and with East-West sizes larger than ∼2000 km. The tangential component of the velocity as a function of the distance to the vortex center and position angle is used to retrieve the vorticity field. We find that the velocity increases in all the vortices from a nearly quiescent center to a maximum at the vortex periphery, with a record of about 180 m s−1 for the GRS. The vorticity of cyclones and anticyclones increases in general toward their periphery with absolute values in the range from ∼2-14×10−5 s−1. There is a marked tendency to increase the vortices vorticity with their latitude location. However the vorticity does not depend on the vortex size, circulation sense, or ambient background meridional wind shear. The vortex Rossby number ranges from ∼0.2 to 0.5. A study of the interaction between the Great Red Spot with other vortices show that the GRS does not change its vorticity upon their absorption. The two White Ovals mergers showed contradictory results, with greater vorticity in the case of BE, but lower vorticity in the case of BA, although data are poorer for this last case. We present the case of a short lived but large coherent cyclone at −59° that was embedded in a weakly anticyclone wind shear domain. We show that jovian vortices do not follow the simple Kida vortex relationship between vorticity and aspect ratio as it has been previously suggested.  相似文献   

7.
On 14 January and 6 October 2008 the MESSENGER spacecraft passed within 200 km of the surface of Mercury. These flybys by MESSENGER provided the first observations of Mercury from a spacecraft since the Mariner 10 flybys in 1974 and 1975. Data from the Mercury Laser Altimeter (MLA) provided new information on the equatorial shape of Mercury, and Doppler tracking of the spacecraft through the flybys provided new data on the planet’s gravity field. The MLA passes were on opposite hemispheres of the planet and span collectively ∼40% of the equatorial circumference. The mean elevation of topography observed during flyby 1, in the longitude range 0-90°E, is greater than that seen during flyby 2 in the longitude range 180-270°E, indicating an offset between centers of mass and figure having a magnitude and phase in general agreement with topography determined by Earth-based radar. Both MLA profiles are characterized by slopes of ∼0.015° downward to the east, which is consistent with a long-wavelength equatorial shape defined by a best-fitting ellipse. The Doppler tracking data show sensitivity to the gravitational structure of Mercury. The equatorial ellipticity of the gravitational field, C2,2, is well determined and correlates with the equatorial shape. The S2,2 coefficient is ∼0, as would be expected if Mercury’s coordinate system, defined by its rotational state, is aligned along its principal axes of inertia. The recovered value of the polar flattening of the gravitational potential, J2, is considerably lower in magnitude than the value obtained from Mariner 10 tracking, a result that is problematic for internal structure models. This parameter is not as well constrained as the equatorial ellipticity because the flyby trajectories were nearly in the planet’s equatorial plane. The residuals from the Doppler tracking data suggest the possibility of mascons on Mercury, but flyby observations are of insufficient resolution for confident recovery. For a range of assumptions on degree of compensation and crustal and mantle densities, the allowable crustal thickness is consistent with the upper limit of about 100 km estimated from the inferred depth of faulting beneath a prominent lobate scarp, an assumed ductile flow law for crustal material, and the condition that temperature at the base of the crust does not exceed the solidus temperature. The MESSENGER value of C2,2 has allowed an improved estimate of the ratio of the polar moment of inertia of the mantle and crust to the full polar moment (Cm/C), a refinement that strengthens the conclusion that Mercury has at present a fluid outer core.  相似文献   

8.
Jupiter's remaining White Oval changed color in late 2005 and became noticeably red in early 2006, as reported by amateur observers. We present wind and color analyses from high spatial resolution images taken with the Hubble Space Telescope Advanced Camera for Surveys in April 2006. These images suggest that the recent color change was tied to a strengthening of this storm, as implied by increased vorticity, causing it to become more like the Great Red Spot. From a historical perspective, the current activity may be consistent with the generation of new anticyclones at this latitude in the coming months and years.  相似文献   

9.
Measurements of the disk-integrated reflectance spectrum of Mercury and the Moon have been obtained by the MESSENGER spacecraft. A comparison of spectra from the two bodies, spanning the wavelength range 220-1450 nm, shows that the absolute reflectance of Mercury is lower than that of the nearside waxing Moon at the same phase angle with a spectral slope that is less steep at visible and near-infrared wavelengths. We interpret these results and the lack of an absorption feature at a wavelength near 1000 nm as evidence for a Mercury surface composition that is low in ferrous iron within silicates but is higher in the globally averaged abundance of spectrally neutral opaque minerals than the Moon. Similar conclusions have been reached by recent investigations based on observations from both MESSENGER and Mariner 10. There is weak evidence for a phase-reddening effect in Mercury that is slightly larger in magnitude than for the lunar nearside. An apparent absorption in the middle-ultraviolet wavelength range of the Mercury spectrum detected from the first MESSENGER flyby of Mercury is found to persist in subsequent observations from the second flyby. The current model of space weathering on the Moon, which also presumably applies to Mercury, does not provide an explanation for the presence of this ultraviolet absorption.  相似文献   

10.
Stephan et al. (Stephan, K. et al. [2010]. Geophys. Res. Lett. 37, 7104-+.) first saw the glint of sunlight specularly reflected off of Titan’s lakes. We develop a quantitative model for analyzing the photometric lightcurve generated during a flyby in which the specularly reflected light flux depends on the fraction of the solar specular footprint that is covered by liquid. We allow for surface waves that spread out the geographic specular intensity distribution. Applying the model to the VIMS T58 observations shows that the waves on Jingpo Lacus must have slopes of no greater than 0.15°, two orders of magnitude flatter than waves on Earth’s oceans. Combining the model with theoretical estimates of the intensity of the specular reflection allows a tighter constraint on the waves: ?0.05°. Residual specular signal while the specular point lies on land implies that either the land is wetted, the wave slope distribution is non-Gaussian, or that 5% of the land off the southwest edge of Jingpo Lacus is covered in puddles. Another specular sequence off of Kraken Mare acquired during Cassini’s T59 flyby shows rapid flux changes that the static model cannot reproduce. Points just 1 min apart vary in flux by more than a factor of two. The present dataset does not uniquely determine the mechanism causing these rapid changes. We suggest that changing wind conditions, kilometer-wavelength waves, or moving clouds could account for the variability. Future specular observations should be designed with a fast cadence, at least 6 points per minute, in order to differentiate between these hypotheses. Such new data will further constrain the nature of Titan’s lakes and their interactions with Titan’s atmosphere.  相似文献   

11.
A study of the dynamics of the second largest anticyclone in Jupiter, Oval BA, and its red colour change that occurred in late 2005 is presented in a three part study. The first part, this paper, deals with its long-term kinematical and dynamical behaviour monitored since its formation in 2000 to September 2008 using ground-based observations archived at the public International Outer Planet Watch (IOPW) database. The vortex changed its zonal drift velocity from 1.8 m s−1 in the period 2000-2002 to 0.8 m s−1 in 2002-2003, and to 2.5 m s−1 since late 2003. It also migrated southwards by 1.0 ± 0.5° in latitude between 2000 and 2004, remaining afterwards at an almost fixed latitude position. During the period 2000-2007, the oval also changed its triangular-like shape to a more symmetrical one. No latitudinal change was found in the months before the development of a red annulus in its interior. The colour change took place in less than 5 months in 2005-2006 and no red colour feature was observed to have been present or entrained by BA months before the annulus development. After detailed examination of the four encounters between BA and GRS that took place during this 9 year period, we did not detect any noticeable change in its drift rate or in apparent structure associated with the encounters at cloud level. Also, the area of BA did not significantly change in this period. Additionally, we found that BA displays a long-term oscillation of ∼160 days in its longitude position with peak to peak amplitude of 1.2°. Numerical experiments using the global circulation model EPIC reproduce accurately the shape, connecting it to its latitude migration, and morphology of the oval and confirm that no strong interaction between BA and the GRS is possible at least in the current situation.  相似文献   

12.
To constrain the properties of Oval BA before and after it reddened, we use Hubble methane band images from 1994 to 2009 to find that the distribution of upper tropospheric haze atop the oval and its progenitors remained unchanged, with reflectivity variations of less than 10% over this time span. We quantify measurement uncertainties and short-term fluctuations in velocity fields extracted from Cassini and Hubble data, and show that there were no significant changes in the horizontal velocity field of Oval BA in 2000, 2006, and 2009. Based on models of the oval’s dynamics, the static stability of the oval’s surroundings was also unchanged.The vertical extent of the oval did not change, based on the unchanged haze reflectivity and unchanged stratification. Published vortex models require Brunt-Väisälä frequencies of about 0.08 s−1 at the base of the vortex, and we combine this value with a review of prior constraints on the vertically variable static stability in Jupiter’s troposphere to show that the vortex must extend down to the condensation level of water in supersolar abundance.The only observable change was an increase in short-wavelength optical absorption that appeared not at the core of the oval, but in a red annulus. The secondary circulation in the vortex keeps this red annulus warmer than the vortex core. Although the underlying cause of the color change cannot be proven, we explore the idea that the new chromophores in the red annulus may be related to a global or hemispheric temperature change.  相似文献   

13.
The global circulation of the Venus atmosphere is characterized at cloud level by a zonal super rotation studied over the years with data from a battery of spacecrafts: orbiters, balloons and probes. Among them, the Galileo spacecraft monitored the Venus atmosphere in a flyby in February 1990 in its route toward Jupiter. Since the flyby was almost equatorial, published analysis of zonal winds obtained from displacements of cloud elements on images obtained by the SSI camera [Belton, M.J.S., and 20 colleagues, 1991. Science 253, 1531-1536] stop at latitudes 50° north and south. In this paper we present new results on Venus winds based on a reanalysis of an extended set of images obtained at two wavelengths, 418 nm (violet) and 986 nm (near infrared), that sense different altitude levels in the upper cloud. Our main result is that we have been able to extend the zonal wind profile up to the polar latitudes: 70° N and 70° S at 418 nm and 70° N at 986 nm. Binned and smoothed profiles are given in tabular form. We show that the zonal winds drop in their velocity poleward of latitudes 45° N and 50° S where an intense meridional wind shear develops at the two cloud levels. Our data confirm the magnitude of this shear, retrieved previously from radio occultation data, but disagrees with it in the latitudinal location of the sheared region. The new wind data can be used to recalibrate the zonal winds retrieved from the previous measurements of the temperature field and the cyclostrophic balance assumption. The meridional profiles of the zonal winds at the two cloud levels are used to assess the vertical wind shear in the upper cloud layer as a function of latitude and locate the most unstable region.  相似文献   

14.
We present observations and theoretical calculations to derive the vertical structure of and secondary circulation in jovian vortices, a necessary piece of information to ultimately explain the red color in the annular ring inside Jupiter’s Oval BA. The observations were taken with the near-infrared detector NIRC2 coupled to the adaptive optics system on the 10-m W.M. Keck telescope (UT 21 July 2006; UT 11 May 2008) and with the Hubble Space Telescope at visible wavelengths (UT 24 and 25 April 2006 using ACS; UT 9 and 10 May 2008 using WFPC2). The spatial resolution in the near-IR (∼0.1–0.15″ at 1–5 μm) is comparable to that obtained at UV–visible wavelengths (∼0.05–0.1″ at 250–890 nm). At 5 μm we are sensitive to Jupiter’s thermal emission, whereas at shorter wavelengths we view the planet in reflected sunlight. These datasets are complementary, as images at 0.25–1.8 μm provide information on the clouds/hazes in the troposphere–stratosphere, while the 5-μm emission maps yield information on deeper layers in the atmosphere, in regions without clouds. At the latter wavelength numerous tiny ovals can be discerned at latitudes between ∼45°S and 60°S, which show up as rings with diameters ?1000 km surrounding small ovals visible in HST data. Several white ovals at 41°S, as well as a new red oval that was discovered to the west of the GRS, also reveal 5-μm bright rings around their peripheries, which coincide with dark/blue rings at visible wavelengths. Typical brightness temperatures in these 5-μm bright rings are 225–250 K, indicative of regions that are cloud-free down to at least the ∼4 bar level, and perhaps down to 5–7 bar, i.e., well within the water cloud.Radiative transfer modeling of the 1–2 μm observations indicates that all ovals, i.e., including the Great Red Spot (GRS), Red Oval BA, and the white ovals at 41°S, are overall very similar in vertical structure. The main distinction between the ovals is caused by variations in the particle densities in the tropospheric–stratospheric hazes (2–650 mbar). These are 5–8 times higher above the red ovals than above the white ones at 41°S. The combination of the 5-μm rings and the vertical structure derived from near-IR data suggests anticyclones to extend vertically from (at least) the water cloud (∼5 bar) up to the tropopause (∼100–200 mbar), and in some cases into the stratosphere.Based upon our observations, we propose that air is rising along the center of a vortex, and descending around the outer periphery, producing the 5-μm bright rings. Observationally, we constrain the maximum radius of these rings to be less than twice the local Rossby deformation radius, LR. If the radius of the visible oval (i.e., the clouds that make the oval visible) is >3000 km, our observations suggest that the descending part of the secondary circulation must be within these ovals. For the Red Oval BA, we postulate that the return flow is at the location of its red annulus, which has a radius of ∼3000 km.We develop a theory for the secondary circulation, where air is (baroclinically) rising along the center of a vortex in a subadiabatic atmosphere, and descending at a distance not exceeding ∼2× the local Rossby deformation radius. Using this model, we find a timescale for mixing throughout the vortex of order several months, which suggests that the chromophores that are responsible for the red color of Oval BA’s red annulus must be produced locally, at the location of the annulus. This production most likely results from the adiabatic heating in the descending part of the secondary circulation. Such higher-than-ambient temperature causes NH3–ice to sublime, which will expose the condensation nuclei, such as the red chromophores.  相似文献   

15.
The Kelvin-Helmholtz instability is believed to be an important means for the transfer of energy, plasma, and momentum from the solar wind into planetary magnetospheres, with in situ measurements reported from Earth, Saturn, and Venus. During the first MESSENGER flyby of Mercury, three periodic rotations were observed in the magnetic field data possibly related to a Kelvin-Helmholtz wave on the dusk side magnetopause. We present an analysis of the event, along with comparisons to previous Kelvin-Helmholtz observations and an investigation of what influence finite ion gyro radius effects, believed to be of importance in the Hermean magnetosphere, may have on the instability. The wave signature does not correspond to that of typical Kelvin-Helmholtz events, and the magnetopause direction does not show any signs of major deviation from the unperturbed case. There is thus no indication of any high amplitude surface waves. On the other hand, the wave period corresponds to that expected for a Kelvin-Helmholtz wave, and as the dusk side is shown to be more stable than the dawn side, we judge the observed waves not to be fully developed Kelvin-Helmholtz waves, but they may be an initial perturbation that could cause Kelvin-Helmholtz waves further down the tail.  相似文献   

16.
Interplanetary scintillation (IPS) measurements of the solar wind speed for the distance range between 13 and 37 R S were carried out during the solar conjunction of the Nozomi spacecraft in 2000?–?2001 using the X-band radio signal. Two large-aperture antennas were employed in this study, and the baseline between the two antennas was several times longer than the Fresnel scale for the X-band. We successfully detected a positive correlation of IPS from the cross-correlation analysis of received signal data during ingress, and estimated the solar wind speed from the time lag corresponding to the maximum correlation by assuming that the solar wind flows radially. The speed estimates range between 200 and 540?km?s?1 with the majority below 400?km?s?1. We examined the radial variation in the solar wind speed along the same streamline by comparing the Nozomi data with data obtained at larger distances. Here, we used solar wind speed data taken from 327 MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, and in?situ measurements by the Advanced Composition Explorer (ACE) for the comparison, and we considered the effect of the line-of-sight integration inherent to IPS observations for the comparison. As a result, Nozomi speed data were proven to belong to the slow component of the solar wind. Speed estimates within 30 R S were found to be systematically slower by 10?–?15 % than the terminal speeds, suggesting that the slow solar wind is accelerated between 13 and 30 R S.  相似文献   

17.
A study is made of electron concentration altitude profiles within the F1-layer. By using a mathematical model with a variety of atmospheric conditions and neutral air wind patterns we demonstrate the appearance of a daytime valley. Such valleys have been observed at St. Santin during summer for low-to-moderate levels of solar activity by Taieb et al. (1975,1978). Our calculations show that a valley occurs when there is a vertical shear in the meridional component of the neutral air wind velocity. This wind component must be directed poleward below the shear and equatorward above the shear. A valley will also occur when the meridional component of the neutral air wind velocity is directed poleward at all altitudes within the F1-region provided there is a rapid change in the velocity. We conclude from our results that the non-appearance of a valley at St. Santin during the winter and solar maximum observation periods of Taieb et al. (1975) is due to the neutral air wind pattern having an inappropriate form. Thus, it appears from observational evidence of the F1-layer that the pressure gradients existing in the neutral air during winter and at a solar maximum are unable to produce a wind pattern capable of producing a valley in the electron concentration profile.  相似文献   

18.
The roughness of a planetary surface offers clues to its past geologic history. We apply a surface roughness model developed by Buratti and Veverka (Buratti, B.J., Veverka, J. [1985]. Icarus 64, 320-328) to Cassini ISS data from the January 1st, 2005 flyby of Iapetus. This model uses the observed scattering behavior to provide a depth to radius factor q quantifying the size of idealized craters on the surface. Our findings indicate that the surface on the dark side is significantly smoother than the surfaces of other icy low-albedo saturnian satellites. We have found that the average depth to radius on the leading (dark) side is 0.084, corresponding to a Hapke mean slope angle of 6°. As compared to the 13-33° Hapke mean slope angle of other icy satellites (Buratti, B.J., and 10 colleagues [2008]. Icarus 193, 309-322), our results present a clearly different picture for the leading surface of Iapetus, suggesting that the dark deposit contributes to the decrease in macroscopic surface roughness of the leading side. Attempts were made to obtain an average depth to radius value for the trailing (bright) side; however the scans of the bright side from this flyby exhibited large variations in albedo, resulting in results that were physically unrealistic.  相似文献   

19.
Images of comet Hyakutake (C/1996 B2) are analyzed in conjunction with solar wind data from spacecraft to determine the relationship between solar wind conditions and plasma tail morphology. The disconnection event (DE) on March 25, 1996 is analyzed with the aid of data from the IMP-8 and WIND Earth-orbiting spacecraft and the DE is found to be correlated with a crossing of the heliospheric current sheet. The comet was within of Earth at the time of the DE and data from IMP-8 and WIND show no high-speed streams, significant density enhancements or shocks.The latitudinal variation in the appearance and orientation of the plasma tail are interpreted based on results from the Ulysses spacecraft. In the polar solar wind region, the comet has a relatively undisturbed appearance, no DEs were observed, and the orientation of the plasma tail was consistent with a higher solar wind speed. In the equatorial solar wind region, the comet's plasma tail had a disturbed appearance, a major DE was observed, and the orientation of the plasma tail was consistent with a lower solar wind speed. The boundary between the equatorial and polar regions crossed by comet Hyakutake in April 1996 was near 30°N (ecliptic) or 24°N (solar) latitude.  相似文献   

20.
The MESSENGER spacecraft flyby of Mercury on 14 January 2008 provided a new opportunity to study the intrinsic magnetic field of the innermost planet and its interaction with the solar wind. The model presented in this paper is based on the solution of the three-dimensional, bi-fluid equations for solar wind protons and electrons in the absence of mass loading. In this study we provide new estimates of Mercury’s intrinsic magnetic field and the solar wind conditions that prevailed at the time of the flyby. We show that the location of the boundary layers and the strength of the magnetic field along the spacecraft trajectory can be reproduced with a solar wind ram pressure Psw = 6.8 nPa and a planetary magnetic dipole having a magnitude of 210 RM3 − nT and an offset of 0.18 RM to the north of the equator, where RM is Mercury’s radius. Analysis of the plasma flow reveals the existence of a stable drift belt around the planet; such a belt can account for the locations of diamagnetic decreases observed by the MESSENGER Magnetometer. Moreover, we determine that the ion impact rate at the northern cusp was four times higher than at the southern cusp, a result that provides a possible explanation for the observed north-south asymmetry in exospheric sodium in the neutral tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号