首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Stellar occultations by Saturn’s rings observed with the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft reveal that dusty features such as the F ring and the ringlets in the Encke and the Laplace Gaps have distinctive infrared transmission spectra. These spectra show a narrow optical depth minimum at wavelengths around 2.87 μm. This minimum is likely due to the Christiansen Effect, a reduction in the extinction of small particles when their (complex) refractive index is close to that of the surrounding medium. Simple Mie-scattering models demonstrate that the strength of this opacity dip is sensitive to the size distribution of particles between 1 and 100 μm across. Furthermore, the spatial resolution of the occultation data is sufficient to reveal variations in the transmission spectra within and among these rings. In both the Encke Gap ringlets and F ring, the opacity dip weakens with increasing local optical depth, which is consistent with the larger particles being concentrated near the cores of these rings. The Encke Gap ringlets also show systematically weaker opacity dips than the F ring and Laplace Gap ringlet, implying that the former has a smaller fraction of grains less than ∼30 μm across. However, the strength of the opacity dip varies most dramatically within the F ring; certain compact regions of enhanced optical depth lack an opacity dip and therefore appear to have a greatly reduced fraction of grains in the few-micron size range. Such spectrally-identifiable structures probably represent a subset of the compact optically-thick clumps observed by other Cassini instruments. These variations in the ring’s particle size distribution can provide new insights into the processes of grain aggregation, disruption and transport within dusty rings. For example, the unusual spectral properties of the F-ring clumps could perhaps be ascribed to small grains adhering onto the surface of larger particles in regions of anomalously low velocity dispersion.  相似文献   

2.
Irregular structure in planetary rings is often attributed to the intrinsic instabilities of a homogeneous state undergoing Keplerian shear. Previously these have been analysed with simple hydrodynamic models. We instead employ a kinetic theory, in which we solve the linearised moment equations derived in Shu and Stewart 1985 for a dilute ring. This facilitates an examination of velocity anisotropy and non-Newtonian stress, and their effects on the viscous and viscous/gravitational instabilities thought to occur in Saturn's rings. Because we adopt a dilute gas model, the applicability of our results to the actual dense rings of Saturn are significantly curtailled. Nevertheless this study is a necessary preliminary before an attack on the difficult problem of dense ring dynamics. We find the Shu and Stewart formalism admits analytic stability criteria for the viscous overstability, viscous instability, and thermal instability. These criteria are compared with those of a hydrodynamic model incorporating the effective viscosity and cooling function computed from the kinetic steady state. We find the two agree in the ‘hydrodynamic limit’ (i.e., many collisions per orbit) but disagree when collisions are less frequent, when we expect the viscous stress to be increasingly non-Newtonian and the velocity distribution increasingly anisotropic. In particular, hydrodynamics predicts viscous overstability for a larger portion of parameter space. We also numerically solve the linearised equations of the more accurate Goldreich and Tremaine 1978 kinetic model and discover its linear stability to be qualitatively the same as that of Shu and Stewart's. Thus the simple collision operator adopted in the latter would appear to be an adequate approximation for dilute rings, at least in the linear regime.  相似文献   

3.
Steady-state solutions for the optical thickness of Saturn's rings are studied in terms of Hämeen-Anttila's (1983) theory of bimodal gravitating systems. The elastic properties of particles determine the behaviour of the rarefied mode (gaps), while the dense mode (ringlets) depends on the size and the internal density of the particles. In the outer parts of the rings the dense mode is unstable against the growth of gravitational perturbations. Inside the Roche distance this produces only very narrow ring-shaped configurations with helical orbits around them, and the system is not destroyed. The outer boundary of the rings corresponds to the distance beyond which the gravitational instability transforms the dense mode into strictly local condensations (moons). The inner boundary of the ring system is caused by the absence of dense mode near Saturn. The rarefied mode is stable in a larger region.  相似文献   

4.
The effects of partially elastic collisions on a dense system of particles moving in Keplerian orbits are studied. As in the case of a low-density system (Hämeen-Anttila, 1975), evolution leads to the formation of separate ringlets. The results reveal an anisotropic structure of matter, which may explain some peculiarities in the photometry of Saturn's rings.  相似文献   

5.
We study the viscosity of a differentially rotating particle disk in the limiting case where the particles are densely packed and their collective behavior resembles that of a liquid. The pressure tensor is derived from the equations of hydrodynamics and from a simple kinetic model of collisions described by Haff (1983). We find that density waves and narrow circular rings are unstable if the liquid approximation applies. The resulting development of nonlinear perturbations may give rise to “splashing” of the ring material in the vertical direction. These results may help in understanding the origin of the ellipticities of ringlets, the nonaxisymmetric features near the outer edge of the Saturnian B ring, and the unexplained residuals in kinematic models of the Saturnian and Uranian rings.  相似文献   

6.
A statistical theory of Keplerian orbits is constructed for a system of particles, which are subject to partially elastic collisions. If the elasticity decreases with collisional velocity, the system shows an increased tendency to form condensations. Near the central body they are concentric rings, which are separated by gaps void of matter. At larger distances outside the Roche limit, the condensations probably form larger bodies. An application to Saturn's rings suggests that at least rings A and C would consist of separate ringlets.  相似文献   

7.
We show that the combined effect of electrodynamic and gravitational forces can account for a number of features observed by Voyagers 1 and 2 in the isolated fine dust rings of Saturn. These include (a) the appearance and disappearnce of the braids in the F-ring, (b) the eccentricities of the F-ring and the ringlets within the Encke and Cassine divisions and a gap in the C-ring, and (c) the kinks in the eccentric Encke ring. They may also account for the very existence of these rings.  相似文献   

8.
The correction terms which are introduced by non-zero size of the particles into the mechanics of Keplerian systems can be replaced by relatively simple approximations which agree with computer simulations. The theory of finite particles confirms the bimodality of collisional systems which has previously been discussed in terms of the mass-point approximation. In Saturn's rings the ringlets correspond to the degenerate mode while the matter which fills the gaps is in the non-degenerate state. The predicted volume density of the ringlets (the fraction of space which is occupied by the particles), 0.2, is much higher than the conventional value which follows from the theory of mutual shadowing. Therefore, the opposition effect of Saturn's rings must originate in the particles themselves. The transition from one mode to the other which is needed to create a dense ring in a cloud of small particles follows from the growth of mass in the central body. This may be a recently-formed planet; but, more probably, the transition occurs in a loose pre-planetary disc.  相似文献   

9.
This paper suggests that Saturn's magnetic field is, in part, responsible for the very fine-scale radial features, or ringlets, seen in the ring-system. The planet's dipole field interacts with slight radial variations in plasma density, and the operation of an instability segregates the magnetic flux and plasma in the ring-plane into narrow alternating zones.We suggest that this mechanism may act by itself to give rise to the inner ringlets. At greater radial distances we believe it amplifies gravitational resonances.  相似文献   

10.
《New Astronomy》2007,12(3):165-168
We derive the bulk viscous damping timescale of hybrid stars, neutron stars with quark matter core. The r-mode instability windows of the stars show that the theoretical results are consistent with the rapid rotation pulsar data, which may give an indication for the existence of quark matter in the interior of neutron stars. Hybrid stars instead of neutron or strange stars may lead to submillisecond pulsars.  相似文献   

11.
A ringlet of Saturn, Uranus, Neptune or Jupiter may be composed of particles held in contact by their mutual gravitation, without relative motion. Lacking tensile strength, each part of the ringlet orbits as if it were a separate particle, but all parts are constrained to the same orbit by their contacts. Slight shear strength prevents flow. This configuration is stable inside Roche's limit, and outside an inner limit within which it would scatter. These limits depend on the density of the ringlet. Conversely, for an observed radius in a ring, a range of possible density is calculated. For Saturn's ring system, the density of a ringlet at the inner edge of the C ring must be at least 2.0 g cm-3 and in the outer F ring not more than 0.73. For Uranus, the inner ring must be at least 2.3, and the outer between 1.0 and 2.3. Jupiter's ring must be in the range 1.4 to 3.9, and Neptune's, in the range 0.6 to 1.5. In extended crowded regions of a ring system, the gaps between ringlets must be at least 38% as wide as the ringlets, in the outer portions of the system, and wider than that at smaller radii. Certain observations can be explained by this model, including the sharp edges of the rings, a long life of the system, the possible existence of a partial ring, asymmetry of brightness of Saturn ring A, and forward scattering of radio waves.  相似文献   

12.
The paper is based on Holberg's analysis of the Voyager photographs in both reflected and transparent light, combined with occultation data of stars seen through the rings. Besides rapidly varying phenomena (spokes, braided ring, etc.), which according to Mendis are due to gravito-electromagnetic effects, the ring consists of abulk structure, a fine structure, and also ahyperfine structure, showing more than 10000 ringlets. The large number of ringlets can be explained by the Baxter-Thompson ‘negative diffusion’. This gives the ringlets a stability which makes it possible to interprete them as ‘fossils’, which originated at cosmogonic times. It is shown that thebulk structure can be explained by the combined ‘cosmogonic shadows’ of Mimas, the co-orbiting satellites, and the Shepherd satellites. This structure originated at the transition from the plasma phase to the planetesimal phase (which probably took place 4–5×109 y ago). Further, Holberg has discovered that the shadows are not simple void region but exhibit a certain characteristic ‘signature’. This is not yet understood theoretically. Parts of thefine structure are explained by Holberg as resonances with the satellites. Parts are here interpreted as cosmogonic shadow effects. However, there are a number of ringlets which can neither be explained by cosmogonic nor by resonance effects. The most important conclusion is that an analysis of the ring data is likely to lead to areconstruction of the plasma-planetesimal transition with an accuracy of a few percent.  相似文献   

13.
Ryuji Morishima  Heikki Salo 《Icarus》2006,181(1):272-291
Previous self-gravitating simulations of dense planetary rings are extended to include particle spins. Both identical particles as well as systems with a modest range of particle sizes are examined. For a ring of identical particles, we find that mutual impact velocity is always close to the escape velocity of the particles, even if the total rms velocity dispersion of the system is much larger, due to collective motions associated to wakes induced by near-gravitational instability or by viscous overstability. As a result, the spin velocity (i.e., the product of the particle radius and the spin frequency) maintained by mutual impacts is also of the order of the escape velocity, provided that friction is significant. For the size distribution case, smaller particles have larger impact velocities and thus larger spin velocities, particularly in optically thick rings, since small particles move rather freely between wakes. Nevertheless, the maximum ratio of spin velocities between the smallest and largest particles, as well as the ratio for translational velocities, stays below about 5 regardless of the width of the size distribution. Particle spin state is one of the important factors affecting the temperature difference between the lit and unlit face of Saturn's rings. Our results suggest that, to good accuracy, the spin frequency is inversely proportional to the particle size. Therefore, the mixing ratio of fast rotators to slow rotators on the scale of the thermal relaxation time increases with the width of the particle size distribution. This will offer means to constrain the particle size distribution with the systematic thermal infrared observations carried by the Cassini probe.  相似文献   

14.
We analyze stellar occultations by Saturn's rings observed with the Cassini Ultraviolet Imaging Spectrograph and find large variations in the apparent normal optical depth of the B ring with viewing angle. The line-of-sight optical depth is roughly independent of the viewing angle out of the ring plane so that optical depth is independent of the path length of the line-of-sight. This suggests the ring is composed of virtually opaque clumps separated by nearly transparent gaps, with the relative abundance of clumps and gaps controlling the observed optical depth. The observations can be explained with a model of self-gravity wakes like those observed in the A ring. These trailing spiral density enhancements are due to the competing processes of self-gravitational accretion of ring particles and Kepler shear. The B ring wakes are flatter and more closely packed than their neighbors in the A ring, with height-to-width ratios <0.1 for most of the ring. The self-gravity wakes are seen in all regions of the B ring that are not opaque. The observed variation in total B ring optical depth is explained by the amount of relatively empty space between the self-gravity wakes. Wakes are more tightly packed in regions where the apparent normal optical depth is high, and the wakes are more widely spaced in lower optical depth regions. The normal optical depth of the gaps between the wakes is typically less than 0.5 and shows no correlation with position or overall optical depth in the ring. The wake height-to-width ratio varies with the overall optical depth, with flatter, more tightly packed wakes as the overall optical depth increases. The highly flattened profile of the wakes suggests that the self-gravity wakes in Saturn's B ring correspond to a monolayer of the largest particles in the ring. The wakes are canted to the orbital direction in the trailing sense, with a trend of decreasing cant angle with increasing orbital radius in the B ring. We present self-gravity wake properties across the B ring that can be used in radiative transfer modeling of the ring. A high radial resolution (∼10 m) scan of one part of the B ring during a grazing occultation shows a dominant wavelength of 160 m due to structures that have zero cant angle. These structures are seen at the same radial wavelength on both ingress and egress, but the individual peaks and troughs in optical depth do not match between ingress and egress. The structures are therefore not continuous ringlets and may be a manifestation of viscous overstability.  相似文献   

15.
W.-H. Ip 《Icarus》1983,54(2):253-262
As the erosion rate of the Saturnian rings resulting from meteoroid bombardment can be quite significant in the evolutionary history of the ring system, a simple model is constructed to study the relevant dynamics of ballistic transport of the impact ejecta. The combined process of collision with the ring plane particles, with the impact probability related to the optical depth and inelastic rebound from the ring plane until the random motion of the particle is effectively damped, is traced by using the Monte Carlo method. The numerical results indicate that the final distribution of the ejecta depends very much on the initial ejection velocity. For high-velocity fragments, their distribution tends to follow the optical depth variation of the rings. But for low-velocity fragments, pronounced edge effect with ejected particles accumulated at the boundaries of optical depth discontinuities could result. Therefore, in a global scale, the large increase of optical depth near the inner edge of the B ring, for example, as well as the depletion of micrometer-sized particles in the B ring and the Cassini division may be interpreted by the mechanism of ballistic transport. The edge effect found in the calculations might also be closely related to the formation of sharp edges and double peaks in a number of narrow ringlets. (The simultaneous operation of ballistic transport diffusion and gravitational resonant effects of satellites remains to be investigated.)  相似文献   

16.
We show that particles orbiting a central body (i.e., Saturn's rings) can be assembled into one or more dense (i.e., opaque) independent rings without interparticle collisions taking place despite the inevitable particle oscillations about the ring plane. The resultant apparent bulk motion is a slow “rolling” motion of the ring, as it orbits, the individual rings describing a “helical” motion. Such rings would only evolve due to external perturbations or (slow) internal gravitational perturbations, since the particles need never collide. This picture opens up the possibility of having hollow rings, for example. Moreover, it is possible that an initially uniform disk of randomly moving particles may spontaneously separate into a series of such rings. The consequence would be a striated disk having virtually zero internal viscosity.  相似文献   

17.
A dust disc within a planetary magnetosphere constitutes a novel type of dust-ring current. Such an azimuthal current carrying dust disc is subject to the dusty plasma analog of the well known finite-resistivity ‘tearing’ mode instability in regular plasma current sheets, at long wavelengths. It is proposed that the presently observed fine ringlet structure of the Saturnian ring system is a relic of this process operating at cosmogonic times and breaking up the initial proto-ring (which may be regarded as an admixture of fine dust and plasma) into an ensemble of thin ringlets. It is shown that this instability developes at a rate that is many orders of magnitude faster than any other known instability, when the disc thickness reaches a value that is comparable to its present observed value.  相似文献   

18.
We analyze data sets obtained with the Composite Infrared Spectrometer (CIRS) onboard the Cassini spacecraft after the Saturn Orbit Insertion (SOI). Using the mid-IR interferometer's FP3 channel (600-1100 cm−1), we derive radial temperature profiles for the C ring with a spatial resolution never achieved before. For the first time, the C ring's plateaus and ringlets can be clearly separated from the optically thinner background and their thermal behavior is studied separately for different viewing geometries. In particular, thermal phase curves derived for the plateaus reveal an interesting surge near 0° phase, not observed in the background. We show that mutual shadowing in the plateaus can explain the existence of the surge but is not sufficient to model the phase curves in detail. By analogy with thermal emission of asteroid surfaces we discuss the possible influence of small scale and large scale roughness of the ring structure itself. Because infrared emissivity cannot be derived without being deconvolved from the ‘structural’ filling factor, we examine temperature and filling factors measurements at opposition where the filling factor is most constrained. The occurrence of higher temperatures in the plateaus than in the background near opposition likely arises from enhanced mutual heating between particles, multiple scattering and surface roughness combined with a higher single-scattering albedo.  相似文献   

19.
The radio occultation technique is developed here as a new method for the study of the physical properties of planetary ring systems. Particular reference is made to geometrical and system characteristics of the Voyager dual-wavelength (13 and 3.6 cm) experiment at Saturn. The rings are studied based on the perturbations they introduce in the spectrum of coherent sinusoidal radio signals transmitted through the rings from a spacecraft in the vicinity of the planet to Earth. Two separate signal components are identified in a perturbed spectrum: a sinusoidal component that remains coherent with the incident signal but is reduced in intensity and possibly changed in phase, and a Doppler-broadened incoherent component whose spectral shape and strength are determined by the occultation geometry and the radial variation of the near-forward radar cross section of illuminated ringlets. Both components are derived in terms of the physical ring properties starting from a conventional radar formulation of the problem of single scattering on ensembles of discrete scatterers, which is then generalized to include near-forward multiple scattering. The latter is accomplished through special solutions of the equation of transfer for particles that are larger than the wavelength. When the occultation geometry is optimized, contributions of an individual ringlet to a perturbed spectrum can be identified with radial resolution on the order of a few kilometers for the coherent component and a few hundred kilometers for the incoherent one, thus permitting high-resolution reconstruction of the radial profile of the optical depth, as well as reconstruction of the radar cross section of resolved ringlets. Simultaneous estimates of the optical depth and radar cross section of a ringlet at 3.6 cm-gl allow separation of its aerial density and particle size, if the particles are of known material and form a narrow size distibution with radii greater than several tens of centimeters. This separation is also achieved for radii ?10 cm from differential effects on the coherent signal parameters at 3.6- and 13-cm wavelengths. For the more general case of a broad size distribution modeled by a power law, the absence of differential effects on the coherent signal binds the minimum size to be ?10 cm. In this case, the radius inferred from an estimate of the radar cross section represents an equivalent radius, which is strongly controlled by the maximum size of the distribution provided that the power index is in the range 3 to 4. On the other hand, detection of differential coherent signal extinction determines an upper bound on the maximum size and a lower bound on the power index, assuming water-ice particles. These bounds, together with an inferred equivalent size, constrain the size distribution at both its small and large ends.  相似文献   

20.
The viscosity (the angular momentum flux) in the disk of mutually gravitating particles of Saturn's rings is investigated. The hydrodynamic theory of the gravitational Jeans-type instability of small gravity perturbations (e.g., those produced by spontaneous disturbances) of the disk is developed. It is suggested that in such a system the hydrodynamic turbulence may arise as a result of the instability. The turbulence is related to stochastic motions of “fluid” elements. The objective of this paper is to show that in the Jeans-unstable Saturnian ring disk the turbulent viscosity may exceed the ordinary microscopic viscosity substantially. The main result of local N-body simulations of planetary rings by Daisaka et al. (2001. Viscosity in a dense planetary ring with self-gravitating particles. Icarus 154, 296-312) is explained: in the presence of the gravitationally unstable density waves, the effective turbulent viscosity νeff is given as νeff=CG2Σ2/Ω3, where G, Σ, and Ω are the gravitational constant, the surface mass density of a ring, and the angular velocity, respectively, and the nondimensional correction factor C≈10. We argue that both Saturn's main rings and their irregular of the order of 100 m or even less fine-scale structure (being recurrently created and destroyed on the time scale of an order of Keplerian period ) are not likely much younger than the solar system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号