首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The Chemical Analyser subsystem of the Cosmic Dust Analyser (CDA) aboard the Cassini spacecraft performs in situ measurements of the chemical composition of dust in space. The instrument records time-of-flight mass spectra of cations, extracted from the impact cloud that is created by high-velocity particle impacts onto the detector target. Thus, the spectra not only show signals of particle components but also of ions from the target material and target contamination. The aim of this work is to determine which non-particle ions are to be expected in the spectra obtained in space operation at Saturn.We present an analysis of the contamination state of the instrument's impact target. Beside investigations of the purity of the rhodium target surface, spectra from CDA calibration experiments at the dust accelerator facility are evaluated with regard to contamination signatures. Furthermore, contamination mass lines in spectra obtained by impacts of Jovian and Saturnian dust stream particles are analysed. Due to their small size and high speed, stream particle impacts predominantly produce ions from the target material and therefore the spectra are excellent probes of the contamination state of the target operating in space. With the exception of adsorbed hydrogen and carbon, the level of contamination is very low.Implications for CDA spectra of Saturnian E ring particle impacts are derived. The findings confirm the published interpretations. The low level of alkali metal contamination implies a significant sodium contribution in the composition of E ring ice particles. Additionally, ionisation thresholds for the occurrence of contamination mass lines can be utilised to set limits for the impact velocity.  相似文献   

2.
High speed dust streams emanating from near Jupiter were first discovered by the Ulysses spacecraft in 1992. Since then the phenomenon has been re-observed by Galileo in 1995, Cassini in 2000, and Ulysses in 2004. The dust grains are expected to be charged to a potential of , which is sufficient to allow the planet's magnetic field to accelerate them away from the planet, where they are subsequently influenced by the interplanetary magnetic field (IMF). A similar phenomenon was observed near Saturn by Cassini. Here, we report and analyze simultaneous dust, IMF and solar wind data for all dust streams from the two Ulysses Jupiter flybys. We find that compression regions (CRs) in the IMF – regions of enhanced magnetic field – precede most dust streams. Furthermore, the duration of a dust stream is roughly comparable with that of the precedent CR, and the occurrence of a dust stream and the occurrence of the previous CR are separated by a time interval that depends on the distance to Jupiter. The intensity of the dust streams and their precedent CRs are also correlated, but this correlation is only evident at distances from the planet no greater than 2 AU. Combining these observations, we argue that CRs strongly affect dust streams, probably by deflecting dust grain trajectories, so that they can reach the spacecraft and be detected by its dust sensor.  相似文献   

3.
Voyager flybys of Saturn in 1980-1981 revealed a circumpolar wave at ≈78° north planetographic latitude. The feature had a dominant wavenumber 6 mode, and has been termed the Hexagon from its geometric appearance in polar-projected mosaics. It was also noted for being stationary with respect to Saturn’s Kilometric Radiation (SKR) rotation rate. The Hexagon has persisted for over 30 years since the Voyager observations until now. It has been observed from ground based telescopes, Hubble Space Telescope and multiple instruments onboard Cassini in orbit around Saturn. Measurements of cloud motions in the region reveal the presence of a jet stream whose path closely follows the Hexagon’s outline. Why the jet stream takes the characteristic six-sided shape and how it is stably maintained across multiple saturnian seasons are yet to be explained. We present numerical simulations of the 78.3°N jet using the Explicit Planetary Isentropic-Coordinate (EPIC) model and demonstrate that a stable hexagonal structure can emerge without forcing when dynamic instabilities in the zonal jet nonlinearly equilibrate. For a given amplitude of the jet, the dominant zonal wavenumber is most strongly dependent on the peak curvature of the jet, i.e., the second north-south spatial derivative of the zonal wind profile at the center of the jet. The stable polygonal shape of the jet in our simulations is formed by a vortex street with cyclonic and anticyclonic vortices lining up towards the polar and equatorial side of the jet, respectively. Our result is analogous to laboratory experiments of fluid motions in rotating tanks that develop polygonal flows out of vortex streets. However, our results also show that a vortex street model of the Hexagon cannot reproduce the observed propagation speed unless the zonal jet’s speed is modified beyond the uncertainties in the observed zonal wind speed, which suggests that a vortex street model of the Hexagon and the observed zonal wind profile may not be mutually compatible.  相似文献   

4.
Imaging of low-energy neutral atoms (LENAs) in the vicinity of the Moon can provide wide knowledge of the Moon from the viewpoint of plasma physics and planetary physics. At the surface of the Moon, neutral atoms are mainly generated by photon-stimulated desorption, micrometeorite vaporization and sputtering by solar wind protons. LENAs, the energetic neutral atoms with energy range of 10-500 eV, are mainly created by sputtering of solar wind particles. We have made quantitative estimates of sputtered LENAs from the Moon surface. The results indicate that LENAs can be detected by a realistic instrument and that the measurement will provide the global element maps of sputtered particles, which substantially reflect the surface composition, and the magnetic anomalies. We have also found that LENAs around dark regions, such as the permanent shadow inside craters in the pole region, can be imaged. This is because the solar wind ions can penetrate shaded regions due to their finite gyro-radius and the pressure gradient between the solar wind and the wake region. LENAs also extend our knowledge about the magnetic anomalies and associated mini-magnetosphere systems, which are the smallest magnetospheres as far as one knows. It is thought that no LENAs are generated from mini-magnetosphere regions because no solar wind may penetrate inside them. Imaging such void areas of LENAs will provide another map of lunar magnetic anomalies.  相似文献   

5.
The giant planetary magnetospheres surrounding Jupiter and Saturn respond in quite different ways, compared to Earth, to changes in upstream solar wind conditions. Spacecraft have visited Jupiter and Saturn during both solar cycle minima and maxima. In this paper we explore the large-scale structure of the interplanetary magnetic field (IMF) upstream of Saturn and Jupiter as a function of solar cycle, deduced from solar wind observations by spacecraft and from models. We show the distributions of solar wind dynamic pressure and IMF azimuthal and meridional angles over the changing solar cycle conditions, detailing how they compare to Parker predictions and to our general understanding of expected heliospheric structure at 5 and 9 AU. We explore how Jupiter’s and Saturn’s magnetospheric dynamics respond to varying solar wind driving over a solar cycle under varying Mach number regimes, and consider how changing dayside coupling can have a direct effect on the nightside magnetospheric response. We also address how solar UV flux variability over a solar cycle influences the plasma and neutral tori in the inner magnetospheres of Jupiter and Saturn, and estimate the solar cycle effects on internally driven magnetospheric dynamics. We conclude by commenting on the effects of the solar cycle in the release of heavy ion plasma into the heliosphere, ultimately derived from the moons of Jupiter and Saturn.  相似文献   

6.
Resolution of Voyager 1 and 2 images of the mid-sized, icy saturnian satellites was generally not much better than 1 km per line pair, except for a few, isolated higher resolution images. Therefore, analyses of impact crater distributions were generally limited to diameters (D) of tens of kilometers. Even with the limitation, however, these analyses demonstrated that studying impact crater distributions could expand understanding of the geology of the saturnian satellites and impact cratering in the outer Solar System. Thus to gain further insight into Saturn’s mid-sized satellites and impact cratering in the outer Solar System, we have compiled cratering records of these satellites using higher resolution CassiniISS images. Images from Cassini of the satellites range in resolution from tens m/pixel to hundreds m/pixel. These high-resolution images provide a look at the impact cratering records of these satellites never seen before, expanding the observable craters down to diameters of hundreds of meters. The diameters and locations of all observable craters are recorded for regions of Mimas, Tethys, Dione, Rhea, Iapetus, and Phoebe. These impact crater data are then analyzed and compared using cumulative, differential and relative (R) size-frequency distributions. Results indicate that the heavily cratered terrains on Rhea and Iapetus have similar distributions implying one common impactor population bombarded these two satellites. The distributions for Mimas and Dione, however, are different from Rhea and Iapetus, but are similar to one another, possibly implying another impactor population common to those two satellites. The difference between these two populations is a relative increase of craters with diameters between 10 and 30 km and a relative deficiency of craters with diameters between 30 and 80 km for Mimas and Dione compared with Rhea and Iapetus. This may support the result from Voyager images of two distinct impactor populations. One population was suggested to have a greater number of large impactors, most likely heliocentric comets (Saturn Population I in the Voyager literature), and the other a relative deficiency of large impactors and a greater number of small impactors, most likely planetocentric debris (Saturn Population II). Meanwhile, Tethys’ impact crater size-frequency distribution, which has some similarity to the distributions of Mimas, Dione, Rhea, and Iapetus, may be transitional between the two populations. Furthermore, when the impact crater distributions from these older cratered terrains are compared to younger ones like Dione’s smooth plains, the distributions have some similarities and differences. Therefore, it is uncertain whether the size-frequency distribution of the impactor population(s) changed over time. Finally, we find that Phoebe has a unique impact crater distribution. Phoebe appears to be lacking craters in a narrow diameter range around 1 km. The explanation for this confined “dip” at D = 1 km is not yet clear, but may have something to do with the interaction of Saturn’s irregular satellites or the capture of Phoebe.  相似文献   

7.
More than 490 elliptical aerobraking and science phasing orbits made by Mars Global Surveyor (MGS) in 1997 and 1998 provide unprecedented coverage of the solar wind in the vicinity of the orbits of the martian moons Phobos and Deimos. We have performed a comprehensive survey of magnetic field perturbations in the solar wind to search for possible signatures of solar wind interaction with dust or gas escaping from the moons. A total of 1246 solar wind disturbance events were identified and their distribution was examined relative to Phobos, the Phobos orbit, and the Deimos orbit. We find that the spatial distribution of solar wind perturbations does not increase near or downstream of Phobos, Phobos’ orbit, or Deimos’ orbit, which would have been expected if there is significant outgassing or dust escape from the martian moons. Of the 1246 magnetic field perturbation events found in the MGS data set, 11 events were found within 2000 km of the Phobos orbit, while three events were found within 2000 km of the Deimos orbit. These events were analyzed in detail and found to likely have other causes than outgassing/dust escape from the martian moons. Thus we conclude that the amount of gas/dust escaping the martian moons is not significant enough to induce detectable magnetic field perturbations in the solar wind. In essence we have not found any clear evidence in the MGS magnetic field data for outgassing or dust escape from the martian moons.  相似文献   

8.
William T. Reach 《Icarus》2010,209(2):848-850
Interplanetary dust particles from comets and asteroids pervade the Solar System and become temporarily trapped into orbital resonances with Earth, leading to a circumsolar dust ring. Using the unique vantage point of the Spitzer Space Telescope from its Earth-trailing solar orbit, we have measured for the first time the azimuthal structure of the Earth’s resonant dust ring. There is a relative paucity of particles within 0.1 AU of the Earth, followed by an enhancement in a cloud that is centered 0.2 AU behind Earth with a width of 0.08 AU along the Earth’s orbit. The North ecliptic pole is ∼3% brighter at 8 μm wavelength when viewed from inside the enhancement. The presence of azimuthal asymmetries in debris disks around other stars is considered strong evidence for planets. By measuring the properties of the Earth’s resonant ring, we can provide “ground truth” to models for interactions of planets and debris disks, possibly leading to improved predictions for detectability of life-bearing planets. The low amplitude of the azimuthal asymmetry in the Earth’s circumsolar ring suggests significant contributions to the zodiacal light from particles that are large (>30 μm) or have large orbital eccentricity that makes capture into mean motion resonances inefficient.  相似文献   

9.
We used numerical simulations to model the orbital evolution of interplanetary dust particles (IDPs) evolving inward past Earth’s orbit under the influence of radiation pressure, Poynting–Robertson light drag (PR drag), solar wind drag, and gravitational perturbations from the planets. A series of β values (where β is the ratio of the force from radiation pressure to that of central gravity) were used ranging from 0.0025 up to 0.02. Assuming a composition consistent with astronomical silicate and a particle density of 2.5 g cm−3 these β values correspond to dust particle diameters ranging from 200 μm down to 25 μm. As the dust particle orbits decay past 1 AU between 4% (for β = 0.02, or 25 μm) and 40% (for β = 0.0025, or 200 μm) of the population became trapped in 1:1 co-orbital resonance with Earth. In addition to traditional horseshoe type co-orbitals, we found about a quarter of the co-orbital IDPs became trapped as so-called quasi-satellites. Quasi-satellite IDPs always remain relatively near to Earth (within 0.1–0.3 AU, or 10–30 Hill radii, RH) and undergo two close-encounters with Earth each year. While resonant perturbations from Earth halt the decay in semi-major axis of quasi-satellite IDPs their orbital eccentricities continue to decrease under the influence of PR drag and solar wind drag, forcing the IDPs onto more Earth-like orbits. This has dramatic consequences for the relative velocity and distance of closest approach between Earth and the quasi-satellite IDPs. After 104–105 years in the quasi-satellite resonance dust particles are typically less than 10RH from Earth and consistently coming within about 3RH. In the late stages of evolution, as the dust particles are escaping the 1:1 resonance, quasi-satellite IDPs can have deep close-encounters with Earth significantly below RH. Removing the effects of Earth’s gravitational acceleration reveals that encounter velocities (i.e., velocities “at infinity”) between quasi-satellite IDPs and Earth during these close-encounters are just a few hundred meters per second or slower, well below the average values of 2–4 km s−1 for non-resonant Earth-crossing IDPs with similar initial orbits. These low encounter velocities lead to a factor of 10–100 increase in Earth’s gravitationally enhanced impact cross-section (σgrav) for quasi-satellite IDPs compared to similar non-resonant IDPs. The enhancement in σgrav between quasi-satellite IDPs and cometary Earth-crossing IDPs is even more pronounced, favoring accretion of quasi-satellite dust particles by a factor of 100–3000 over the cometary IDPs. This suggests that quasi-satellite dust particles may dominate the flux of large (25–200 μm) IDPs entering Earth’s atmosphere. Furthermore, because quasi-satellite trapping is known to be directly correlated with the host planet’s orbital eccentricity the accretion of quasi-satellite dust likely ebbs and flows on 105 year time scales synchronized with Earth’s orbital evolution.  相似文献   

10.
《Planetary and Space Science》2006,54(9-10):1007-1013
We present the initial results from a simulation of ion behaviour within Cassini's cosmic dust analyser (CDA) instrument, using an in-house ion dynamics code. This work is to enable and enhance the detailed interpretation of dust impact ionisation mass spectra returned from the Saturnian system. Early work has already provided insights into the properties of the impact plasma in both low- and high-velocity impacts. We find that the isotropic emission of ions from the impact plasma successfully reproduces features seen in flight spectra and that the emitted ions have a higher range of energies (tens to hundreds of eV) than previously reported in some studies. Using these new ion characteristics, we have successfully modelled CDA flight mass spectra.  相似文献   

11.
Aegaeon (Saturn LIII, S/2008 S1) is a small satellite of Saturn that orbits within a bright arc of material near the inner edge of Saturn’s G-ring. This object was observed in 21 images with Cassini’s Narrow-Angle Camera between June 15 (DOY 166), 2007 and February 20 (DOY 051), 2009. If Aegaeon has similar surface scattering properties as other nearby small saturnian satellites (Pallene, Methone and Anthe), then its diameter is approximately 500 m. Orbit models based on numerical integrations of the full equations of motion show that Aegaeon’s orbital motion is strongly influenced by multiple resonances with Mimas. In particular, like the G-ring arc it inhabits, Aegaeon is trapped in the 7:6 corotation eccentricity resonance with Mimas. Aegaeon, Anthe and Methone therefore form a distinctive class of objects in the Saturn system: small moons in corotation eccentricity resonances with Mimas associated with arcs of debris. Comparisons among these different ring-arc systems reveal that Aegaeon’s orbit is closer to the exact resonance than Anthe’s and Methone’s orbits are. This could indicate that Aegaeon has undergone significant orbital evolution via its interactions with the other objects in its arc, which would be consistent with the evidence that Aegaeon’s mass is much smaller relative to the total mass in its arc than Anthe’s and Methone’s masses are.  相似文献   

12.
An analysis of ion data from 390 Venus Express, VEX, orbits demonstrates that the flow of solar wind- and ionospheric ions near Venus is characterized by a marked asymmetry. The flow asymmetry of solar wind H+ and ionospheric O+ points steadily in the opposite direction to the planet’s orbital motion, and is most pronounced near the Pole and in the tail/nightside region. The flow asymmetry is consistent with aberration forcing, here defined as lateral forcing induced by the planet’s orbital motion. In addition to solar wind forcing by the radial solar wind expansion, Venus is also subject a lateral/aberration forcing induced by the planet’s orbital motion transverse to the solar wind flow.The ionospheric response to lateral solar wind forcing is analyzed from altitude profiles of the ion density, ion velocity and ion mass-flux. The close connection between decreasing solar wind H+ mass-flux and increasing ionospheric O+ mass-flux, is suggestive of a direct/local solar wind energy and momentum transfer to ionospheric plasma. The bulk O+ ion flow is accelerated to velocities less than 10 km/s inside the dayside/flank Ionopause, and up to 6000 km in the tail. Consequently, the bulk O+ outflow does not escape, but remains near Venus as a fast (km/s) O+ zonal wind in the Venus polar and nightside upper ionosphere. Furthermore, the total O+ mass-flux in the Venus induced magnetosphere, increases steadily downward to a maximum of 2 × 10−14 kg/(m2 s) at ≈400 km altitude, suggesting a downward transport of energy and momentum. The O+, and total mass-flux, decay rapidly below 400 km. With no other plasma mass-flux as replacement, we argue that the reduction of ion mass-flux is caused by ion-neutral drag, a transfer of ion energy and momentum to neutrals, implying that the O+ plasma wind is converted to a neutral (thermosphere) wind at Venus. Incidentally, such a neutral wind would go in the same direction as the Venus atmosphere superrotation.  相似文献   

13.
Fine time resolution observations of the angular distributions of the intensities of energetic electrons (220 ≤ E e ≤ 500 keV) by the IMP-7 and 8 spacecraft during the onsets of solar electron events and the technique of mapping the solar wind to the solar corona have been incorporated in this work in order to obtain the large-angle scattering distance of these particles under different configurations of the large scale structure of the interplanetary medium. It is found that in the presence of stream-stream interaction regions with compressed magnetic fields beyong 1 AU, the large-angle scattering is determined by the distance along the streamlines from the spacecraft to their intersection by a faster solar wind stream. In cases of diverging magnetic fields the estimated large-angle scattering distance exceeds 1 AU.  相似文献   

14.
The spacecraft ISEE-3 was launched in August 1978 and subsequently placed in orbit about the Sun-Earth L1 libration point where it continuously monitored the particles and fields in interplanetary space until mid-1982. The ISEE-3 Energetic Proton Anisotropy Spectrometer makes 3-dimensional intensity measurements of 35–1600 keV, Z ? 1 ions. This data is used in conjunction with simultaneous solar wind plasma and magnetic field data from the same spacecraft to study the properties of ions in interaction regions lying at the leading edges of nine corotating high speed solar wind streams observed during October 1978–July 1979. Seven streams have an enhancement of ? 300 keV ions in the compressed fast stream plasma between the stream interface and interaction region trailing edge. These enhancements are associated with plasma heating to above 3 × 105 K, have soft spectra (spectral index ~ 4.5?6.0) and in five cases show anti-solar streaming in the solar wind frame.  相似文献   

15.
The Ulysses flyby of Jupiter has permitted the detection of a variety of quasiperiodic magnetospheric phenomena. In this paper, Unified Radio and Plasma Wave Experiment (URAP) observations of quasiperiodic radio bursts are presented. There appear to be two preferred periods of short-term variability in the Jovian magnetosphere, as indicated by two classes of bursts, one with 40 min periodicity, the other with 15 min periodicity. The URAP radio direction determination capability provides clear evidence that the 40 min bursts originate near the southern Jovian magnetic pole, whereas the source location of the 15 min bursts remains uncertain. These bursts may be the signatures of quasiperiodic electron acceleration in the Jovian magnetosphere; however, only the 40 min bursts occur in association with observed electron bursts of similar periodicity. Both classes of bursts show some evidence of solar wind control. In particular, the onset of enhanced 40 min burst activity is well correlated with the arrival of high-velocity solar wind streams at Jupiter, thereby providing a remote monitor of solar wind conditions at Jupiter.  相似文献   

16.
A laboratory experiment has been made where a plasma stream collides with targets made of different materials of cosmic interest. The experiment can be viewed as a process simulation of the solar wind particle interaction with solid surfaces in space — e.g., cometary dust. Special interest is given to sputtering of OH and Na.It is also shown that the erosion of solid particles in interplanetary space at large heliocentric distances is most likely dominated by sputtering and by sublimation near the Sun. The heliocentric distance of the limit between the two regions is determined mainly by the material properties of the eroded surface, e.g., heat of sublimation and sputtering yield, a typical distance being 0.5 AU.It is concluded that the observations of Na in comets at large solar distances, in some cases also near the Sun, is most likely to be explained by solar wind sputtering. OH emission in space could be of importance also from dry, water-free, matter by means of molecule sputtering. The observed OH production rates in comets are however too large to be explained in this way and are certainly the results of sublimation and dissociation of H2O from an icy nucleus.  相似文献   

17.
We have performed the first observation of the CO(3-2) spectral line in the atmosphere of Saturn with the James Clerk Maxwell Telescope. We have used a transport model of the atmosphere of Saturn to constrain the origin of the observed CO. The CO line is best-fit when the CO is located at pressures less than (15±2) mbar with a mixing ratio of (2.5±0.6)×10-8 implying an external origin. By modeling the transport in Saturn’s atmosphere, we find that a cometary impact origin with an impact 200-350 years ago is more likely than continuous deposition by interplanetary dust particles (IDP) or local sources (rings/satellites). This result would confirm that comet impacts are relatively frequent and efficient providers of CO to the atmospheres of the outer planets. However, a diffuse and/or local source cannot be rejected, because we did not account for photochemistry of oxygen compounds. Finally, we have derived an upper limit of ∼1×10-9 on the tropospheric CO mixing ratio.  相似文献   

18.
A Monte-Carlo model of exospheres (Wurz and Lammer, 2003) was extended by treating the ion-induced sputtering process, photon-stimulated desorption, and micro-meteorite impact vaporisation quantitatively in a self-consistent way starting with the actual release of particles from the mineral surface of Mercury. Based on available literature data we established a global model for the surface mineralogy of Mercury and from that derived the average elemental composition of the surface. This model serves as a tool to estimate densities of species in the exosphere depending on the release mechanism and the associated physical parameters quantitatively describing the particle release from the surface.Our calculation shows that the total contribution to the exospheric density at the Hermean surface by solar wind sputtering is about 4×107 m-3, which is much less than the experimental upper limit of the exospheric density of 1012 m-3. The total calculated exospheric density from micro-meteorite impact vaporisation is about 1.6×108 m-3, also much less than the observed value. We conclude that solar wind sputtering and micro-meteorite impact vaporisation contribute only a small fraction of Mercury’s exosphere, at least close to the surface. Because of the considerably larger scale height of atoms released via sputtering into the exosphere, sputtered atoms start to dominate the exosphere at altitudes exceeding around 1000 km, with the exception of some light and abundant species released thermally, e.g. H2 and He. Because of Mercury’s strong gravitational field not all particles released by sputtering and micro-meteorite impact escape. Over extended time scales this will lead to an alteration of the surface composition.  相似文献   

19.
The Galileo spacecraft was launched in 1989, and—between 1995 and 2003—was the first spacecraft in orbit about Jupiter. The in-situ dust instrument on board was a highly sensitive impact-ionisation dust detector which measured the speed, mass and impact direction of dust particles hitting a metal target. It provided a unique 12-year record of cosmic dust in interplanetary and circumjovian space. Degradation of the instrument electronics caused by the harsh radiation environment in the inner jovian magnetosphere was recognised in various ways: the sensitivity for dust detection dropped by a factor of 7.5 between 1996 and 2003 while the noise sensitivity decreased by up to a factor of 100. Shifts in the parameters measured during dust impacts and noise events (charge amplitudes and signal rise times, etc.) required a time-dependent algorithm for noise identification. After noise removal a total of 21 224 complete data sets for dust impacts (i.e. impact charges, signal rise times, impact direction, etc.) is available from the entire Galileo mission between 1989 and 2003 (18 340 data sets from the Jupiter mission after 1996). This homogeneous data set has been used in many investigations of jovian dust published already or ongoing. Electronics degradation prevents the application of the mass and speed calibration to data obtained after 2000. Only in cases where the impact speed of grains is known by other means can grain masses be derived for later measurements. The drop of the detection sensitivity also required a time-dependent correction for fluxes of jovian dust streams, reaching a factor of 20 in 2002. We use the derived homogeneous noise-removed data set for long-term monitoring of the jovian dust streams with Galileo. The derived fluxes of dust stream particles were highly variable by about five orders of magnitude, between 3×10-3 and and exhibited strong orbit-to-orbit variability. This extensive and valuable data set is available for further detailed investigations.  相似文献   

20.
The MESSENGER spacecraft flyby of Mercury on 14 January 2008 provided a new opportunity to study the intrinsic magnetic field of the innermost planet and its interaction with the solar wind. The model presented in this paper is based on the solution of the three-dimensional, bi-fluid equations for solar wind protons and electrons in the absence of mass loading. In this study we provide new estimates of Mercury’s intrinsic magnetic field and the solar wind conditions that prevailed at the time of the flyby. We show that the location of the boundary layers and the strength of the magnetic field along the spacecraft trajectory can be reproduced with a solar wind ram pressure Psw = 6.8 nPa and a planetary magnetic dipole having a magnitude of 210 RM3 − nT and an offset of 0.18 RM to the north of the equator, where RM is Mercury’s radius. Analysis of the plasma flow reveals the existence of a stable drift belt around the planet; such a belt can account for the locations of diamagnetic decreases observed by the MESSENGER Magnetometer. Moreover, we determine that the ion impact rate at the northern cusp was four times higher than at the southern cusp, a result that provides a possible explanation for the observed north-south asymmetry in exospheric sodium in the neutral tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号