首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intense post-depositional alteration has profoundly affected sandstones in the volcanic portions of Early Archaean (3·5–3·3 Ga) greenstone belts. The mineralogy and bulk compositions of most grains have been completely destroyed by pervasive metasomatism, but grain textures are commonly well preserved. Consequently, microtextural information coupled with present alteration compositions as determined petrographically can be used to estimate original framework modes. Silicified Early Archaean volcaniclastic sandstones assigned to the Panorama Formation and Duffer Formation, Warrawoona Group, eastern Pilbara Block, Western Australia, were originally composed of volcanic (VRF) and sedimentary (SRF) rock fragments, volcanic quartz, feldspar, traces of ferromagnesian minerals and pumice. Only volcanic megaquartz remained stable during alteration. All other primary components were replaced by granular microcrystalline quartz (GMC) and sericite. In most areas, the sandstones were composed of dacitic to rhyolitic VRFs, now totally replaced by sericite-poor GMC and recognized by preserved microporphyritic textures. In a few areas, quartz-poor dacitic to andesitic(?) VRFs dominated the detrital assemblage. Minor SRFs and mafic VRFs, now replaced by GMC, are recognized on the basis of colour, internal structures, and internal textures, including skeletal, possible spinifex textures. Detrital feldspar is represented by blocky, sericite-rich grain pseudomorphs. A semi-quantitative point-count scheme, developed for the analysis of heavily altered sandstones, indicates the following primary detrital-mode ranges for Panorama arenites: quartz, 0–28%; feldspar, 0–28%, VRFs, 58–86%, and SRFs 0–25%. In about half the point-counted samples, feldspar could not be distinguished from rock fragments. In such cases, both were counted as one grain type, Lv', which makes up from 84 to 100% of the framework modes of these rocks. These sands were derived from a terrane composed largely of fresh felsic volcanic rocks and sediments, but locally including minor mafic, ultramafic, and sedimentary rocks. Much, but not all, of the felsic volcaniclastic sand represents reworked pyroclastic debris. There is no evidence for contributions from plutonic or metamorphic sources. The Panorama modal assemblage represents a provenance that is lithologically more restricted than that of Archaean greywackes and other siliciclastic units common in the sedimentary portions of these same Early Archaean greenstone belts and younger greenstone belts (3·0–2·7 Ga).  相似文献   

2.
The nature of Al Batinah coast beach sediments in the Sultanate of Oman was investigated by the analysis of grain size and mineralogy. The beach sediments, mostly light-medium gray green, were predominantly fine sands, with the average grain size of all samples about 200 μm. Some of the particles were gravel (2–16 mm), and some were even larger pebble-size particles (16–256 mm). Some mud (sediment <63 μm) was present, mostly in the sub-tidal sediments. The majority of the samples were skewed to the coarse size with coarse tail partly due to the presence of shell fragments. Approximately 50 % of the beach sediments were quartz with different varieties based on shape and size. The second major component of beach sediment was calcium carbonate which varied from 10 to 65 %. The other components in decreasing order consisted of microbreccia, feldspar, pyroxene, igneous rock fragments, biotite flakes, and heavy minerals. The levels of carbonate were lower in NW Al Batinah coast from Harmul to Al Khaburah but were higher in the SE from Al Khaburah to Al Ghubrah. This could be attributed to either lower carbonate production or more sediment input by wadis along the north-western part of Al Batinah coast. The unique and complex nature of these sediments is largely due to the geology of the terrestrial source area in the Hajar Mountains which contains the famous Samail ophiolite complex and the weak sorting along the shoreline in these tide-modified beaches.  相似文献   

3.
To obtain a better understanding of the source compositions of the river sediments around the Yellow Sea and their relationship with source rocks, elements and strontium-neodymium (Sr–Nd) isotopes of different grain-sizes (silt and clay populations) and chemical (labile and residual phases) fractionations in riverine sediments were studied extensively. These results clearly revealed a systematic compositional disparity between Korean river (KR) and Chinese river (CR) sediments, especially in the residual (detrital) fraction. The geochemical dissimilarity between these might reflect inherited signatures of their source rocks but with minor control from chemical weathering. In particular, the remarkable enrichment of some elements (iron (Fe) and magnesium (Mg)) and the behavior of large ion lithophile elements (e.g., barium (Ba), potassium (K) and Sr) during weathering as well as less-radiogenic Sr isotopic compositions implies that CR sediments might be weathering products of relatively more mafic rocks, with abundant ferromagnesian and plagioclase feldspar minerals, compared with KR sediments derived from silicic granites with relatively higher quartz and potassium feldspar contents. This different petrological rationale is clearly evident in an A–CN–K diagram, which estimated the source rock of CR sediments as granodioritic, a composition that reflects accurately the average composition of weathered continental crust in China. The recognition of such geochemical systematics in two river sediments, especially in grain-size and chemically partitioned data, may contribute to the establishment of provenance tracers for the Yellow Sea and East China Sea sediments with multi-sources as well the dust deposition in the western Pacific.  相似文献   

4.
The paper presents original data on the inner structure, mineralogy, and geochemistry of the Late Paleozoic Burgasy quartz syenite massif in western Transbaikalia and mafic microgranular enclaves (MME) in its rocks. The composition of the mafic microgranular enclaves is close to that of phase-1 monzonitoids of this pluton, but the enclaves are not xenoliths of these rocks but were produced by the crystallization of an individual portion of dispersed hybridized basalt melt. The basaltoid nature of the enclaves follows, first of all, from the relict assemblage of calcic plagioclase (An 73–60) and clinopyroxene and from the magmatic dolerite and microgabbro textures of the rocks. The monzonitoid composition of the enclaves was caused by hybridism, which was responsible for the crystallization of quartz, potassic feldspar, and sodic plagioclase due to the introduction of silica, potassium, and some other components. Hybridism was restricted to a boundary crystallization layer in the deep portion of the magmatic chamber (near its bottom). The scatter of the enclaves throughout the whole volume of the pluton is explained by the density inversion of the hybrid layer and material transfer by convective flows. The mafic enclaves crystallized from basaltic melt of within-plate geochemical type. In spite of intense hybridism, the enclaves preserved typical compositional signatures of mafic magma related to the generation of granites in western Transbaikalia in the Late Paleozoic. The basaltoid nature of the mafic enclaves of the Burgasy Massif testifies that magma was simultaneously generated in the mantle and crust during the development of the Late Paleozoic province in the area.  相似文献   

5.
Fine-grained fluvial residual channel infillings are likely to reflect systematic compositional changes in response to climate change, owing to changing weathering and geomorphological conditions in the upstream drainage basin. Our research focuses on the bulk sediment and clay geochemistry, laser granulometry and clay mineralogy of Late-glacial and Early Holocene River Meuse (Maas) unexposed residual channel infillings in northern Limburg (The Netherlands). We demonstrate that residual channel infillings register a systematic bulk and clay compositional change related to climate change on a 1–10 k-yr time-scale. Late-glacial and Holocene climatic amelioration stabilised the landscape and facilitated prolonged and intense chemical weathering of phyllosilicates and clay minerals due to soil formation. Clay translocation and subsequent erosion of topsoils on Palaeozoic bedrock and loess deposits increased the supply of smectite and vermiculite within River Meuse sediments. Smectite plus vermiculite contents rose from 30–40% in the Pleniglacial to 60% in the Late Allerød and to 70–80% in the Holocene. Younger Dryas cooling and landscape instability caused almost immediate return to low smectite and vermiculite contents. Following an Early Holocene rise, within about 5000 yr, a steady state supply is reached before 5 ka (Mid-Holocene). Holocene sediments therefore contain higher amounts of clay that are richer in high-Al, low-K and low-Mg vermiculites and smectites compared with Late (Pleni-)glacial sediments. The importance of clay mineral provenance and loess admixture in the River Meuse fluvial sediments is discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   

6.
Hydrothermal experiments with primary detrital components of feldspathic sands (orthoclase, albite, quartz, and calcite) were conducted to simulate possible diagenetic changes in geosynclinal sedimentary accumulations and the geothermal reservoir of the Imperial Valley area, California. Phyllosilicate and zeolite mineralization was produced at 200°C and 1 Kb Ph2o and at 300°C and 1 and 3 Kb Ph2o. Scanning electron microscope examination of the detrital grains shows the development of authigenic minerals and solution features. Phyllosilicate development occurred as dense surface coatings on orthoclase crystals in concentrated brines and as scattered grain clusters in dilute brines. Cation concentration is considered to be a controlling factor in phyllosilicate formation and growth. During formation the phyllosilicate crystals appear to utilize the surficial feldspar lattice structure as a preferred growth site. Electron diffraction studies indicate the crystals are a 1 Md mica similar to illite. Initial phyllosilicate formation occurs principally on orthoclase in systems containing this mineral, but is disseminated on other mineral surfaces in systems without orthoclase. This experimental development of authigenetic illite via the destruction of potassium feldspar may offer a potential mechanism to help explain the resulting mineralogy of diagenetic processes occurring in natural sediments such as in feldspathic sands and argillaceous sediments.  相似文献   

7.
The 1.1 Ga volcanogenic massive sulphide deposit at Deri in the Sirohi district of south Rajasthan occurs within a bimodal volcanic suite of tholeiites and rhyolites, with minor amounts of andesites and tourmaline-bearing chert, interlayered with arkosic sediments. The ores and the enclosing rocks have undergone superposed deformation and polymetamorphism initially under amphibolite facies conditions and later under hornblende hornfels facies conditions. Metamorphism, however, has not affected the bulk composition of the rocks to any significant degree.Three distinct semiconformable alteration facies, characterized by their conspicuous magnesian mineralogy, are recognized in the host rocks: (1) hornblende-biotite-plagioclase-quartz schist (AMV); (2) cordierite-anthophyllite-chlorite hornfels (AFV); and (3) biotite-chlorite(-sericite) schist/hornfels (BCS). The first is derived from the mafic volcanics, whereas the other two represent progressive alteration of felsic volcanic protoliths. Fe, Mg and water were added and Na was removed from all the alteration facies in varying amounts. The maximum enrichment is noted in BCS for Mg and Fe, whereas the maximum depletion is seen in this facies for Si, an element which is also depleted significantly in AFV. AMV on the other hand, shows enrichment of Si, Ca and to some extent, in Al. Alumina is also enriched considerably in BCS, probably due to clayey alteration and extreme leaching of silica. Amongst the trace elements, Rb, Ba, Nb and Y are gained in most of the facies, except in BCS, where Ba and Y show distinct depletion. The LREE, from La to Sm, were enriched about 1.5- to 3.0-fold in all the facies with a maximum in AFV where the flux took place at constant inter-REE proportions: 1.0 La, 0.79 Ce, 0.48 Nd and 0.35 Sm. Eu was depleted from both felsic facies, 7-fold in BCS to 4-fold in AFV, during alteration. The HREE (Er to Lu) remained immobile in all the altered facies.The chemical and mineralogical zonation in the alteration facies are interpreted to be due to the progressive reaction of an evolving sea-water hydrothermal fluid with the bimodal volcanic protoliths during convective circulation. Fluid-rock interaction, guided by vertical and lateral thermal gradients, produced a sericite-quartz assemblage in the felsic volcanics at the expense of feldspar during the initial stages (175 °C) which formed a sericite-chlorite zone upon rising temperature (200–250 °C) by base-fixing reactions. A further temperature increase (to ~ 300 °C) and deeper circulation in the mafic pile introduced more Fe and Mg, thereby transforming the previously formed assemblage to a nearly pure chloritic zone and the most intensely altered biotite-chlorite(-sericite) facies.  相似文献   

8.
The Pleasant Bay layered gabbro-diorite complex (420 Ma) formed via repeated injections of mafic magma into a felsic magma chamber. It is dominated by repeating sequences (macrorhythmic units) with chilled gabbroic bases which may grade upward into medium-grained gabbro, diorite and granite. Each unit represents an injection of mafic magma into the chamber followed by differentiation. Increases in Sri and decreases in )Ndi with stratigraphic height indicate open-system isotopic behaviour and exchange between the mafic and felsic magmas. Isotopic variations of whole-rock samples in individual macrorhythmic units do not conform to bulk mixing or AFC models between potential parental magmas. Sr isotopic studies of single feldspar crystals from one macrorhythmic unit indicate that exchange of crystals between the resident felsic magma and mafic influxes was important, that some of the rocks contain feldspar xenocrysts, and that the rocks are isotopically heterogeneous on an intercrystal scale. Xenocryst abundance increases with stratigraphic height, suggesting that crystal exchange occurred in situ. The lack of disequilibrium textures in the xenocrystic feldspar indicates the evolved macrorhythmic magma and resident silicic magma were of a similar composition and likely in thermal equilibrium at the time of crystal transfer. Mafic chilled margins are enriched in alkalis and isotopically evolved compared with mafic dikes (representing the parental melts) and suggest rapid in-situ diffusional exchange following emplacement of individual mafic replenishments.  相似文献   

9.
Trace-element geochemistry of sandstones are being used to determine provenance. We have conducted preliminary and limited experiments to determine to what extent daughter sands retain the geochemical signature of parent rocks. Six sets of first-order stream sediments, soils from adjacent slopes, and a variety of parent rocks were collected from southwestern Montana, U.S.A. Sampling in a low-relief area ensured that climate and residence time of soils on slopes could be eliminated as variables. Sand-size fractions of stream sediments and soils, and the corresponding parent rocks (granodiorite, quartz monzonite, granite gneiss, biotite-tonalite gneiss and amphibolite) were analyzed for most major elements and selected trace elements. Petrologic modal analysis of the parent rocks and the 0.25–0.50-mm fraction of each sand was done to monitor major mineralogic control, if any, on chemical compositions of the samples.

Our data show that the abundances of the Si and Al in sediments do not discriminate provenance. Abundances of Ca, Mg, Fe and Ti may broadly distinguish between sands derived from metamorphic and igneous source rocks, at least in the area studied. Differences in abundances of the Ba and Th, and the ratio of La/Lu between granitic, tonalitic and amphibolitic parent rocks are preserved in the daughter sediments that we studied. However, the size of the Eu anomaly in the REE patterns of different daughter sediments is not diagnostic of parent rocks. Abundances of Co and Sc distinguish between sediments derived from felsic and mafic rocks. A better provenance discrimination is obtained if the ratios La/Sc, Th/Sc, La/Co, Ba/Sc and Ba/Co are used.

Petrologic modal data show that mineral contents and chemical compositions of parent rocks are compatible with each other. The chemical composition of the sands may be roughly correlated to the petrological modal data but the abundances of some minor and trace elements of sediments cannot be inferred from modal mineralogy. This is expected because these elements may concentrate in accessory minerals and/or may weather out into aqueous or clay mineral fractions; it is also compatible with conclusions of previous studies that some of these elements do not reside in sand-size fractions of siliciclastic sediments.  相似文献   


10.
In order to test tectonic hypotheses regarding the evolution of the Arctic Alaska–Chukotka microplate prior to the opening of the Amerasian basin, we investigated rocks exposed near Kolyuchinskaya Bay, eastern Chukotka. Hypabyssal mafic rocks and associated basaltic flows enclose terrigenous sediments, minor cherts and limestones in pillow interstices. The hypabyssal mafic rock yields a U–Pb zircon age of 252 ± 4 Ma and indicates intrusion of basic magma at the Permo-Triassic boundary, contemporaneous with voluminous magmatism of the Siberian large igneous province (LIP). The lava flows and hypabyssal mafic rocks of the Kolyuchinskaya Bay region have trace elements, Sm–Nd and Rb–Sr isotope compositions identical to the tholeiitic flood basalts of the main plateau stage of the Siberian LIP, but differ from the latter in the major-element variations. We conclude that compositional variations in the hypabyssal rocks studied reflect their generation in an extensional environment that might be related to the Siberian super-plume activity at the time. Although the genetic and temporal links between intrusive mafic rocks and lavas are not well proved, compositional variations of the eruptive rocks still indicate their generation in an extensional environment.  相似文献   

11.
Rudaceous felsic to ultramafic clastic rocks of the Jones Creek Conglomerate are in tectonic contact with supracrustal mafic and ultramafic igneous rocks and associated fine‐grained sediments. All these rocks have a lower amphibolite facies mineralogy. Heterogeneously developed penetrative deformation has allowed sedimentary structures, including an unconformable contact between the Conglomerate and an adamellite, to be preserved in places. However, narrow, strike‐oriented zones containing blastomylonites and very flattened rudites normally characterize both contacts of the Conglomerate. Structural complexities within and at the contacts of the Conglomerate cast doubt on previous postulates that the Conglomerate separates an older from a younger supracrustal cycle.  相似文献   

12.
The Serra da Graciosa Granites and Syenites comprise five distinct plutons in the Brasiliano/Pan-African Graciosa A-type Province, southern Brazil. Six petrographic series can be identified in these plutons: (1) Alkaline series 1, composed of amphibole-bearing alkali feldspar syenites with varied mafic mineralogy and quartz contents, from alkali feldspar syenites with calcic amphibole, clinopyroxene, olivine and allanite to alkali feldspar quartz syenites with sodic–calcic amphibole and chevkinite–perrierite and to alkali feldspar granites with sodic amphibole; (2) Alkaline series 2, characterized by amphibole-bearing alkali feldspar granites, with limited modal variations but amphibole compositions also varying from calcic to sodic; (3) Alkaline series 3, of limited occurrence, which includes alkali feldspar syenites with olivine and clinopyroxene and no amphibole; (4) Aluminous series 1, of widespread occurrence, with various petrographic facies of biotite granites with amphibole; (5) Aluminous series 2, characterized by alkali feldspar granites with biotite and only minor amphibole; (6) Monzodiorites, typically with biotite, calcic amphibole and augitic clinopyroxene, partially mingled with granitic magmas. The mafic minerals present are, in general, Fe-rich with correspondingly low Mg and Al contents. In Alkaline series 1, amphiboles crystallized in progressively more oxidizing and alkaline conditions, while in Alkaline series 2, the initial conditions were somewhat more oxidizing and shifted to reducing in the final stages. In Aluminous series 1 and Aluminous series 2, amphiboles are calcic and comparatively homogeneous. The amphiboles in the monzodioritic rocks, while also homogeneous, are more Mg-rich and show compositions quite distinct from the calcic varieties in the other associations, and this is also the case for clinopyroxene. Mg# in biotite decreases from the monzodioritic rocks to Aluminous series 1 and further to Aluminous series 2. Contrasting evolution of the various associations suggests that several coeval magmatic series are present in the Serra da Graciosa granites.  相似文献   

13.
In all, 53 elements were analyzed in 1406 coastal sea sediment samples collected from an area off Hokkaido and the Tohoku region of Japan during a nationwide marine geochemical mapping project. The spatial distribution patterns of the elemental concentrations in coastal seas along with the existing geochemical maps in terrestrial areas were used to define natural geochemical background variation and mass transport processes. The terrestrial area is covered by mafic volcanic rocks and accretionary complexes associated with ophiolite, which has small amounts of felsic volcanic rocks and granite. The spatial distribution patterns of elements enriched in mafic lithologies such as Fe (Total Fe2O3) and Sc in marine environments are influenced by adjoining terrestrial materials. The spatial distribution patterns of Cr and Ni concentrations, which are highly abundant in ultramafic rocks on land, are used to evaluate the mass transport from land to the sea and the dispersive processes caused by oceanic currents. The scale of mass transport by oceanic currents occurs up to a distance of 100–200 km from the coast along the coastal areas. The regional differences of elements rich in felsic lithologies such as K (K2O), Nb and La in marine sediments are determined mainly by the relative proportion of minerals and lithic fragments enriching felsic materials to those associated with mafic materials. The spatial distribution of elemental concentration is not always continuous between the land areas and coastal sea areas. That difference is interpreted as resulting from (1) transportation of marine sediments by oceanic currents and storm waves, (2) contribution of volcanic materials such as tephra, (3) occurrence of shell fragments and foraminifera tests and (4) distribution of relict sediments of the last glacial age and early transgression age. Contamination with Cu, Zn, Cd, As, Mo, Sn, Sb, Hg, Pb and Bi was not observed in marine environments because the study area has little anthropogenic activity. Terrestrial materials are the dominant source for these metals. The Mo, Cd, Sn, Sb, Hg, Pb and Bi are abundant in silty and clayey sediments locally because of early diagenetic processes, authigenic precipitation and organic substances associated with these elements. The spatial distribution of As concentration shows exceptions: it is concentrated in some coarse and fine sands on the shelf. The enrichment is explained by adsorption of As, sourced from a coal field, to Fe hydroxide.  相似文献   

14.
Fine scale profiles of the sedimentary formation factor, F, were obtained from measurements of resistivity at millimetre intervals in marine sediments. These profiles demonstrated that rapid decreases in diffusivity occurred in the upper few centimeters of both compact intertidal sands and fine silty muds. In the compact sands, a 70% decrease in the formation factor was observed within 2 cm of the interface. Close correlations were found between the formation factor and sediment porosity for both sediment types. Profiles of 1F predicted from these correlations and porosity profiles were very similar to those obtained from measurements of resistivity. These correlations also suggested that φ?3 is a better approximation of the formation factor in fine muds than the Archie relation φ?2. In both sediments, the interfacial value of the diffusion coefficient was estimated to be between ~74 and ~87% of its value in free solution, a value much higher than is normally assumed.  相似文献   

15.
In addition to mineral analyses, REE and trace element geochemical characteristics of fine- and coarse-grained sands in the Ordos deserts and other sediments in surrounding areas are investigated.Commonly the samples consist of quartz, feldspar and muscovite and less clinochlore, dolomite and ankerite. In few samples muscovite is absent.REE and trace compositions are spatially uniform for the same grain-size sands, suggesting that they could have the same sources or/and were well homogenized. However, fine- and coarse-grained sands in the Ordos deserts show different REE and trace element compositions. Fine-grained sands show higher contents of REE and trace elements than those of coarse-grained sands. They differ in Eu anomalies and (La/Yb)N ratios although both fractions are characterized by the steep LREE and smooth HREE patterns. The fine- and coarse-grained sands are also distinct in some characteristic element ratios (e.g., Th/Co, La/Sc, Th/Sc and Y/Ni).REE and trace element patterns of the two different grain-size fractions are closely associated with geological properties of individual sources rather than the mineralogical differentiation induced by wind sorting. The coarse-grained sands mainly resulted from sandstone weathering in the Ordos deserts and movements of coarse particles by wind. REE and trace element patterns of fine-grained sands in the Ordos deserts differ from those of sandstones in the Ordos deserts, the alluvial sands in the surrounding mountains and the coarse fluvial sands in the Yellow River. They resemble the fine fluvial sands in the Yellow River. In addition, arid areas of Northwest China such as the Tarim Basin and the Alxa Plateau should not be ruled out as the source of the fine-grained sands in the Ordos deserts because these arid areas reserve plenty of fine-grained sediments and also located in the upwind directions of the Ordos deserts.  相似文献   

16.
Urmia Salt Lake(USL) is a hypersaline lake located at the NW corner of the Iran platform. The lake area is estimated to have been over 5000 km~2 at one point, but has now decreased to 1000 km~2 in the last two decades. It contains 4.6×10~9 tons of halite and other detrital and evaporative minerals such as calcite, aragonite, dolomite, quartz, feldspars, augite and sylvite. This study examined the mineralogy and geochemistry of bed sediments along the mid-east toward NE bank sediments collected from 1.5 meters depth and nearby augite placer. Due to the diverse lithology of the surrounding geology, bed sediments vary from felsic in the mid-east to mafic in the northeast. Weathering of tephrite and adakite rocks of the Islamic Island at the immediate boundary has produced a large volume of augite placer over a 40 km length, parallel to the shoreline. Based on the study result, weathering increases from south to north and the geochemistry of the sediments shows enrichment of Mg O, Ca O, Sr and Ba associated with Sr deployment in all samples. Rare earth elements(REE) patterns normalized to the upper continental crust(UCC) indicated LREEs enrichment compared to HREEs with an elevated anomaly of Eu, possibly due to surface absorbance of Mn and Fe minerals, associated with Sr elevation originating from adakites in the lake basin vicinity.  相似文献   

17.
This study is concerned with the radioactivity and mineralogy of the younger granites and pegmatites in the Wadi Haleifiya area, southeastern Sinai Peninsula, Egypt. The area is occupied by metasediments, migmatites, older and younger granites. Most of these rocks, especially granites, are dissected by mafic and felsic dykes as well as pegmatites. The younger granites are represented by three main varieties: monzogranites, syenogranites and alkali feldspar granites. The monzogranite consists essentially of quartz, plagioclase, potash feldspar and biotite with minor musco-vite. Iron oxide, titanite, zircon and allanite are the main accessory minerals. Syenogranite is massive, medium- to coarse-grained and commonly exhibits equigranular and hypidiomorphic textures. It is made up essentially of potash feldspar, quartz, plagioclase and biotite. Iron oxides, allanite, epidote, titanite, and zircon are accessory minerals. The alkali feldspar granite consists mainly of perthite, quartz, alkali amphibole (arfvedsonite and riebekite), biotite, sub-ordinate plagioclase and aegirine. Iron oxide, zircon and apatite are accessory minerals, whereas chlorite and sas-surite are secondary minerals. The altered monzogranite and pegmatite recorded high radioelement contents. The eU reaches up to 120 (av.=82×10-6) in the altered monzogranite and up to 55 (av.=27×10-6) in the pegmatites. The high radioactivity in the altered monzogranite is due to the presence of thorite, uranothorite and metamict zircon. In the pegmatites, it is re-lated to the presence of uranophane, uranothorite, thorite, zircon, samarskite, monazite, xenotime, magnetite, ilmen-ite, hematite and rutile.  相似文献   

18.
A corundum-bearing Type II mafic rock, within the Horoman peridotite,Japan, was petrologically examined in detail to obtain the P–Tpaths of the mafic rock as well as of the host peridotite. Ofall the mafic rocks documented from the Horoman complex, onlythe corundum-bearing mafic rock has preserved, at least partly,its high-pressure mineralogy; all of the others have been completelyrecrystallized at low pressures. The Type II mafic rocks wereinitially formed at <1·0 GPa as cumulates of olivine,plagioclase and clinopyroxene. Corundum was then formed by metamorphismand/or partial melting of the Type II protolith at higher pressures(>1·5 GPa) than the initial condition of formation.Corundum reacted with clinopyroxene during exhumation of theHoroman peridotite down to the plagioclase stability field.The field and petrographical observations of the Type II maficrocks (± corundum) coupled with published isotopic datasuggest a complicated spiral-like P–T trajectory for theHoroman peridotite. The Type II protolith was formed at lowpressure within the peridotite at the time of initial formationof the Horoman peridotite as a residue from primitive mantleat  相似文献   

19.
Compositions, proportions, and equilibrium temperature of coexisting two-feldspar in crystalline rocks are of great importance to classification in petrography and interpretation of petrogenesis. Crystalline rocks are usually composed of 4-6 minerals (phases), depending on their independent chemical components and the equilibrium temperature of crystallizations. In general, number of mineral phases can be determined by the “Phase Rule”. According to the mass balance principle, bulk composition of coexisting two-feldspar could be evaluated from the bulk chemistry of a rock, provided that the compositions of the coexisting mafic mineral phases containing calcium, sodium, and potassium oxides are determined, e.g., by microprobe analysis. The compositions, proportions, and temperature of two-feldspar in equilibrium can thus be simultaneously resolved numerically from bulk composition of the rock, by incorporating the activity/composition relations of the ternary feldspars with the mass balance constraints. Upon the numerical approximation method presented in this paper, better-quality, internally consistent data on feldspar group could usually be obtained, which would be expected more realistic and accurate in consideration of thermodynamic equilibria in the system of crystalline rocks, as well as bulk chemistry of a rock and the composing minerals.  相似文献   

20.
The marine geology of Port Phillip is described in detail, based on data from seismic profiling, vibrocoring and grab sampling. Three major unconsolidated facies can be distinguished: sands and muddy sands peripheral to the present coastline, muds covering the major central region, and channel fills of muds and sands. The first two facies units result from an increase in wave sorting towards the coast, reworking of Tertiary and Quaternary sandstone outcrops around the coast, and a dominant mud supply from river sources into the central area. The distribution and thicknesses of the unconsolidated facies have been augmented by a shallow‐seismic program that reveals the thicknesses of the modern sediments overlying an older surface comprised of consolidated clays and sandy clays of Pleistocene or older age. In central Port Phillip, muds and sands up to 27 m‐thick have infilled Pleistocene channels cut into underlying consolidated units. Sediments immediately above the channel bases show characteristic seismic patterns of fluvial deposition. The presence of peat deposits together with gas phenomena in the water column suggest organic breakdown of channel‐fill deposits is releasing methane into the bay waters. Outside the channel areas, carbon‐14 dating indicates that the unconsolidated sediments largely post‐date the last glaciation sea‐level rise (<6500 a BP), with an early Holocene period of rapid deposition, similar to other Australian estuaries. Stratigraphic and depositional considerations suggest that the undated channel‐fill sequences correlate with the formation of cemented quartz‐carbonate aeolianite and barrier sands on the Nepean Peninsula at the southern end of Port Phillip. Previous thermoluminescence dating of the aeolianites suggests that channel‐fill sequences B, C and D may have been deposited as fluvial and estuarine infills over the period between 57 and 8 ka. The eroded surface on the underlying consolidated sediments is probably the same 118 ka age as a disconformity within the Nepean aeolianites. Further estuarine and aeolianite facies extend below the disconformity to 60 m below sea‐level, and may extend the Quaternary depositional record to ca 810 ka. Pliocene and older Tertiary units progressively subcrop below the Quaternary northwards up the bay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号